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Summary. — Neural networks can be defined in a variety of ways. Biology,
informatics, mathematics, physics: each discipline gave its own definition. We will
try to explain what neural networks are and why they are so useful. The paper is
divided in two parts: in the first one preliminary definitions are given and general
properties are illustrated. In the second part structures and dynamics of a number
of networks are analyzed.

PACS 84.35.+i – Neural networks.

1. – Introduction

The human brain is structured as a collection of 1011 cells, the neurons; each of them
is connected to hundreds of other neurons, building an interconnected structure called
neural network. This structure results in a very powerful computational device.

One aim of computer science is to study these potentialities to build machines driven
by artificial human brains (that is by artificial neural networks). This approach is based
on two principles: connectivism and neuromorphism. Connectivism identifies the peculiar
properties of the brain as a consequence of the great number of connections of very simple
units (neurons). Neuromorphism establishes an “operative procedure”, based on pure
imitation of biology: to reproduce the function of an organ it is necessary to reproduce its
shape. Application of both principles conduces to project different machines from modern
computers. Mimiking biology we encounter the notions of parallel calculus (neurons work
independently), learning (algorithms are no more needed since neurons do not possess a
code of instructions resuming the whole activity of the brain), distributed and content-
addressable memory (neurons in brain “share” information: every day a lot of neuronal
cells die but we do not lose memory; moreover we are able to remember “by content”
that is, when stimulated with a color, we can remember a perfume). On the contrary,
modern computers have an address-based memory.

Physics at last studies neurons because the activity of the brain can be interpreted
as a collection of emergent properties of the whole neural net: in this sense, neural
networks are complex systems [1,2]. A first structure-based definition of neural networks
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could therefore be the following: neural networks are collections of simple, interconnected
elements, called neurons. An alternative (and activity-based) definition could be: neural
networks are structures that process “information”, reacting to the stimuli of external
world by the production of adequate answers [3, 4].

2. – Biology of the neuron

2.1. Structure. – Neurons are the basic units of the human nervous system. They are
composed of different parts: dendrites (where synaptic terminals of the other connected
neurons end), cellular body (where the nucleus is), axons (that “conduct” electric sig-
nals) and synaptic terminals (the terminals of the axon, ending over dendrites of other
neurons). Note that “synapses” are not a physical part of the neuron: they are the
regions of contact between a dendrite and a synaptic terminal. Dale stated that the
synapses of a neuron could be only excitatory or inhibitory, the first ones stimulating
the postsynaptic neuron to conduce, the other ones inhibiting it (even if exceptions were
found it remains valid for the majority of neurons in the brain).

2.2. Activity . – The neuronal activity is based on the ionic concentrations and electric
potential values on both sides of the axonic membrana. For a mole of ions of a single
chemical species (with charge F ) these effects are accounted by the Nerst formula

Vin =
RT

F
ln

cout

cin
(1)

(where Vin is measured with respect to Vout, set to zero). Nevertheless, because of the
simultaneous presence of three different chemical species (P is the permeability of the
membrana to them), the correct relation is the Goldman equation

Vin =
RT

F
ln

P [K+]cout[K+] + P [Na+]cout[Na+] + P [Cl−]cin[Cl−]
P [K+]cin[K+] + P [Na+]cin[Na+] + P [Cl−]cout[Cl−]

.(2)

An active mechanism to compensate passive ionic tendencies and to maintain ionic
concentrations is also present: the sodium-potassium pump. The value of Vin is deter-
mined by the equilibrium between these tendencies. When electric impulses are present,
P ’s are modified and the Goldman relation no more holds.

3. – A mathematical model of neuron

McCulloch and Pitts were among the first ones who tried to build a mathematical
model of neurons. They did not try to explain biology; they only “imitated” Nature to
build an efficient computational device. Their neuron is a very simple element that
receives inputs from other neurons, calculates their sum (weighted with appropriate
coefficients, representing the strength of the connections between pairs of neurons) and
compares it with a threshold value. According to it, the neuron output may change [5,6].

3.1. Synaptic weights. – Weights model synapses. They are often symbolized with
wij , indicating a connection between neuron i and neuron j. The symbol also indicates
that information flows from neuron i to neuron j. Weights are nothing but numerical
coefficients whose sign indicates excitatory (wij > 0) or inhibitory (wij < 0) behavior
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(if wij = 0 then no connection is present). Connections may be symmetric (wij = wji)
or asymmetric (wij �= wji) and loops may or may not be present (wii �= 0; wii = 0).
Weights between pairs of neurons can be represented as a matrix W = {wij}.

3.2. Input . – The input to the i-th neuron can be computed in many ways. The more
common is the dot-product

Pi = sT
(i) · Wi =

∑
j

wjisj ,(3)

where the index j labels neurons sending “output signals” to the i-th neuron. Their
outputs, sj ’s, are the components of the column vector sT

(i) and Wi is the i-th column
of the weight matrix (here considered as a vector). Alternative formulas describing the
i-th input exist: they are used principally in biologic/psychologic models to account for
“tendencies” in human behaviors. Our personal inclinations drive our choices and make
us unique individuals: our neurons are different from those of the other people and this
can be accounted for, mathematically, by adding a sort of “internal” threshold (θi), or
bias (bi, that is a “special” weight connecting the i-th neuron to a unit whose output is
always set to 1), to the input of our neurons:

Pi =
∑

j wjisj + bi, Pi =
∑

j wjisj + θi.

A possible different kind of input is the distance

Pi ≡ di = ||sT
(i) − Wi|| ,(4)

Pi is also called the activation of the i-th neuron.

3.3. Output . – The output of a neuron is computed by applying a function f (the
activity function) to the activation Pi. It can be the linear function

f(Pi) = Pi(5)

or a non-linear one. Common discrete-threshold non-linear functions are the sign function

f(Pi) = sgn(Pi)(6)

and the step, or Heaviside, function

f(Pi) = Θ(Pi).(7)

We can also choose continuous functions as the hyperbolic tangent

f(Pi) = tanh(Pi)(8)

or the logistic function

f(Pi) =
1

1 + exp[−Pi]
.(9)
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Specifically with distance inputs, a (normalized) Bell function can be used

f(Pi) = N exp[−P 2
i ].(10)

The value si = f(Pi) is also known as the state of the neuron. According to the f we can
choose si = {0, 1}, si = {−1, 1}, si ∈ (0, 1), si ∈ (−1, 1): neurons whose state is discrete
and whose values are 0 or 1 (0 or −1) are called binary (bipolar) [7].

A neuron, therefore, is a device for numeric calculus that receives numbers as inputs,
“combines” them by means of simple algebraic operations (sums and products) and
calculates the value of a chosen function, again returning a number. Since this process
cannot be inverted, we can say that a neuron is a numeric, feedforward, information-
processing device [8, 9].

4. – Neural networks

Neurons can be put together to form a structure whose behavior is determined by the
“collective” behavior of the units. These structures are called neural networks.

4.1. Vector state. – To describe the structure of a n-neuron network a vector state

S(t) = (s1(t), s2(t)...si(t)...sn(t))(11)

can be defined, that is the collection of the single neurons states. The state of a network
is not fixed: it evolves with time, as single neuronal states evolve. A neuron “evolves”
when, provided with activation at time t, Pi(t), it calculates its output, updating its
state, si(t) = f(Pi(t)). As an example, for binary neurons the updating rule can be the
following:

f(Pi) =
{

1, if
∑

j wjisj + bi ≥ 0;
0, if

∑
j wjisj + bi < 0.

(12)

Updating of neuron states can be synchronous or asynchronous. It is synchronous
when neurons update their state simultaneously; it is asynchronous when neurons update
their state in sequence, one after the other.

4.2. Architecture. – To describe the architecture of a net it is not sufficient to specify
the values of the weights: we must also specify the direction of their links. From this
point of view, neurons may create very different structures that can be divided into
feedback and feedforward. Individually, neurons remain feedforward devices (allowing
information to flow in only one direction) but feedforward nets (allowing information to
flow only from input units to output units) as well as feedback nets (allowing information
to flow “bidirectionally”) can be created.

Feedback nets. Feedback nets can be divided into fully-connected and recurrent. In fully-
connected nets every neuron is connected to all the others and links are bidirectional.

In recurrent nets interconnections are directed cycles. From graph theory a cycle is
a simple, closed path, that is a sequence of nodes and edges (connecting each node to
the next one in the sequence), with no repetition of any edge or node and where the
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initial and final edges coincide. It is directed when all the edges in the sequence are
directed the same way. A neuron in recurrent nets can be or cannot be linked to all the
other neurons. For example, some recurrent networks have two layers where neurons are
arranged: neurons in layers are not interconnected, but every neuron is connected to all
neurons in the next one. These layers are called “input layer” (where all neurons are
input units) and “output layer” (where all neurons are output units).

Actually we can individuate a third kind of feedback nets, resonance networks. As an
example consider two layers of units, where neurons in each layer are not interconnected
but every neuron in the first one is connected to every neuron in the second one by means
of bidirectional links: we cannot find directed cycles, but information is not forced to
flow unidirectionally.

Feedforward nets. In feedforward nets all links are directed unidirectionally and directed
cycles do not exist. Constitutive units of these nets are layers: an input layer, an output
layer and one or more hidden layers (slabs not in direct contact with external world).

4.3. Learning rules. – To solve a particular problem a rule to set weights must be
also chosen. The phase of setting weights is called training; after training, a testing
phase follows. Initially the net is fed with a sequence of appropriately chosen vectors
(patterns) and weights are set by means of some rule (training). Afterwards, the net is
fed with other vectors (different ones from the learning phase) and the output of the net
is controlled (testing). Learning can be supervised, when the net is shown both input
vectors and output vectors or unsupervised, when the net is shown only input vectors.

Hebb rule. Setting of weights, in the training phase, is an iterative procedure whose
generic step can be written as

wij(t + 1) = wij(t) + Δwij .(13)

A learning rule prescribes how to compute the term Δwij . Hebb rule (for bipolar
neurons) prescribes that

Δwij = η(si(t)sj(t)).(14)

This rule imitates biology: a connection is strengthened when coupled neurons are
“active” or “not active” simultaneously. Hebb rule for binary units is

Δwij = η(2si(t) − 1)(2sj(t) − 1).(15)

Delta rule. Delta rule, instead, prescribes that a sort of distance E between the output
computed by the network or by a layer of neurons (the vector op) and the desired output
(the vector tp) must be minimized and then used to update weights. Delta rule is very
general and its prescription can be adapted to a number of different situations even if it
is used extensively with feedforward nets. Here, only an example is mentioned:

Δwij = −η
∂E

∂wij
,(16)
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where

E =
∑

p

Ep =
∑

p

∑
j

1
2
(op

j − tpj )
2.(17)

Index p labels vectors in the training set. Suppose we have a two-layer, feedforward
net and consider the j-th output component (the activation of j-th output neuron, after
p-th vector from training set is provided, is P p

j ):

op
j = f(P p

j ) = f

(∑
i

wijs
p
i

)
.(18)

So

Δwij = −η
∂E

∂wij

= −η
∑

p

∂Ep

∂wij

= −η
∑

p

∂Ep

∂op
j

∂op
j

∂P p
j

∂P p
j

∂wij

= −η
∑

p

(op
j − tpj ) f ′(P p

j ) sp
i .

Competitive rule. This rule is based on competition among neurons. Weights are up-
dated by

Δwij = η||sT
(j) − Wi|| ,(19)

where Wi is the i-th column of the matrix. In nets trained with this rule neurons “com-
pete”: the “winner” gains the possibility to update its weights vector to become more
alike that specific input pattern.

In all these examples η is a coefficient called learning rate; it can be updated as learning
procedure advances. In addition fixed-weight networks must be mentioned, where no
training procedure is used: analysis is used to set their weights [7].

5. – Examples of networks

A typical use of neural networks are their mapping, either as pattern classification
or pattern association: a vector is presented as input to the network and an output
is expected. In these cases networks are called associative memories. We distinguish
two kinds of memories. Autoassociative memories are used to associate an input with
itself (to correct noisy or incomplete vectors, for example): the input vector and the
corresponding output vector coincide. Eteroassociative nets are used, on the contrary,
to associate different vectors.

Associative memories work in a such a way that, if x is associated to y, then the
basin of attraction of vector x, B(x) (that is the maximum number of vectors “similar”
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to x that, once stored, are correctly recalled), is also associated to y. Great attention
must be paid in choosing the learning rule for memories, according to the correlation
of vectors to be stored: the basin of these vectors depends on it. Examples concerning
specific architectures will be given.

5.1. Linear associators. – They are two-layer, feedforward nets with a n-neuron input
layer and a k-neuron output layer: the activity function of all neurons is the linear one.
If m input patterns are to be associated with m output patterns we can arrange them
into matrix form,

X = {xij}m×n, Y = {yij}m×k, W = {wij}n×k

and XW = Y. Now, if m = n and input patterns are linearly independent, for a linear
eteroassociator W = X−1Y. For a linear autoassociator, the same reasoning leads to
W = X−1X = I. An autoassociator, however, should even correct wrong patterns and
not only return them. For this reason the Hebb rule can be used to find W = XT X
and for eteroassociators, when the X matrix is not invertible, W = XT Y. The Hebb
rule, however, works better when input vectors are pairwise orthogonal or very nearly so.
When this is not the case X+, the pseudo-inverse matrix, can be used to find W = X+Y
or W = X+X [10-13].

5.2. Non-linear associators. – Hypotheses for the linear and the non-linear associators
are the same. The only difference is in the non-linear activity function, say sign function,
of neurons: our goal is to verify that

sgn(XW) = Y,(20)

where the sign function acts over each component of the vector XW. If we are given m
pairs of vectors to be associated, matrix W can be built by means of the Hebb rule

W = W1 + W2 + ... + Wm,(21)

where Wp = {xp
i y

p
j } is the matrix we should use if only the p-th vector pair were to be

associated. So

xpW = yp(xp · xp) +
∑
l �=p

yl(xl · xp).(22)

Is that true that sgn(xpW) = yp? It is, if the crosstalk term
∑

l �=p yl(xl · xp) is
negligible, that is input vectors are pairwise orthogonal or very nearly so. For two-layer,
feedforward, autoassociative nets the weight-matrix is W = XT X = xT

1 x1 + ... + xT
mxm

and sgn(XW) = sgn(XXT X). Is that true that sgn(XXT X) = X? It is, if input vectors
are pairwise orthogonal or very nearly so.

5.3. Perceptron. – A perceptron is a feedforward net used for pattern classification. It
has an input layer and a single output unit. The learning rule prescribes that Δwi = αtsi,
where t is the required output value. Weights are changed only when the output value, o,
is different from the expected one, t: this learning rule is iterative, ending when weights
change no more. Correct weights are reached in a finite number of steps: if xp are
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the vectors in the training set, the number of required iterations is k ≤ M ||w||2
m2 , where

M = max{||xp||2} and m = min{xp · w}. There exist perceptrons returning a vector; in
that case Δwij = αtjsi [10, 14].

5.4. BAM . – This is a two-layer, resonance net being used for association problems
where information flows bidirectionally: to realize the correct association, the output
vector is fed back to the input units a number of times (the index i labels a “crossing”
of the network): {

y(i) = sgn(x(i)W),

xT
(i+1) = sgn(WyT

(i));
(23)

a fixed point of the net is a pair of vectors (x,y) whose values become independent of
the number of iterations: {

y = sgn(xW),

xT = sgn(WyT ).
(24)

By means of the Hebb rule, if W = xT
1 y1 + xT

2 y2 + ... + xT
mym a fixed point is found

for eteroassociative nets; if W = xT
1 x1 + xT

2 x2 + ... + xT
mxm a fixed point is found for

autoassociative nets. Evolution of BAM can also be analyzed introducing an energy
function

E = −1
2
x(i+1)WyT

(i).(25)

We can rewrite the energy this way E = −(1/2)
∑

j Pjxj , where Pj is the product of
the j-th line of W with the column vector yT , that is the activation of j-th unit in the
input layer. Suppose that j-th input unit changes its state: if we calculate the value of
E with the unit updated and subtract it from the value of E without the unit updated,
we have

E(xj; (i+1),y(i)) − E(x′
j; (i+1),y(i)) = −1

2
Pj(xj; (i+1) − x′

j; (i+1)) > 0.(26)

As an example, when a bipolar neuron with zero threshold is updated, xj; (i+1) and
−x′

j; (i+1) have the same sign and it differs from the sign of Pj : that is why the last
inequality holds. The same result holds if we update the j-th output unit or performing
a synchronous updating. BAM always reaches a state of (local) minimum energy (the
number of states “visited” in the process is finite) whose value is no more changed by
the updating process: the fixed point computed by means of W is reached.

5.5. Discrete Hopfield networks. – Hopfield nets are fully-connected nets of bivalent
(bipolar o binary) neurons, whose activation is of the form Pi =

∑
j wjisj − θj . Weights

are symmetric and no loops are present (wij = wji, wii = 0). The net is trained by
the Hebb rule and it is evolved by asynchronous updating. An energy function can be
introduced:

E = −1
2

∑
ij

sisjwij +
∑

i

siθi.(27)
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Hopfield networks “evolve” by means of asynchronous updating exploring the confi-
gurations space of the net, that is a discrete space where each state is represented as a
2n bits word, n being the number of neurons in the net. As the net evolves

S = (s1, s2...sk...sn) −→ S′ = (s1, s2...s
′
k...sn).

Let us calculate

E(S) − E(S′) =
(
−

∑
j

sksjwkj + skθk

)
−

(
−

∑
j

s′ksjwkj + s
′

kθk

)
.(28)

Hypotheses of symmetric weights and absence of loops allow us to re-write this expres-
sion in the following way:

E(S) − E(S′) = −(sk − s′k)
∑

j

sjwkj + θk(sk − s
′

k)

= −(sk − s
′

k)
( ∑

j

sjwkj − θk

)
.

From this there follows, for binary (bipolar) neurons

sk = 1 −→ s′k = 0 (−1) =⇒ sk − s′k > 0,

⎛
⎝∑

j

sjwkj − θk

⎞
⎠ < 0,(29)

sk = 0 (−1) −→ s′k = 1 =⇒ sk − s′k < 0,

⎛
⎝∑

j

sjwkj − θk

⎞
⎠ > 0.(30)

In both cases E(S) − E(S′) > 0. Nevertheless, without the conditions of symmetric
weights and absence of loops, convergence of Hopfield nets is no more guaranteed: oscil-
lations or limit cycles can be encountered. Evolution of Hopfield nets guarantees that a
state with a (local) minimum energy exists and the net converges to it. As an example,
to store m orthogonal vectors (or very nearly so) of bipolar data in Hopfield nets used as
autossociative memories, we can choose W =

(
xT

1 x1−I
)
+

(
xT

2 x2−I
)
+ ...+

(
xT

mxm−I
)
;

the energy hypersurface will have local minima in correspondence of these stored vectors,
since E(S) =

∑
i −(1/2)||SxT

i ||2 + mn
2 . If vectors to be stored are in general correlated,

then the capacity of Hopfield nets is m = 0.15n, for binary patterns, and m = n/(2 log2 n)
for bipolar patterns [15].

5.6. Continue Hopfield nets. – Continuity is introduced at three different levels: activ-
ity functions are continuous in activation, activation is continuous in time and updating
is continuous. So a new relation holds,

dPi(t)
dt

= η

(
− Pi(t) +

∑
j

wjisj(t)

)
=⇒ Pi(t) +

1
η

dPi(t)
dt

=
∑

j

wjisj(t),(31)
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where, for example, si(t) = tanh(Pi(t)). Energy can be defined as

E = −1
2

∑
ij

sisjwij +
∑

i

∫ si

0

f−1(s)ds.(32)

Asynchronously updating continuous Hopfield nets (with symmetric weights and no
loops) means computing

dE

dt
= −

∑
ij

dsi

dt
sjwij +

∑
i

f−1(si)
dsi

dt
= −

∑
i

dsi

dt

(∑
j

sjwij − Pi

)

= −1
η

∑
i

dsi

dt

dPi

dt
= −1

η

∑
i

f
′
(Pi)

(dPi

dt

)2

.

dE/dt ≤ 0 follows since the activity function is monotonically increasing (f
′
(Pi) > 0):

a stable state for which dE/dt = 0 is reached when dPi/dt = 0. In Hopfield nets all
neurons are visible; this hypothesis can be abandoned as we will see.

5.7. Stochastic networks . – Networks are called stochastic when probability is intro-
duced at some level. Here, two examples are given.

Simulated annealing . This is a technique to allow an Hopfield net to escape from local
minima of energy and to reach a global minimum. Evolution of an Hopfield net is seen
as a trajectory in configurations space: a state whose energy is the lowest among those
visited is reached. A greater portion of space can be visited allowing the energy to
increase. Annealing prescribes that the net is left “free” to evolve by random changes of
its actual state: energy changes in turn randomly, also increasing. Simulating annealing
prescribes probabilities of accepting a change:

⎧⎨
⎩

ΔE ≤ 0, p = 1;

ΔE > 0, p =
1

1 + exp[ΔE/T ]
.

(33)

Since simulated annealing starts at high temperatures so, in the limit of T −→ +∞,
probability that energy increases p −→ 1/2; as T −→ 0, p −→ 0. Evolving the net by
annealing means warming it up, first, and then cooling it down slowly [16-19].

Boltzmann machines. These nets are stochastic discrete Hopfield networks. Updating is
asynchronous and states (for binary neurons, say) evolve with a probability proportional
to the activation of units:

si(t + 1) =

{
1, pi = 1

1+exp[−(
P

j wjisj−θi)/T ] ;
0, 1 − pi.

(34)

Note that, despite the sign of the activation, neuron can “flip” both ways and conver-
gence to a minimum-energy state is no more guaranteed. Boltzmann machines reduce to
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deterministic Hopfield nets when T −→ 0 : pi −→ 1 if Pi > 0 and pi −→ 0 if Pi < 0:

pi =
1

1 + exp
[
−

( ∑
j wjisj − θi

)
/T

] −→ Θ(Pi).(35)

When T > 0 Boltzmann nets do not reach a stable state: it keeps “flipping” as shown
by the 2n × 2n transition matrix (n is the number of neurons), whose element pij (pii)
represents the probability that the net goes from state i to state j (remains in current
state)

{pij} =

⎛
⎜⎝

1 −
∑m

i=2
1

1+exp[(Ei−E1)/T ] . . . 1
1+exp[(Em−E1)/T ]

...
. . .

...
1

1+exp[(E1−Em)/T ] . . . 1 −
∑m

i=2
1

1+exp[(Ei−Em)/T ]

⎞
⎟⎠ .(36)

To understand the meaning of this matrix consider its equilibrium eigenvector (with
eigenvalue 1) ( exp[−E1/T ]

Z , exp[−E2/T ]
Z , ..., exp[−Em/T ]

Z ). Therefore, for a given T we do not
reach a stable state but a stable probability distribution of states. The state of the
net will continue to change from the initial one but as time goes on, each state will be
encountered a number of times more and more close to the value given by the Boltzmann
distribution [17,20,1].

Boltzmann machines cannot “memorize” specific vectors but can learn to reproduce
probability distributions. After specifying visible units (input and output ones, labelled
with index α) and hidden units (labelled with index β) let us write the probability distri-
bution of visible units Pα =

∑
β Pαβ = 1

Z

∑
β exp[Eαβ/T ], where Z =

∑
αβ exp[Eαβ/T ]

and Eαβ = − 1
2

∑
ij wijs

αβ
i sαβ

j . By means of delta rule let us minimize the “distance”
between Pα and the distribution we want the net to learn, P ′

α, that is Shannon’s cross
entropy [21,22,6]

D =
∑
α

P ′
αlog

P ′
α

Pα
.(37)

Then, as usual,

Δwij =

= −η
∂D

∂wij
= η

∑
α

P ′
α

Pα

∂Pα

∂wij
=

η

T

(∑
α

P ′
α

Pα

∑
β

sαβ
i sαβ

j Pαβ −
∑
α

P ′
α〈sisj〉free

)
.

Let us we write Pαβ = Pβ|αPα and 〈sisj〉fixed =
∑

α, β P
′

αPβ|α sαβ
i sαβ

j (that is the
expectation value computed with a conditional probability density, where 〈sisj〉free was
computed with the usual probability density), then

Δwij =
η

T

(
〈sisj〉fixed − 〈sisj〉free

)
,(38)

returning an expression very similar to the Hebb rule. Subscript “fixed” (“free”) indicates
a net where input units are (not) clamped by means of P ′

α. During the fixed phase, visible
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units are clamped to the value of a pattern and the network is allowed to reach a condition
of low-T equilibrium by annealing; then we compute 〈sisj〉fixed. This phase is repeated
a number of times, with each pattern begin clamped with a frequency corresponding to
the P ′

α. In free phase, the network is let running freely. Once the low-T equilibrium
is reached we compute 〈sisj〉free. The two phases are alternated. At the end of the
learning procedure for a single weight, we sum the two terms. This procedure must be
followed a number of times corresponding to the frequency of patterns we want the net
to reproduce [5, 6, 23].

6. – Applications

Neural networks were born to build more efficient computational devices, imitating
the characteristics of the nervous system; they can be used in a number of different ways:
here, only three examples concerning pattern recognition and pattern classification are
quoted. This finds application in medicine (diagnosis and screening), finance, engineering
(product inspection, signature verification), security (fingerprints verification), etc.

6.1. Speech recognition. – In speech recognition problems the net has to cluster similar
inputs (fragments of speech) returning a phoneme coded as a two-dimensional array. This
can find application for vocal typewriters or for the design of machines to help people
with problems of pronunciation.

First, the waveform of the speech to be analyzed is digitalized and converted into a
spectral representation.

Second, the spectral domain of the speech is sampled at intervals of time. For each
fragment of sampled speech we collect the so-called “features”, that is numbers identifying
at best the portion of speech as energy, spectral change, etc. (the number of them can
vary depending on circumstances). Acoustic content is also analyzed comparing features
of different portions of speech, to account for the global dynamic of the speech.

Third, we send the collected features for each fragment of speech to a neural network:
the output of the net (usually a multi-layer perceptron) is a classification of each input
in terms of phoneme-based categories. One could expect one category for each phoneme;
nevertheless phonemes have a great influence on neighboring ones and it is preferred to
split each phoneme in a number of “parts” depending on vocabulary and phonetics of that
particular language. Each part of a phoneme is not classified according to all possible
combinations with other phoneme-parts but according to one of eight bigger categories
(to better account for neighboring phonemes pronounce) as “front vowel”, “fricative”,
etc. The outputs of the neural network (whose number is the same of the categories
of phonemes) are used to estimate the probability of a category: neural networks can
classify in this way, if they are given enough training data and hidden nodes.

Sending inputs to the net continuously, it is possible to build a matrix where the
evolution of the phoneme classification vs. time is shown.

Fourth, a technique of searching is used to match the neural-network outputs with the
words that are assumed to be in the fragment of speech, by 1) expanding and ordering
their pronunciations into strings of phonetic-based categories and 2) moving inside the
evolution matrix, changing category with time if the probability of the new category is
greater than the probability of the current one. At the end of the search, we have a path
through the categories: from it we can easily determine the corresponding word [8,24,25].
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6.2. Handwriting recognition. – Handwriting recognition is not only one of the most
important subprocesses in the analysis of an image containing text, it is also the starting
point for a new kind of easy-to-use technology, whose direct application would start with
a new generation of palm-pilots.

Firstly, an image is pre-processed: specific algorithms detect where text exists within
the scanned image, removing noise and extraneous strokes as symbols, drawings, etc.

The text is then subjected to the “segmentation” phase. For word, two strategies
exist: the analytical approach attempts to recognize every single component characters,
guessing the boundaries of characters by means of variations in the pen-stroke; the top-
down approach attempts to extract features directly from the word as a whole. In
recognizing words, segmentation phase define the primitive strokes and the way they
may be combined to form “segments” that is the possible, future characters: at the end
of the phase a series of segments is obtained.

In the next step, the classification phase, each segment is evaluated using a neural
network, whose output is a vector of letter-class probabilities (as in the speech recognition
procedure): the classifier is a multi-layer perceptron trained with the back-propagation
(a sort of delta rule). It is worth to note that the grey-scale input representation is the
best for the performance of the net, even if solutions in which independent classifiers, fed
with different input representations, are compared. So the architecture of the classifier
may consist in multiple inputs, a hidden layer (separate for each input representation),
fully connected hidden layers (again separate for each representation) and a shared, fully-
connected output layer.

Better performances are obtained negative-training the net, that is training the net to
classify invalid segments (it is seen that multi-stroke characters are better represented) or
feeding the net with random-variation of data (to account for calligraphy). The output of
the classifier is an ensemble of probability vectors, one vector for each segment: only few
of its components are passed to the search engine, which then looks for a minimum-cost
path through this ensemble trying to guess the most likely word, on the basis of the
dictionary “memorized” by the machine.

A general consideration about this procedure is the following: letters have to be “dis-
connected”, that is overlap between characters must be limited: occasional connections
between characters are the largest class of errors [8, 24-26].

Image recognition and classification. The same approach can be followed in image recog-
nition as well as in image classification. In this case, the starting point is “to pixel” the
image and to normalize each pixel into a grey-scale color value in the range [0,1]: assum-
ing RGB pixels, where each color-component has values in the range [0, 255] (mapping
pixels to ASCII code characters) this can be done computing the pixel-input to the net
(one pixel, one input neuron) as

[
1−

(
R+G+B

3

)
1

255

]
; “0” value means “white pixel” and

“1” value means ”black pixel”. The architecture of the net is the same as before; the
number of hidden neurons can vary to find correlations in the input data: as an example,
information about shape simply providing information about color. Output neurons can
return a value between 0 and 1 (using, for example a sigmoid-shaped activity function)
to reduce the number of output neurons needed to express a particular result, in terms
of binary coding.

For image classification a backpropagation, multi-layer perceptron can be used. Phases of
”pixeling” and color-normalizing are the same as those for image recognition. By means
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of a great number of hidden neurons, nets can be fed with only color information, as in a
recent study for the classification of different vegetal species: in a similar way, a greater
capability in grading colors can be reached, to improve the classification procedure to
distinguish similar individuals belonging to the same species [27,26].
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