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Summary. — Corundum is frequently used for high-pressure and high-temperature
applications. Its second-order pressure derivatives are, however, not measurable.
A static rigid-ion lattice model for corundum, utilizing exponential-type repulsive
force, is developed. The lattice parameters are determined from measured data
of the bulk modulus and C33. Using these lattice parameters first-order pressure
derivatives of bulk modulus and C33 are computed and compared to measured val-
ues, respectively. The deviations do not exceed 33%. The second-order pressure
derivatives of bulk modulus and C33 are predicted and the results come out posi-
tive. These are usually negative for oxide mineral of cubic structure.

PACS 91.90.+p – Other topics in solid Earth physics.

1. – Introduction

Corundum is an oxide mineral of rhombohedral structure. It is chemically stable under
atmospheric conditions and is frequently used for high-temperature and high-strength
applications, for instance as a pressure indicator. In addition, the elastic properties of
oxide minerals are of geophysical interest in connection with the composition and the
pressure state of the mantle. The structure of corundum has been analyzed [1, 2] and
its elastic moduli and their first-order pressure derivatives have been measured [3]. The
high-pressure application, however, implies a great deal of uncertainty because corundum
is one of the minerals whose second-order pressure derivatives of elastic moduli cannot
be measured due to their high stiffness. In this paper, strain nearest-neighbor separation
is modeled using the crystal structure. Utilizing the thermodynamic definition of elastic
moduli, the lattice parameters are determined, and the first-order pressure derivatives of
elastic properties are computed and compared to the measured values. The second-order
pressure derivatives of elastic moduli are predicted based on foregoing works.

(∗) The authors of this paper have agreed to not receive the proofs for correction.
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Table I. – Crystallographic data for corundum: Notations are explained in fig. 1.

Pauling and Hendricks [1] Newnham and Haan [2]

aH 4.7507 Å 4.7589 ± 0.001 Å

cH 12.969 Å(a) 12.991 ± 0.005 Å

a 5.12 ± 0.01 Å 5.128 Å(a)

α 55◦17
′

55◦17
′ (a)

Interatomic B or C to A : 1.990 ± 0.020 R1 − O1 : 1.97 ± 0.015
distance D or E to A : 1.845 ± 0.015 R1 − O5 : 1.86 ± 0.010
in B to C : 2.74 ± 0.03 R1 − R3 : 2.79 ± 0.002
Å 2.495 ± 0.025 O1 − O2 : 2.52 ± 0.002

(a) denotes that the values are computed using the relationship between rhombohedral and hexagonal
unit cells for comparison.

2. – The crystal structure of corundum

The crystal structure of corundum, α-Al2O3 was analyzed by Pauling and Hen-
dricks [1] using X-ray reflection data and refined by Newnham and de Haan [2] using
a least-square analysis of single-crystal X-ray data. Corundum exhibits a rhombohedral
structure, each aluminum cation being coordinated by six oxygen anions at the corners

Fig. 1. – [A] The arrangement of atoms in the rhombohedral units of corundum; small solid
circles represent oxygen atoms, while large open ones do aluminum atoms (after Pauling and
Hendricks [1]). [B] Projection of corundum on (2 1̄ 1̄ 0); the vertical distances from the oxygen
ions to the plane of the projection are given in Å, while the aluminum ions lie in the projection
plane (after Newnham and de Haan [2]).
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Table II. – Zero pressure values of second-order adiabatic elastic constants (in 1011dyne/cm2)
and of their isothermal pressure derivatives of crystalline corundum (C12 = C11 − 2C66).

µν 11 12 13 14 33 44 66 Ks
V

Cs
µν 49.76 16.26 11.72 −2.29 50.19 14.72 16.75 25.42

(∂Cs
µν/∂p)T 6.17 3.28 3.65 0.13 5.00 2.24 1.45 4.32

of a distorted octahedron. Three of these oxygen atoms are a few percent closer to the
aluminum atom than the other three. Each oxygen atom is surrounded by four aluminum
atoms, two of which are nearer than the other two. The smallest rhombohedral unit has
a = 5.12±0.01 Å and α = 55◦17′, and contains two Al2O3 [1]. The oxygen atom arrange-
ment can be approximately taken as a hexagonal close packing, with trivalent cations
occupying two thirds of the octahedral interstices. The conventional hexagonal unit cell,
right prism with rhombus base, contains six Al2O3 and has cH = 12.991 ± 0.005 Å and
aH = 4.7589± 0.001 Å [2]. The arrangement of atoms in the unit structure of corundum
is shown in fig. 1, and the crystallographic data are listed in table I. As shown in fig. 1B
the aluminum ions lie alternatively on the plane one-third and two-thirds of the distance
between oxygen layers. The crystallographic data for corundum refined by Newnham
and de Haan [2] are a little different from those of Pauling and Hendricks [1], and the
differences do not exceed the range of uncertainty.

3. – The elastic properties of corundum

Zero pressure values of the second-order adiabatic elastic constants and the isothermal
pressure derivatives of single crystalline corundum have been measured by Gieske and
Barsch [3]. They compared their results with values previously reported in the literature
and pointed out almost no difference. They also calculated the adiabatic bulk modulus
and the isothermal pressure derivatives using equations derived by Thurston [4]. Their
results are listed in tables II and III, and will be used in this work. Although the corun-
dum structure does not have exact hexagonal symmetry, the deviation from hexagonal
symmetry is rather small. This is reflected by the fact that the rhombohedral angle of
55◦17′ deviates only a little from the value 53◦30′ corresponding to the hexagonal close
pack structure, and that the elastic constant C14 is small [3]. So the elastic property of
corundum can be approximated by the transversely isotropic case.

Table III. – The second-order isothermal compliances (in 10−13cm2/dyne) and the isothermal
pressure derivatives of the second-order thermodynamic adiabatic elastic coefficients (S12 = S11−
(1/2)S66).

µν 11 12 13 14 33 44 66

ST
µν 2.353 −0.697 −0.383 0.474 2.176 6.939 6.099

Bµν 7.740 2.467 2.819 0.101 6.842 3.451 2.636



556 JUNG MO LEE, CHANG-EOB BAAG and SANG GYU JO

Table IV. – Lattice parameters for corundum and atomic constants used in this work.

Symbol Value Unit Source

N 6 .

Vc

√
3

2
a2

HcH = 2.548 × 10−22 cm3 Calculated from Newnham and de Haan [2]
α 1 .
r0 1.915 × 10−8 cm Average of Newnham and de Haan [2]
A 25.031 . Schmaeling [5]
e 4.803 × 10−10 esu Clark [9]

4. – The lattice energy of corundum

Corundum is an ionic crystal and its lattice energy consists of Coulombic forces be-
tween cations and anions, and short-range intrinsic repulsive forces. The potential due
to the Coulombic forces per unit cell is

Uc = −α
2e2NA

r
,(1)

where α is the largest common factor in the valences of all three ions, e is the unit
of electrical charge, N is the number of stoichiometric molecules in the unit cell, A is
the Madelung constant depending only on the structure of the crystal, and r is the
nearest-neighbor separation in the crystal. The Madelung constant for corundum has
been evaluated by Schmaeling [5]. He approximated the actual crystals with the ideal
case in which each aluminum ion is equidistant from six oxygen ions. This approximation
makes the three adjacent oxygen ions form an equilateral triangle in a plane normal to
the line joining the two aluminum ions and midway between them. Then the structure
is determined by three independent parameters, the diagonal of rhombohedral faces (a),
one-half the length of a body diagonal (c), and the distance between two adjacent alu-
minum ions (v). By introducing two dimensionless variables, γ = c/a and ω = v/a,
Schmaeling evaluated the Madelung constant for corundum,

A = 25.0312 − 5.930(1.312 − γ)2 − 65.250(0.5454 − ω)2 +(2)
+ 30.70(1.312 − γ)(0.5454 − ω).

The maximum value of A is 25.0312 when γ = 1.312 and ω = 0.5454. The deviations
in the calculated and observed parameters are approximately 5% [6]. The deviation due
to equidistance approximation is 3%. In this work, the maximum theoretical Madelung
constant, A = 25.0312, is employed, and the mean nearest-neighbor separation, r0 =
(1.97 + 1.86)/2 = 1.915 Å, is used. Born and Lande [7] first introduced the (b · r−n)-
type potential of the intrinsic repulsive force between two ions. According to the theory
of quantum-mechanical interaction (antisymmetric coupling) of the electrons in the two
ions, Born and Mayer [8] used the potential, UB = b exp[−r/ρ], where b and ρ are lattice
parameters. Using this potential with the help of the law of superposition and the
equilibrium condition (dU/dr = 0), the lattice energy at the equilibrium is

U(r0) = N
{
−α

2e2A

r0
+
ρα2e2A

r20

}
=
Nα2e2A

r0

{
−1 +

ρ

r0

}
,(3)
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where r0 is the equilibrium nearest-neighbor separation. This potential is an extensive
quantity (depending on the volume). The intensive potential (independent of the vol-
ume), lattice energy density, becomes

φ(r) =
N

Vc

{
−α

2e2A

r
+ b exp[−r/ρ]

}
,(4)

where Vc is the volume of unit cell. The lattice parameters and atomic constants to be
used in this work are listed in table IV.

5. – The strain energy relation

The strain energy function, ψ, is taken to be the change in the Helmholtz free-energy
density due to deformation resulting from applied stresses, since the models in this work
relate to adiabatic conditions. Furthermore stresses may be written in terms of strains,
ε, ψ(ε) = F (ε) − F (0), where F is the Helmholtz free-energy density of the system.
Expanding the strain energy in a Taylor series, and using the conditions, ψ(0) = 0 and
∂ψ
∂εµ

∣∣∣
0

= 0, we get

ψ(ε) =
1
2
∂2ψ

∂εµ∂εν

∣∣∣∣
0

εµεν +
1
6

∂3ψ

∂εµ∂εν∂εζ

∣∣∣∣
0

εµενεζ + · · · ,(5)

where the Voight notation is used. The second-order term of eq. (5) follows Hooke’s law.
By relating the change in strains to the work done by the traction, the coefficients of the
second-order term of eq. (5) result in the adiabatic elastic stiffness moduli,

CS
µν =

∂2ψ

∂εµ∂εν
.(6)

Since the strain energy is a part of the internal energy, ψ can be replaced by the lattice
energy function, φ, when only the static deformation is considered,

CS
µν =

∂2φ

∂εµ∂εν
.(7)

6. – Parameterization of strain and pressure

Since the lattice energy function φ(r) depends only on the nearest-neighbor distance r,
it cannot be directly differentiated with respect to strain and/or pressure. The relations
between the nearest-neighbor distance and those quantities will be set up using the
crystallographic structure and data of corundum discussed previously.

6.1. Strain. – When strain ε1 (εxx) or ε2 (εyy) occurs, the equilateral triangle formed
by the three adjacent oxygen ions will be deformed (fig. 2). The line connecting the
adjacent aluminum ions (parallel to the z-axis) will move to the circumcenter (the point
equidistant from the vertices) of the deformed triangle without stretching or tilting. In
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Fig. 2. – Top view of unstrained and strained triangles composed of three adjacent oxygen ions.
The aluminum ion is located at the center of the circles. The solid lines denote the unstrained
state, while dotted ones do the strained state.

the first case (fig. 2, left), the length of each side in the presence of ε1 becomes, denoting
the undeformed length of the side by l,

a = l(1 + ε1),(8)

b = c =
l

2

√
ε21 + 2ε1 + 4,

where a is the deformed length of the side parallel to the x-axis. We now add ε2, then
a, b, and c become

a = l(1 + ε1) ,(9)

b = c =
l

2

√
ε21 + 3ε22 + 2ε1 + 6ε2 + 4.

Since the radius of a circle circumscribing the triangle of sides a, b, and c is

R =
abc

4
√
S(S − a)(S − b)(S − c) ,(10)

where S = (1/2)(a+ b+ c), the radius becomes

R12 =
l

4
ε21 + 3ε22 + 2ε1 + 6ε2 + 4√

3ε22 + 6ε2 + 3
.(11)

In the second case (fig. 2, right), when the coordinates are rotated by 90◦, R21 becomes

R21 =
l

4
ε22 + 3ε21 + 2ε2 + 6ε1 + 4√

3ε21 + 6ε1 + 3
.(12)
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Since changes of the strain energy due to ε1 and ε2 should be the same, we take the
average of R12 and R21.

R =
l

8

(
ε21 + 3ε22 + 2ε1 + 6ε2 + 4√

3ε22 + 6ε2 + 3
+
ε22 + 3ε21 + 2ε2 + 6ε1 + 4√

3ε21 + 6ε1 + 3

)
.(13)

When ε3 (εzz) occurs, the distance from the triangle to aluminum oxide becomes

Z = d(1 + ε3),(14)

where d is one-half of the undeformed vertical aluminum ion separation. Then sim-
ply using the Pythagorean theorem, the distance between aluminum and oxide can be
represented by the equation

r2 =
l2

64

{(ε21 + 3ε22 + 2ε1 + 6ε2 + 4√
3(1 + ε2)

+
ε22 + 3ε21 + 2ε2 + 6ε1 + 4√

3(1 + ε1)

)2

+(15)

+
64d2

l2
(1 + ε3)2

}
.

Neglecting terms higher than second order in the binomial expansion of eq. (15), and
using the value 64d2/l2 = 39/2,

r2 =
71
128
l2

{
1 +

32
71
ε1 +

32
71
ε2 +

78
71
ε3 − 16

71
ε1ε2 +

40
213
ε21 +

40
213
ε22 +

39
71
ε23

}
.(16)

In the comparison of the measured value l/r0 = 1.316 (l = 2.52± 0.002Å from table I
and r0 = 1.915Å from table IV) with the calculated value

√
128/71(= 1.342), the devia-

tion is about 2%. This result is better than the previous equidistance approximation [6].
Finally, we get

r = r0ε,(17)

where ε = {1 + 32
71ε1 + 32

71ε2 + 78
71ε3 − 16

71ε1ε2 + 40
213ε

2
1 + 40

213ε
2
2 + 39

71ε
2
3}1/2.

6.2. Pressure. – Using hexagonal symmetry and measured values of Gieske and
Barsch [3] presented in table III, the pressure-strain relations are

ε1 = −(S11 + S12 + S13)P = −1.273 × 10−13P = −S1P,(18)
ε2 = −(S11 + S12 + S13)P = −1.273 × 10−13P = −S1P, and
ε3 = −(2S13 + S33)P = −1.414 × 10−13P = −S3P.

7. – Determination of lattice parameters

In this section an alternative form of eq. (4) around the equilibrium,

φ(r) = C
{
−r20r−1 + ρ exp

[
r0 − r
ρ

]}
,(19)

will be used, where C = Nα2e2A/Vcr
2
0 (= 3.7078 × 1020 erg/cm4).
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7.1. Lattice parameter from bulk modulus. – From the definition of the bulk modulus,

Ks = −V
(
∂P

∂V

)
s

,(20)

and thermodynamic identity for an adiabatic process,

dU = −PdV,(21)

we get

Ks = V
(
∂2U

∂V 2

)
s

.(22)

In our case, U = nVcφ, where n is the number of unit cells contained in a volume V and
φ is the lattice energy density given in eq. (19). We take n = 1, then Vc is the volume
at equilibrium. With these, the adiabatic bulk modulus becomes

Ks = V Vc

(
∂2φ

∂V 2

)
s

.(23)

The volume V can be parameterized by r as

V = Vc

(
r

r0

)3

.(24)

Hence, the derivative with respect to V , ∂/∂V , can be substituted by (r30/3Vcr
2)(∂/∂r),

and eq. (23) becomes

Ks =
r30
9
r

{
∂

∂r

(
1
r2
∂φ

∂r

)}
s

.(25)

Substituting eq. (19) into eq. (25), we get

Ks =
Cr30

9

{(
2
r2

+
1
9r

)
exp

[
r0 − r
ρ

− 4r20
r4

]}
.(26)

Substituting r = r0 in eq. (26), we get

Ks
0 =

Cr20
9

{
1
ρ
− 2
r0

}
.(27)

Using experimental results of Gieske and Barsch [3], we can estimate

ρ = 3.667 × 10−9 (cm).(28)
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7.2. Lattice parameter from C33. – From eq. (7), C33 becomes

C33 =
∂2φ

∂ε23

∣∣∣∣
ε3=0

.

Using the strain nearest-neighbor separation relation of eq. (17) and simply employing
the chain rule, C33 becomes

C33 =
(

39
71

)2

Cr20

{
1
ρ
− 2
r0

}
.(29)

Using experimental results of Gieske and Barsch [3], we can estimate

ρ = 4.410 × 10−9 (cm).(30)

This value differs from the value estimated from the bulk modulus data. The difference
is about 20%. Both values will be used to predict the pressure derivatives of the bulk
modulus, Ks, and the elastic stiffness modulus, C33. We also use both values to predict
the strain derivatives of the elastic stiffness modulus.

8. – Prediction of higher-order elastic properties

8.1. Pressure derivatives of bulk modulus. – The bulk modulus as a function of pressure
can be obtained from eq. (26) with the help of eqs. (16) and (18). Its first derivative is

∂Ks

∂P

∣∣∣∣ p=0
r=r0

= − Cr0
9 × 71

(32S1 + 39S3){18 − (r0/ρ)2 − 6(r0/ρ)}(31)

=
{

4.326, for ρ = 3.667 × 10−9 cm
2.868, for ρ = 4.410 × 10−9 cm.

The value for ρ = 3.667 × 10−9 (cm) which is determined from the bulk modulus is
quite consistent with the measured value of Gieske and Barsch [3], ∂Ks/∂P = 4.32. The
second pressure derivative of bulk modulus becomes

∂2Ks

∂P 2

∣∣∣∣ p=0
r=r0

=(32)

=
Cr0

9 × 71

[ 1
71

(32S1 + 39S3)2{−182 + (r0/ρ)3 + 11(r0/ρ)2 + 46(r0/ρ)} +

+
(32

3
S2

1 + 39S2
3

)
{18 − (r0/ρ)2 − 6(r0/ρ)}

]
=

=
{

6.773 × 10−12 (cm2/dyne), for ρ = 3.667 × 10−9 cm
4.134 × 10−12 (cm2/dyne), for ρ = 4.410 × 10−9 cm.
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8.2. Pressure derivatives of C33. – The elastic stiffness modulus, C33, as a function of
pressure can be obtained from eq. (7) with the help of eqs. (16), (18), and (19). Its first
pressure derivative is

∂C33

∂P

∣∣∣∣ p=0
r=r0

= −39
71
C

[78
71
S3(r20/ρ− 2r0) +(33)

+(32S1 + 39S3)
{ 39

712
(12r0 − r30/ρ2 − 3r20/ρ) +

1
71

(r30/ρ− 2r20)
}]

=
{

6.998, for ρ = 3.667 × 10−9 cm
4.334, for ρ = 4.410 × 10−9 cm.

The value for ρ = 4.410×10−9 cm which is determined from C33 is closer to the measured
value of Gieske and Barsch [3], ∂C33/∂P = 5.00, than the other. The deviation is about
13%. The second pressure derivative of C33 becomes

∂2C33

∂P 2

∣∣∣∣ p=0
r=r0

=(34)

=
2 × 392

712
CS3

{
S3(−2r0 + r20/ρ) +

1
71

(32S1 + 39S3)(r0 − 3r20/ρ− r30/ρ2)
}
−

−39
71
C

(
32
3
S2

1 + 39S2
3

){
39
71

(12r0 − 3r20/ρ− r30/ρ2) − 2r20 + r30/ρ
}

+

+
39
713
C(32S1 + 39S3)

[
78S3(12r0 − 3r20/ρ− r30/ρ2) +

+(32S1 + 39S3)
{39

71
(−90r0 + 15r20/ρ+ 6r30/ρ

2 + r40/ρ
3) + (10r20 − 2r30/ρ− r40/ρ2)

}]
=

=
{

6.985 × 10−11 (cm2/dyne), for ρ = 3.667 × 10−9 cm
4.418 × 10−11 (cm2/dyne), for ρ = 4.410 × 10−9 cm.

8.3. Strain derivatives of C33. – In the case of uniaxial stresses, the strain derivative
of the elastic moduli such as −(1/C33)(∂C33/∂ε3) and (1/C2

33)(∂2C33/∂ε
2
3) which corre-

spond to ∂C33/∂P and ∂2C33/∂P
2, respectively, in the hydrostatic case are commonly

considered. The ε3 dependence of C33 can be derived from eqs. (7), (16), and (19). From
this, we get

− 1
C33

∂C33

∂ε3

∣∣∣∣ ε3=0
r=r0

= −392

712

C

C33

{
3(−2r0 + r20/ρ) +

39
71

(12r0 − 3r20/ρ− r30/ρ2)
}

=(35)

=
{

3.127, for ρ = 3.667 × 10−9 cm
1.663, for ρ = 4.410 × 10−9 cm.

Both of these results are further from the measured value 5.00 than the results in eq. (33).
Finally, (1/C2

33)(∂2C33/∂ε
2
3) becomes

1
C2

33

∂2C33

∂ε23
=

392

712

C

C2
33

[
− 6r0 + 3r20/ρ+

117
71

(12r0 − 3r20/ρ− r30/ρ2) +(36)

+
39
71

{
36r0 − 9r20/ρ− 3r30/ρ

2 +
39
71

(−90r0 + 15r20/ρ+ 6r30/ρ
2 + r40/ρ

3)
} ]

=
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Table V. – List of predicted values of higher-order elastic properties of corundum in CGS units:
Measured values are relisted for comparison.

Measured value of Computed from Computed from
Gieske and Barsch [3] bulk modulus C33

Lattice parameter (ρ) – 3.667 × 10−9 4.410 × 10−9

∂Ks/∂P 4.32 4.326 2.867
∂2Ks/∂P 2 – 6.773 × 10−12 4.134 × 10−12

∂C33/∂P 5.00 6.998 4.334
− 1

C33
(∂C33/∂ε3) – 3.127 1.663

∂2C33/∂P 2 – 6.985 × 10−11 4.418 × 10−11

1
C2

33
(∂2C33/∂ε23) – −2.958 × 10−13 −6.092 × 10−13

=
{−2.958 × 10−13 (cm2/dyne), for ρ = 3.667 × 10−9 cm
−6.092 × 10−13 (cm2/dyne), for ρ = 4.410 × 10−9 cm.

Those three predicted second derivatives are the major results of this work. They can
be used in extrapolations of Ks(P ), C33(P ), and C33(ε3).

9. – Conclusions and discussions

A static rigid-ion lattice model for corundum, utilizing the exponential-type repulsive
potential for the nearest neighbors, was developed. The lattice parameters were deter-
mined from measured data of bulk modulus and C33. Using these lattice parameters,
theoretical higher-order elastic properties were computed. The results are summarized in
table V. The predicted value of ∂Ks/∂P using the lattice parameter, ρ, determined from
Ks is consistent with the measured value. However, the predicted value of ∂C33/∂P us-
ing the lattice parameter ρ determined from C33 is closer to the measured value than that
determined from Ks. The deviation of each result does not exceed 33%. The predicted
second pressure derivatives of Ks and C33 seem to be reliable. −(1/C33)(∂C33/∂ε3)
and (1/C2

33)(∂C2
33/∂ε

2
3) are quite different from the measured and predicted values of

∂C33/∂P and ∂2C33/∂P
2, respectively. The differences between predicted values and

measured values may come from

– the idealized model (It is not a perfect hexagonal closed-packed structure, and the
distances between aluminum and oxygen ions are not uniform.),

– neglecting the covalent bonding character (The model considered only Coulomb’s
force and central repulsive forces.), and

– neglecting the next nearest neighbors’ effects (The model considered only the nearest
neighbors’ repulsive forces.).

An interesting aspect of our results is that the predicted second pressure derivatives
of Ks and C33 are positive. These differ from those of cubic structured oxide minerals
which have negative values of ∂2Ks/∂P 2 and ∂2C33/∂P

2 [10]. Further investigation of
a more complicated model including next nearest neighbors’ effects would be of great
interest.
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