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Summary. — In case of non-spherical particles, by considering the elements of
the amplitude matrix J, the form of the optical theorem for the cross-section is
obtained in a general way which is faster than how is shown in usual textbooks. It
takes into account polarization of incident radiation. Polarized radiation scattered
in the forward direction by a thin layer of the medium is added to the incident
plane wave. Interference leads to the optical theorem. Dichroism can be avoided by
considering two modes of polarization, which can be defined from the elements of
the J matrix. In this paper: upper-case bold symbols denote vectors or matrices;
lower-case bold symbols denote unit vectors.

PACS 42.25.Dd – Wave propagation in random media.
PACS 42.68.Ay – Propagation, transmission, attenuation, and radiative transfer.
PACS 42.68.Mj – Scattering, polarization.

1. – Cross-sections for non-spherical particles

The presence of non-spherical particles has been evidenced in natural media, such as
atmosphere (ice particles in the high clouds) [1] and biological tissues, e.g., dentine [2]
or cornea fibrils [3].

K. Shifrin carried out and headed long and deep studies on the optics of marine water,
taking into account non-spherical shapes of suspended particles [4].

Propagation of an electromagnetic plane wave in a medium with suspension of non-
spherical particles has particular aspects. They can be dealt with by using a formalism
based on considering the Mueller (phase) matrix M, as is shown in ref. [1], Chapt. 1. The
16 elements Kmn of the M matrix are obtained in [5, Sect. 1.VI] from the 4 element fmn
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of the amplitude matrix J, which connects the incident wave field Ei to the scattered
wave field Es.

The total optical cross-section Ce for a particle is shown in [5, Sect. 1.VII], as a
combination of the elements of the Stokes vector of the incident field Ei with the first
row elements of M taken in the forward direction.

This short note aims at showing an alternative form of Ce, which is simpler and
connects directly the two components of Ei with the four elements of the J matrix. This
particular form of the optical theorem takes into account polarization for the case of
non-spherical particles.

Starting with the case of a medium containing one type of particles, the relationship
between the incident (i) and scattered (s) fields (transverse components in the far field)
via the amplitude scattering matrix (Jones matrix) can be written as

Es = JEi

with

(1) J =
exp[ikr]

r

(
f11 f12

f21 f22

)
,

where in general the elements fmn depend on the directions of arrival and scattering.
Given the incident field: Ei = E0u exp[ikz], with the unit vector u = axx + ayy

defining polarization, we show that the optical theorem for the particle extinction cross-
section Ce can be written as

(2) Ce = (4π/k) Im(f11|ax|2 + f12axay + f21axa∗
y + f22|ay|2).

This is the explicit form of the relationship given by textbooks such as in [5], where the
relative phase of incident and scattered field is not always evidenced.

In eq. (2) ax has been taken as reference for phase, and the matrix elements fmn are
taken in the forward direction. For non-spherical particles Ce depends on the direction
of incidence. The aim of this paper is to give a proof of eq. (2) which is faster than that
usually given in textbooks.

For a medium with a suspension of identical particles with equal orientation the linear
extinction coefficient of the medium is given as

(3) σe = NCe,

with N the number of particles per unit volume.
Equations (2) and (3) can be obtained as follows. Let us define as x, y (x,y) axes of

the reference system those along two directions for which the 2 × 2 scattering matrix J
has the elements f11, f12, f21, f22, which are functions of the direction s with respect to
the incident wave direction z. Let the incident wave field Ei (unitary amplitude) have
the complex components ax, ay along the x- and y-axes, respectively.

(|ax|2 + |ay|2 = 1. Thus polarization is defined.) Consider an elementary layer (width
dz) where the scatterers are contained, and the scattered field on an (x, y)-plane at a
distance D (plane D) from the layer. In a generic point on this plane the scattered field
has also a component parallel to the z-axis. Apart from this component, which is here
neglected, the component dE′s in the D plane of the scattered field, due to a volume



SIMPLE WAY OF INTRODUCING THE OPTICAL THEOREM ETC. 649

element dxdy dz of the layer, is related to the components of the incident field by the
linear relationship

dE′s = exp
[
ik(ρ2 + D2)1/2

]
(ρ2 + D2)1/2((axf ′

11 + ayf ′
12)x(4)

+(axf ′
21 + ayf22

′)y)N dxdy dz,

ρ = (x2 + y2)1/2, N the number of particles per unit volume. The parameters f ′
mn in

eq. (4) are linear coefficients, depending on positions x, y and D. They connect the field
components relative to the same x, y axes both for the incident and scattered fields. In
the forward direction they coincide with the fmn.

dE′s has to be added to the incident wave.
If the layer is extended laterally (actually to infinite for the next considerations), one

can apply the principle of stationary phase to obtain by integration the field scattered
by the whole layer:

(5) dE′s = (2iπ/k) exp[ikD]((axf11 + ayf12)x + (axf21 + ayf22)y)Ndz,

where the fmn parameters are the elements of the scattering matrix J taken in the
forward direction. The total field is thus obtained as

E = Ei + dE′s .

The applied principle takes into account the value of the integrand at the point where
the phase is stationary, that is at ρ = 0. Due to the applied principle dEs is parallel
to Ei.

Since the added dEs is uniform over the plane at D, it can be considered as the field
of a plane wave travelling in the z direction and added to the undisturbed wave.

As for power W per unit area at the distance D, taking into account the differential,
one has (apart from a constant factor 1/(2Z), with Z medium specific impedance)

(6) W = |Ei + dEs|2 = |Ei|2 + 2Re(Ei · dEs∗).

By considering eq. (5) one has the increment per unit width of the medium (dz = 1)

dW = (4π/k)N Im(f∗
11|ax|2 + f∗

12axa∗
y + f∗

21a
∗
xay + f∗

22|ay|2) =(7)

= −(4π/k)N Im(f11|ax|2 + f12a
∗
xay + f21axa∗

y + f22|ay|2)

(with fmn in the forward direction).
If the considered incident power is unitary, one obtains the linear extinction coefficient.

From eq. (7) one can verify that the extinction cross-section for the particles in the
medium is in agreement with eqs. (2) and (3).

2. – Polarization of the propagating field

Dichroism is a well-known effect which consists of polarization change for light beams
propagating in a medium with non-spherical shapes, if particles are not oriented at
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random [5, Sect. 1.VIII]. However it is always possible to define two polarization “modes”,
for which polarization is maintained.

In [5, 6] one finds that the effect can be related to the properties of the Mueller
matrix (4× 4 matrix) pertaining to the medium, and it is only absent in the case of two
particular polarization states, which we here name as polarization MODES (eigenvectors
in [6]).

These polarization states are obtained in [6, Sect. 3.8] by considering the 4× 4 phase
matrix, and imposing that the four elements of the Stokes vector of the propagating
beam are attenuated in the same proportion. This note shows that they are obtained by
considering the properties of the 2 × 2 Jones matrix (J matrix) of the scatterers.

One can impose that the polarization of the scattered field in the forward direction is
equal to that of the incident field. That is the ratio of complex amplitude components
is the same as that of the incident field:

(axf11 + ayf12)/(axf21 + ayf22) = ax/ay .

We thus obtain a second-order equation for the ratio ax/ay, and the Ex and Ey com-
ponent of the incident field. By simple algebraic passages one obtains the two modes,
which, apart from constant factors to be introduced for normalization, are

E1 = x − 2yf21/(f22 − f11 + R),(8a)

E2 = y + 2xf12/(f22 − f11 + R),(8b)

with R = ((f22 − f11)2 + 4f12f21)1/2, and the elements fmn of the amplitude matrix are
taken in the forward direction.

One can see that eqs. (8a) and (8b) for the polarization modes (directly obtained from
the J matrix elements) correspond to those of [6, sect. 3.8].

3. – Polydispersion of particles

Since the scattered field components are taken in the strictly forward direction, the
expressions for the modes and the linear extinction coefficient of the medium are obtained
from those for the monodispersions, with the following substitutions (i: index for the kind
of particle):

(9) g11, g12, g21, g22 in the place of f11, f12, f21, f22

with:: gmn =
∑

i Nifmni and Ni the number of particles of kind i per unit volume.
The extinction coefficient becomes

(10) σe =
∑

i

NiCei

(indexes i for different particles and different orientation). The polarization modes are
obtained from eqs. (8a) and (8b) by substituting the quantities gmn in place of fmn.
One can see that eqs. (8a) and (8b) for the polarization modes (directly obtained from
the J matrix elements) correspond to those of [6, sect. 3.8] where they were obtained by
considering the extinction matrix for Stokes vectors.
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For eq. (9) it has been taken into account that in the forward direction the relative
phases contributions to scattered field from the particles are only due to the fmn matrix
elements, and not to differences in paths.
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