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Summary. — Gamma-Ray Bursts (GRBs) are becoming more and more standard-
izable candles. Different methods have been proposed to measure cosmology with
the relation between the γ-ray energy Eγ of a GRB jet and the peak energy Ep of
the νFν spectrum in the burst frame. We compare the procedures and results of
these methods. Using the present sample of 17 GRBs, we obtain a constraint on
the mass density ΩM = 0.22+0.42

−0.07 (1σ) for a flat ΛCDM universe with the median

circumburst density n � 3.0 cm−3. Theoretical investigations of the Eγ ∝ Ea
p rela-

tion reach a ∼ 1.5. A larger sample in the Swift era is expected to provide further
constraints on the GRB cosmography.

PACS 98.70.Rz – γ-ray sources; γ-ray bursts.
PACS 98.80.Es – Observational cosmology (including Hubble constant, distance
scale, cosmological constant, early Universe, etc) .
PACS 01.30.Cc – Conference proceedings.

1. – Introduction

Type-Ia supernovae (SNe Ia) have revolutionized cosmology in the past several years.
Early observations on them at redshift z < 1 strongly suggest that the expansion of the
universe at the present time is accelerating [9, 8]. Since then, the nature of dark energy
(with negative pressure) that drives cosmic acceleration has been one of the greatest
mysteries in modern cosmology. Recent observations of 16 higher-redshift (up to z � 1.7)
SNe Ia present conclusive evidence that the universe had once been decelerating [10].
These newly-discovered objects, together with previous reported SNe Ia, have been used
to provide further constraints on both the expansion history of the universe and the
equation of state of a dark energy component [10].

GRBs are the brightest electromagnetic explosions in the universe. It has been widely
believed that they should be detectable out to very high redshifts [7,2,1]. γ-ray photons
with energy from tens of keV to MeV, if produced at high redshifts, suffer from no
extinction before they are detected. These advantages over SNe Ia would make GRBs
an attractive probe of the universe. Schaefer [12] advocated a new cosmographic method
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(hereafter method I), different from the “Classical Hubble Diagram” method in SNe
Ia [9], by considering two luminosity indicators for nine GRBs with known redshifts, and
gave the constraint ΩM < 0.35 (1σ; Λ-models) for a flat universe. The newly reported
relation between the γ-ray energy Eγ of a GRB jet and the peak energy Ep of the νFν

spectrum in the burst frame, i.e. (Eγ/1050ergs) = C(E′
p/100keV)

a, where a and C are
dimensionless parameters, makes GRBs more standardized candles (Ghirlanda relation;
Ghirlanda et al. [5]). Physical explanations of this relation are involved to the standard
synchrotron mechanism in relativistic shocks or the emission from off-axis relativistic
jets, together with the afterglow jet model. According to the explanations, a ∼ 1.5
might be intrinsic. Dai et al. [3] first used the Ghirlanda relation to measure cosmology,
proposing another cosmographic method (hereafter method II) for 12 GRBs with known
redshifts. Following Schaefer’s method, Ghirlanda et al. [6] and Friedman and Bloom [4]
also used the Ghirlanda relation to investigate the same issue. Detailed procedures of
the two methods are shown in sect. 2. Here we summarize the results of Xu et al. [13]
(sample updated continuously).

2. – Method analysis

According the popular relativistic jet model of GRBs and afterglows, the jet’s af-
terglow light curve is expected to present a break when the bulk Lorentz factor of the
ejecta drops below the inverse of the jet’s half-opening angle, i.e., γ � θ−1 [11]. There-
fore, together with the assumptions of the initial fireball emitting a constant fraction
ηγ of its kinetic energy into the prompt γ-rays and a constant circumburst density n,
the jet’s half-opening angle is given by θ = 0.161[tj,d/(1 + z)]3/8(n0ηγ/Eiso,52)1/8, where
Eiso,52 = Eiso/1052ergs, tj,d = tj/1 day, n0 = n/1 cm−3. For simplicity, the value of ηγ is
taken as 0.2 throughout this paper. The “bolometric” isotropic-equivalent γ-ray energy
of a GRB is Eiso = 4πd2LSγk/(1 + z), where Sγ is the fluence (in units of erg cm−2)
received in an observed bandpass and the quantity k is a multiplicative correction of or-
der unity relating the observed bandpass to a standard rest-frame bandpass (1–104 keV).
The energy release of a GRB jet is thus calculated by Eγ = Eiso(1− cos θ).

The Ghirlanda relation is

(1) (Eγ/1050ergs) = C(E′
p/100 keV)

a,

where a and C have no covariance. From the above equations, we obtain the apparent
luminosity distance with the small angle approximation (i.e., θ � 1) as

(2) dL = 7.69
(1 + z)C2/3[Eobsp (1 + z)/100 keV]2a/3

(kSγtj,d)1/2(n0ηγ)1/6
Mpc

with the uncertainty σdL
given by Xu et al. [13]. The apparent DM of a burst thus reads

µobs = 5 log dL + 25 with the uncertainty of σµobs = 2.17σdL
/dL.

The theoretical luminosity distance in Λ-models is given by

dL = c(1 + z)H−1
0 |Ωk|−1/2sinn {|Ωk|1/2

×
∫ z

0

dz[(1 + z)2(1 + ΩMz)− z(2 + z)ΩΛ]−1/2},(3)
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where Ωk = 1−ΩM −ΩΛ, and “sinn” is sinh for Ωk > 0 and sin for Ωk < 0. For Ωk = 0,
this equation degenerates to be c(1 + z)H−1

0 times the integral.
The likelihood for ΩM and ΩΛ can be determined from a χ2 statistic, which is

(4) χ2(ΩM ,ΩΛ, a, C|h) =
∑

k

[
µth(zk; ΩM ,ΩΛ|h)− µobs(zk; ΩM ,ΩΛ, a, C|h)

σµobs(zk; ΩM ,ΩΛ,a,C,σa/a,σC/C)

]2
,

where h is taken as 0.71. If the Ghirlanda relation is calibrated by low-z bursts, µobs
and σµobs then are independent of ΩM and ΩΛ, and h should be marginalized, which is
the same as in SNe Ia [9].

The procedures of the two methods are summarized as follows:
Method I
The procedure of this method is to: 1) fix Ωi ≡ (ΩM ,ΩΛ)i, 2) derive µth and Eγ

for each burst for that cosmology, 3) fit the Eγ-Ep relation to yield a set of (a,C)i and
(σa/a, σC/C)i, 4) use the (a,C)i and (σa/a, σC/C)i to derive µobs and σµobs for each
burst, 5) calculate χ2i by comparing µth with µobs, and then convert it to the probability
by P (Ωi) ∝ exp[−χ2i /2] [9], 6) repeat steps 1–5 to obtain the probabilities in all the
cosmic models. Because one first fits the Ghirlanda relation for cosmology Ωi and then
obtains the probability in that cosmic model, Method I is described by

(5) P (Ωi) = P (Ωi|Ωi) (i = 1, N).

Method II
The procedure of this method is to: 1) fix Ωi, 2) derive µth and Eγ for each burst for

that cosmology, 3) fit the Eγ − Ep relation to yield a set of (a,C)i and (σa/a, σC/C)i,
4) use the (a,C)i and (σa/a, σC/C)i to derive µobs and σµobs for each burst, 5) repeat
steps 1–4 (i.e. i = 1,N) to obtain all the values of µobs and σµobs for each burst for each
cosmology; 6) re-fix Ωj , 7) calculate χ2(Ωj |Ωi) by comparing µth(Ωj) with µobs(Ωi), and
then convert it to a conditional probability by P (Ωj |Ωi) ∝ exp[−χ2(Ωj |Ωi)/2], 8) repeat
step 7 from i = 1 to i = N to obtain the probability for cosmology Ωj by P (Ωj) ∝∑

exp[−χ2(Ωj |Ωi)/2], 9) repeat steps 6–8 to obtain the probabilities in all the cosmic
models. Method II is described by

(6) P (Ωj) =
∑

i

P (Ωj |Ωi) (j, i = 1, N).

3. – Cosmological constraints

With method I, we obtain constraints from 17 GRBs on the ΩM -ΩΛ parameters, shown
in fig. 1a (blue contours). The dataset is consistent with the cosmic model of ΩM = 0.27
and ΩΛ = 0.73, yielding a χ2dof = 17.74/15 ≈ 1.18. We measure ΩM = 0.16+0.42−0.14 (1σ) for
a flat universe.

With method II, constraints from 17 GRBs in the ΩM -ΩΛ plane are also shown in
fig. 1a (red contours). We see that, method II gives a bit more stringent constraints than
method I. In the (0.27, 0.73) model, the data give a χ2dof = 17.65/15 ≈ 1.18. We find
ΩM = 0.22+0.42−0.07 (1σ) for a flat universe.

As comparison, we present how well the 17 GRBs could constrain the ΩM -ΩΛ param-
eters if the Ghirlanda relation was calibrated by low-z bursts (dashed contours in fig. 1a;
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Fig. 1. – a) Left panel: Joint confidence intervals (68.3%, 90% and 99%) for (ΩM ,ΩΛ) from the
17 GRBs with method I (blue contours), method II (red contours), and assumption of a = 1.5
and C = 1.0 (dashed contours). b) Right panel: Confidence intervals (68.3%, 95.4% and 99.7%)
in the ΩM -ΩΛ plane from the 17 GRBs with method II (dashed contours), from the SN gold
sample (blue contours) and from the SN+GRB data (color regions). The upper and lower dots
indicate the best-fits from the SN sample and the SN+GRB sample.

for illustrative purpose only). The parameters a, C, σa/a and σC/C are empirically
taken as 1.5, 1.0, 0.05 and 0.10, respectively (see [13]). As can be seen, realization of
low-z calibration would make GRBs place much more stringent constraints.

A combination of SNe Ia and GRBs will give new constraints on cosmology, although
the results are dominated by alone SNe. The results are shown in fig. 1b. The SN,
SN+GRB data are consistent with the cosmic concordance model of ΩM = 0.27, respec-
tively, yielding χ2dof = 178.17/155 ≈ 1.15 and χ2dof = 199.15/(157 + 17 − 2) ≈ 1.16.
However, the confidence region at 1σ level moves closer to the (0.27, 0.73) cosmic model
and thus more consistent with the conclusions from WMAP observations.
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