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EXECUTIVE SUMMARY 

The last decade has seen significant growth in the field of sensor networks, which are 

currently collecting large amounts of environmental data. This data needs to be collected, 

processed, stored and made available for analysis and interpretation in a manner which is 

meaningful and accessible to end users and stakeholders with a range of requirements, 

including government agencies, environmental agencies, the research community, industry 

users and the public. 

The COMMONSENSE project aims to develop and provide cost-effective, multi-functional 

innovative sensors to perform reliable in-situ measurements in the marine environment. The 

sensors will be easily usable across several platforms, and will focus on key parameters 

including eutrophication, heavy metal contaminants, marine litter (microplastics) and 

underwater noise descriptors of the MSFD. 

The aims of Tasks 2.1 and 2.2 which comprise the work of this deliverable are:  

• To obtain a comprehensive understanding and an up-to-date state of the art of 

existing sensors. 

• To provide a working basis on “new generation” technologies in order to develop 

cost-effective sensors suitable for large-scale production. 

 

This deliverable will consist of an analysis of state-of-the-art solutions for the different 

sensors and data platforms related with COMMONSENSE project. An analysis of relevant 

technical issues and deficiencies of existing sensors and related initiatives currently set and 

working in marine environment will be performed. Existing solutions will be studied to 

determine the main limitations to be considered during novel sensor developments in 

further WP’s. 

Objectives & Rationale 

The objectives of deliverable 2.1 are: 

• To create a solid and robust basis for finding cheaper and innovative ways of 

gathering data. 

This is preparatory for the activities in other WPs: 

for WP4 (Transversal Sensor development and Sensor Integration),  

for WP(5-8) (Novel Sensors) to develop cost-effective sensors suitable for large-scale 

production, reducing costs of data collection (compared to commercially available sensors), 

increasing data access availability 

for WP9 (Field testing) when the deployment of new sensors will be drawn and then 

realized; 
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1 INTRODUCTION 

1.1 Background 

Reliable, high quality, and high resolution information about water quality is essential for water 

management and for improving the quality of water resources. However, existing monitoring 

practices are unsatisfactory for a variety of reasons. Monitoring of environmental waters is still 

predominantly based on manual sampling followed by laboratory analysis using standard techniques 

such as colorimetry, atomic absorption spectroscopy, mass spectrometry and ion chromatography. 

While this approach yields high quality and reliable data (assuming that the appropriate protocols are 

followed during collection, transport, storage and analysis of the sample), the cost per sample is 

significant due to the manpower requirement for sample collection as well as the cost of analysis. 

This approach is therefore incapable of meeting the demand for monitoring at the much higher 

temporal frequencies and geographical densities which are envisaged under, for example, the Water 

Framework Directive. This is particularly true in relation to oceanographic monitoring, due to the 

additional challenges associated with deploying sensor technology in the marine environment. These 

include: 

• High biofouling potential. 

• The corrosive nature of seawater. 

• Complex and variable sample matrix. 

• Wave/tidal action. 

• Pressure and temperature effects. 

• Communications range constraints. 

• Access limitations. 

The COMMON SENSE project aims to support the implementation of European Union marine policies 

such as the Marine Strategy Framework Directive (MSFD) and the Common Fisheries Policy (CFP). 

The project has been designed to directly respond to requests for integrated and effective data 

acquisition systems by developing innovative sensors that will contribute to our understanding of 

how the marine environment functions. 

The core project research will focus on increasing the availability of standardised data on: 

eutrophication; concentrations of heavy metals; microplastic fraction within marine litter; 

underwater noise; and other parameters such as temperature and pressure. This will be facilitated 

through the development of a sensor web platform, called the Common Sensor Web platform. 

2 METHODOLOGY 

This deliverable is a review of scientific literature, existing sensors and relevant commercially 

available sensors for in-situ monitoring. It is an aseptic and exhaustive review and analysis of existing 

sensors and related projects and initiatives currently set and working in marine environments in 

EUROPE. This deliverable consists of an analysis of state-of-the-art solutions for the different sensors 

and data platforms related with the COMMONSENSE project. Existing solutions will be studied to 

determine main limitations to be considered during each sensor’s developments. 

The COMMONSENSE consortium offers a good balance between RTD and industrial partners. It 

gathers a multidisciplinary and multi-sectorial team with relevant background and scientific expertise 

in different fields including GOOS, INSPIRE, in-situ ocean monitoring, sensor technology, 

multifunctional sensors, data collection, web based services for accessing and viewing data, sensors’ 

networks, oceanographic and marine knowledge, marine observation, knowledge of diverse 

platforms (research vessels, ocean yachts, buoys, etc), new generation technologies, technology 

transfer, EU legislation (MSFD, WFD, IMP, etc.). 

In consultation with the WP2 task leaders and the other WP Leaders, a comprehensive matrix was 

generated of topics to be reviewed for this deliverable. Some of these topics have been moved to 
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D1.4 to avoid significant overlaps. Each topic was then assigned a partner and a named ‘champion’ to 

perform the research. The 11 partners who contributed to D2.1, experts in their own fields, have 

used that domain knowledge to perform an exhaustive review of scientific literature, existing sensors 

and relevant commercially available sensors. 

The deliverable has been obtained thanks to a thorough search on the web and a peer review of the 

publications available up to date from the most important marine research institutes and from the 

most important industries presently active in the marine monitoring and survey market. 

3 RESULTS 

The result of the deliverable for a best interpretation has been subdivided in following main 

headings: 

 

• Existing sensors 

• Novel Sensors 

• Antifouling 

• Remote sensing 

• Communication and positioning systems 

• Sensor network operating systems 

• Miniaturization 

• Energy storage and usage 
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4 DISCUSSION 

4.1 Existing sensors 

As in many other fields of technology, the ideal sensor or transducer does not exist. In fact, every 

specific transducer produced is always a compromise between the performance specifications 

needed, the technologies available and the affordable manufacturing cost. Apart from this simple 

concept, how successful a sensor is mainly depends on the capability to design and manufacture the 

small quantities required by this rather small research orientated market at the right time. 

4.1.1 Nitrates 

Excessive input of nutrients into natural water is a major pollution problem in the world today, hence 

the need for low cost monitoring sensors. It is important to control and monitor this nutrients level in 

order to reduce pollution and protect aquatic life. The variety of sensors currently available in the 

market differ in so many ways related to the sensor design and this in turn affects the accuracy and 

precision of the measurements they produce in different types of natural waters. However, to design 

an effective sensor that will be deployed for use in harsh and remote environments important 

consideration must be given to the modification of the sensors such as rugged housing and 

components, efficient power and heat handling, internal data loggers and controllers, few moving 

parts, antifouling components and data processing. Having all of these elements in place allows in 

situ monitoring to be done accurately and in real time. Other important parameters include accuracy, 

precision, resolution and deployment time. 

 

There are three common methods for measuring nitrate and nitrite in natural waters. This includes: 

1) UV (Optical) 

• HACH Nitratax 

• Satlantic SUNA 

• TRiOS  

• ProPS 

2) Wet chemical sensor 

• The Wiz probe 

• DPA probe 

3) Ion selective electrode (Based on electrodes) 

• Vernier 

• Idronaut 

• HACH NISE 

• YSI (EXO)  

• FOXCROFT 300 Sensor 

Each of these methods has its various advantages and disadvantages and it is briefly discussed below. 

 

4.1.1.1 Ultraviolet Nitrate Sensors 

UV nitrate sensors have been used during the past few decades for wastewater monitoring as well as 

for coastal and oceanographic studies [DV10; RLK08]. According to the US Geological Survey, nearly 

all the UV nitrate sensors operate based on the same principle using the property of dissolved nitrate 

to absorb ultraviolet light i.e. the absorbance of light by nitrate at a specific wavelength [PBD13]. The 

absorbed light is measured by a spectrophotometer and converted to a nitrate concentration. The 

instrument consists of a light source (deuterium lamp), collimating optics, a light path through the 

sample water, and a spectrometer with a photo detector. The resulting absorption spectra can then 

be analyzed using either an on board computer or after data recovery [JC02]. The simple UV method 

offers several advantages when compared to the other available nitrate sensors such as the wet 
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chemical nitrate sensors and ion –selective electrodes. The primary factor determining the 

measureable range of nitrate concentration is the optical path length – the path length must be short 

enough for adequate light to reach the detector but be long enough for measurable difference 

between the incident and transmitted light. Sensors with longer path length typically have a lower 

measureable range of nitrate concentration, whereas sensors with shorter path length allow for 

measurements over a greater range of concentrations.  There are instruments currently available 

with path lengths of less than 1mm to more than 100mm, with 2 – 10 mm being most common path 

length in instruments used for freshwater and coastal deployments while longer path lengths can be 

used for clear water [PBD13]. The detection limits on the UV sensors depends solely on the optical 

absorption path. The detection limits of the current 

generation of UV nitrate sensors ranges from less 

than 0.01 to 1.0mg/L as N.  

Specifications 

• Pathlengths 1, 2, 5 mm 

• Wavelength 220, 350 

• Housing materials Stainless steel/titanium 

• Lamp type: Xenon/deuterium 

• Window Quartz 

• LDL 0.01 – 1.0 

• UDL (mg/L as N) 20 – 100 

 

Advantages of UV Sensors 

• High Resolution and precision 

• Chemical free 

• Fast response time (on the order of 1s) 

• Large nitrate range 

• Gives additional optical information in spectra 

 

Disadvantages UV Sensors 

• Expensive 

• High power requirement 

• High maintenance cost  

• Subject to a range of optical interferences 

Nitratax UV Nitrate sensors  

The HACH Nitratax is a very simple, accurate and 

economical nitrate analyser. It uses advanced 

ultraviolet absorption technology to continuously 

measure the UV light absorbed by nitrate. It eliminates 

the need for reagents, sampling and does not require 

frequent calibration. It works based on the principle 

that molecular bonds i.e. NO3 and NO2 absorb UV light. 

As the concentration of nitrate increases the UV 

absorbance also increases. The nitrate sensor is a 

continuous reading sensor that utilizes a 2-beam ultra 

violet absorption technology with a 1, 2 or 5mm path 

length. The built in photometer measures the primary 

beam, while a second beam of UV light provides the reference standard and it can be corrected for 

interference caused by turbidity or organic matter. The measurement range of the instrument is 0.1 

Figure 4.1.1 General design and key 

components of a field deployable 

ultraviolet (UV) nitrate sensors [LGP04] 

Figure 4.1.2. Showing the HACH 

Nitratax [HAC14 (a)] 
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to 100mg/L NO2-N +NO3-N. The UV sensor also has the ability to self

wiper in the analyser and it retains a life

Satlantic SUNA  

The Submersible Ultraviolet Nitrate 

the ISUS (In-situ Ultraviolet Spectroscopy) UV nitrate measurement.  The SUNA V2 is very efficient in 

measuring nitrate over a wide range of environmental conditions. It comprises of a reduced 5mm 

pathlengths for high turbidity environment and an antifouling control measure. The SUNA can be 

used in both freshwater and sea water.

Specification 

• Limit of detection: 0.5µM

• Detection Range: 3000 µM(10mm path length)

           4000 µM(10mm path length)

• Path lengths: 10mm and 5mm

• Wavelength: 190 – 370nm

• Method: Sea water, freshwater

•  

TriOS optical sensor 

LISA is the new low-cost SAC254 probe in the TriOS family. The key 

features of the probe are longevity with innovative UV

technology, the rugged and smart housing for maximum flexibility of 

use as well as the novel and intuitive user interface via a Web 

browser.Its advantages include low

LED, robust, stainless steel or titanium,

and compressed air cleaning. It is possible to exchange its path 

length. Also, window replacement by customer is possible with 

its modern technology.                            

ProPS - UV 

The ProPS-UV is a submersible UV process photometer, which combines high precision UV 

transmission measurements with mathematical spectral analysing software in order to provide single 

substance concentrations from natural or artificial mixed samples. The system can d

simultaneously and online NO3, NO

reagents. ProPS-Kits are cost-effective and innovative setups for the online measurement of nitrate. 

The individual kits include everything required for th

Key advantages include: newest anti fouling technology with nanocoating (no pollution of the 

medium), low maintenance costs (no chemical reagents or cleaning solvents needed), small sized, 

wide range of applications, easy upgrade options (new parameters can be added to 

system) and adjustable path length.

Figure 4.1.5. ProPS UV [TRI14]
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N. The UV sensor also has the ability to self-clean itself due to the built in 

wiper in the analyser and it retains a life- long factory calibrations.  

The Submersible Ultraviolet Nitrate Analyser (SUNA) is a chemical free UV nitrate sensor based on 

situ Ultraviolet Spectroscopy) UV nitrate measurement.  The SUNA V2 is very efficient in 

measuring nitrate over a wide range of environmental conditions. It comprises of a reduced 5mm 

engths for high turbidity environment and an antifouling control measure. The SUNA can be 

used in both freshwater and sea water. 

Figure 4.1.3. SUNA V2 [SAT14] 

Limit of detection: 0.5µM 

Detection Range: 3000 µM(10mm path length) 

4000 µM(10mm path length) 

Path lengths: 10mm and 5mm 

370nm 

Method: Sea water, freshwater 

cost SAC254 probe in the TriOS family. The key 

features of the probe are longevity with innovative UV-LED 

technology, the rugged and smart housing for maximum flexibility of 

use as well as the novel and intuitive user interface via a Web 

browser.Its advantages include low-cost, ease of use, long lifetime, UV 

LED, robust, stainless steel or titanium, integrated temperature sensor 

It is possible to exchange its path 

length. Also, window replacement by customer is possible with 

its modern technology.                                                                            

is a submersible UV process photometer, which combines high precision UV 

transmission measurements with mathematical spectral analysing software in order to provide single 

substance concentrations from natural or artificial mixed samples. The system can d

, NO2, TOCeq, CODeq or many others parameters without chemical 

effective and innovative setups for the online measurement of nitrate. 

The individual kits include everything required for the measurement: ProPS

controller, 10m sensor cable and 10 m tube 

for air cleaning. All systems are delivered 

ready-to-measure, with an installed pre

the ordered parameters, which works in most 

applications.  

: newest anti fouling technology with nanocoating (no pollution of the 

low maintenance costs (no chemical reagents or cleaning solvents needed), small sized, 

wide range of applications, easy upgrade options (new parameters can be added to 

system) and adjustable path length. 

Figure 4.1.4.

[TRI14] 

ProPS UV [TRI14] 
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clean itself due to the built in 

(SUNA) is a chemical free UV nitrate sensor based on 

situ Ultraviolet Spectroscopy) UV nitrate measurement.  The SUNA V2 is very efficient in 

measuring nitrate over a wide range of environmental conditions. It comprises of a reduced 5mm 

engths for high turbidity environment and an antifouling control measure. The SUNA can be 

 

is a submersible UV process photometer, which combines high precision UV 

transmission measurements with mathematical spectral analysing software in order to provide single 

substance concentrations from natural or artificial mixed samples. The system can determine 

, TOCeq, CODeq or many others parameters without chemical 

effective and innovative setups for the online measurement of nitrate. 

e measurement: ProPS-UV sensor, TriBox2 

controller, 10m sensor cable and 10 m tube 

for air cleaning. All systems are delivered 

measure, with an installed pre-calibration for 

the ordered parameters, which works in most 

: newest anti fouling technology with nanocoating (no pollution of the 

low maintenance costs (no chemical reagents or cleaning solvents needed), small sized, 

wide range of applications, easy upgrade options (new parameters can be added to an existing 

Figure 4.1.4. TriOS optical sensor 
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Figure 4.1.6. The WIZ probe[SYS14 (a)] 

UV Nitrate Sensors Comparison 

Table 1. Comparison between the UV Nitrate sensors. 

Parameter TrioS   ProPS Satlantic SUNA Nitratax 

Pathlengths available (mm) 1 – 60 (Semi-fixed) 5, 10 (fixed) 1, 2,5 (Fixed) 

Wavelengths measured (mm) 190 - 360 190 - 370 220 - 350 

Maximum operating depth (m) 500 100 5 

Lower detection limit (mg/L as N) 0.005 – 0.5 0.007 0.1 – 1.0 

Upper detection limits (mg/L as 

N) 

8.3 – 500 28 – 56 *** 

Accuracy ±2% or ±0.155mg/L ±10% of reading ±2% or 0.155mg/L 

Maximum sampling Interval 120 1 60 

Precision (mg/L as N) 0.03 0.028 0.1 – 0.5 

 

4.1.1.2 Wet Chemical Nitrate Sensors 

Most in-situ nutrient sensors use wet chemical techniques based on laboratory methods. A variety of 

this wet chemical nutrient analysers exist on the market. The analysis requires the addition of 

chemical reagents with nitrate to determine the concentration of target nutrients which can then be 

measured by photometry (JC02). The resulting solution develops a particular property (e.g. color) 

depending on the concentration of the target nutrient, which then can be measured. In some cases, 

heating of the solution is required to speed up the development. Parameters limiting the deployment 

time of wet chemical analysers are reagent consumption, reagent degradation time, available 

electrical energy (batteries) and bio fouling. A distinct advantage of the wet-chemical analyser is their 

capability to conduct in-situ calibrations by piping a blank or standard solution of known 

concentration into the analyser instead of the sample. Using this method any instrument drift can be 

detected and the measurements can be corrected for the drift.  

Advantages  

• High resolution, accuracy and precision 

• In situ calibration can be done 

• Fast response time 

 

Disadvantages 

• High power requirement 

• High potential for fouling 

• Requires reagents (generates wastes) 

• High maintenance waste 

The WIZ Probe (Water-In-Situ Analyser) 

The WIZ probe is the state of the art portable in situ probe that can 

effectively measure automatically up to four chemical compounds in 

surface and sea water. It is designed in such a way that field deployment 

and easy handling is possible by a single user. The four main nutrients 

compounds N-NH3, PO4, NO3 +NO2 and NO2 can be detected at very low levels, making the Wiz probe 

the most advanced analytical probe for field applications. The Wiz probe works based on 

spectrophotometric wet chemistry methods and advanced fluorometric methods. 

 

DPA Pro (Deep–Sea Probe Analyser)  

The DPA (Deep-see Probe Analyser is a state of the art in-situ probe analyser, which can measure 

automatically up to four chemical compounds in surface and sea water. The DPA is designed in such 
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an innovative way allows for easy installation in coastal or floating platform and it can detect at trace 

concentration level the main four nutrients compounds: ammonia (NH3-N) orthophosphate (P04-P) 

nitrate + nitrite (N03 +N02), nitrite (N02-N). It uses spectrometric wet chemistry method for the 

determination of the nutrients and advanced fluorometric method for ammonia measurements. 

 

                       

Figure 4.1.7. Deep- sea probe analyser (DPA) [SYS14 (b)] 

Specifications 

Parameters: NH3-N, P04-P, N03 +N02, N02-N 

Depth Rating: 30 meters 

Operating Temperature: 40 to 400C. 

Sample rate: 30 minutes for a full four parameters sampled. 

Wavelength: Fluorometric: excitation 370nm, emission 420 /470, 1cm. 

4.1.1.3 Ion Selective Electrode 

An Ion selective electrode also known as a specific 

ion electrode (ISE) is a transducer or a sensor that 

converts the activity of a specific ion dissolved in a 

solution in to an electrical potential which is then 

measured by a voltameter or a pH meter.   The 

sensing part of the electrode is usually made as an 

ion- specific membrane coupled with a reference 

electrode. As the name implies, the ISE works based 

on a high degree of selectivity and the selectivity is 

simply determined by the composition of the 

membrane. When the membrane of the electrode is 

in contact with a solution containing the specific ion, a 

voltage, dependent on the level of that ion in solution, 

develops at the membrane. The membrane allows the 

uptake of only one specific ion which could either be an 

anion or cation into it. The transportation of an ion from a high conc. to a low one through selective 

binding with some sites within the membrane which creates the potential difference. 

The ISE has four main types of membrane 

• Glass membrane electrode: the glass membrane electrode is the most common of the three 

types of electrode due to its high selectivity and it is composed of a silicate glass. It 

determines the H+, NA+ and Cd2+ activity or the pH. This glass membrane is very efficient in 

working in aggressive media and it has excellent durability. 

• Liquid membrane electrode: this consists of a liquid ion exchanger incorporated in a PVC 

membrane. 

• Polymer membrane electrodes: the polymer membrane uses a polymeric membrane which 

consists of a polymer such as polyvinylchloride (PVC) and an ion carrier or exchanger. It is an 

alternative to wet liquid membranes. Its’ response is very selective and it has been used to 

replace many liquid membrane electrodes. The polymer membrane can be used to 

determine ions such as K+, Ca2+, NO3
- and Cl-  

Figure 4.1.8. (ISE Set up)  

www.ch.pw.edu.pl/~dyko/csrg/tutor

ials/ise/index.html) 
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• Solid state membrane electrode: The solid state electrode consists of an insoluble inorganic 

salt. (E.g. F- ion electrode which uses a Eu2+ doped LAF3 crystal in order to improve 

conductivity).  

Advantages of ISE 

• Non contaminating 

• They can be used very rapidly and easily when interfering ions are not present. 

• Short response time results obtained in sec or min. 

• ISEs can be used in aqueous solutions over a wide temperature range. 

• Unaffected by color or turbidity. 

• Linear response: over 4 to 6 orders of magnitude. 

• Non-destructive: no consumption of analytes. 

• Low purchase and operation cost. 

• Rugged and durable. 

Disadvantages 

• Interference by other ions is a major problem limiting the use of ISE.  

• Precision is rarely better than 1% i.e. precise degree of interference depends on many 

factors. 

• Electrodes can have limited shelf life and are very fragile. 

• Electrodes can be fouled by organic solutes. 

Vernier Nitrate ISE  

The Vernier Nitrate ISE is used to qualitatively determine the concentration of 

specific ions like Nitrate (NO3
-) in aqueous samples. The Vernier Ion-Selective 

Electrode uses the Solid Polymer membrane which is a porous plastic disk which is 

permeable to the ion exchanger but not to water. It has a combination-style non-

refillable, gel-filled electrode. Like all other PVC ISE membranes, the membrane on 

the ISE has a limited life expectancy 

 

It has a replaceable module which allows users to simply discard the used 

membrane module, and replace it with a new one, making the ISE very economical 

to use. Others species that can be measured include Chloride (Cl-), Ammonium 

(NH4
+) and Calcium (Ca2+). 

 

Idronaut Ion- Selective Electrodes (ISE) 

The Idronaut nitrate sensor belongs to the 

family of Liquid Membrane Ion Sensitive 

Electrodes. According to [IDR09], the 

nitrate ion selective electrode is the only 

ISE that is able to operate up to 200 bar pressure because its membrane 

cap is provided with a unique pressure compensation system which 

protects and avoids the breakage and stressing of the measuring 

membrane. The active membrane consists of an organic solvent which 

contains the ion exchanger. The ion exchanger is incorporated in a 

special PVC membrane, which is glued on top of the screwed membrane 

cap. It is very important that the membrane cap of the Nitrate sensor is 

filled with Nitrate electrolyte before applying pressure otherwise the 

measuring membrane will irreparably break when pressure is applied. 

Its’ measuring range is from 0 to 100mg/l-N. 

Figure 4.1.10. Nitrate 

Sensor Design [IDR09] 

Figure 4.1.9. The Vernier 

ISE [VER14 (A)] 
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As mentioned previously, all ISE’s including nitrate ISEs suffer a great deal from interference from 

other ions, such as chloride, bromide, bicarbonate, perchlorate and chlorate. Even though the ISE 

sensor is most selective to nitrate, other ions when found in high concentrations, can dominate the 

sensor response. Significant interference is not likely to be found in water with conductivity below 

1.000µS, but in sea water, which contains over 18.000mg/l of chloride ion, a nitrate sensor would 

read over 70mg/l-N for nitrate concentration, even in the absence of nitrate, because of its sodium 

interference. The nitrate sensor also performs poorly in salt water due to interference from chloride 

ions. Ag Ag/Cl electrode is common to Nitrate sensors and the sensor can be used in conjunction 

with the Idronaut solid gel reference sensor which is able to operate up to 700bar. 

 

Advantage  

• Inexpensive 

• Easy to use  

• Fast response time 

• Large nitrate range 

• Not influenced by color or turbidity 

Disadvantages  

• Low resolution 

• Accuracy and precision  

• Subject to ionic interference  

• High instrument drift 

Specification 

• Range 0.10 - 14000mg/L or ppm (7 * 7 

× 10-6 M to 1.0 M) 

• Low scale reading: 0.10 ±0.0007 

• High scale reading: 14,000 ±98 mg/L 

• Reproducibility: ± 5% of reading 

• Temperature range (can be placed in): 

0 to 50°C (no temperature 

compensation) 

• pH Range: 2.5 to 11, Interfering Ions: 

CIO4
-, I-, ClO3

-, CN-, BF4
- 

 

HacH NISE  

The HACH Nitrate ISE is a probe that sets new standards in 

nitrate measurement using (ISE) to make continuous in-situ 

measurements. It offers a simple and reliable long term 

measurement through a catrical plus cartridge. It is calibration 

free with automatic chloride compensation thereby eliminating 

cross sensitivity between nitrate and chloride. No reagent is 

required. The catrical plus cartridge replaces the three 

separate electrodes and makes handling as simple as possible.  

 

Figure 4.1.11. HACH Nitrate ISE [HAC14 (b)] 

Specifications 

• Measuring range: 0 – 1000mg/L NO3 – N 

• Lower limit of detection: 0.5mg/L NO3 – N 

• Response time: <3min 

• pH range: 5 – 9 

• Flow: 4<m/s 

YSI (DS5X Multiparameter Sonde) Sensor 

The YSI sensor is an extremely versatile and rugged 

sensor that can be used for monitoring multiple 

parameters simultaneously. It is used for monitoring 

parameters such as ammonia, nitrate, and chloride. It is a 

type of ISE that has its reference electrode immersed in a 

solution of fixed ion concentration separated by a 

Figure 4.1.12. The YSI and EXO 

Sensor [YSI14] 
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membrane containing a chemical compound which interacts with the ion of interest.  It monitors 

ammonia or nitrate by tracing movement of point or non-point pollutants and by surveying 

aquaculture for excessive waste concentrations. 

The YSI is designed in such a way that it incorporates a user replaceable sensor tip and a reusable 

base that houses the processing electronics memory, and wet- mate connector. The YSI Sonde sensor 

is most suitable for freshwater monitoring up to a maximum depth of 15 meters. The YSI has an 

improved power management and an anti-fouling component that is used to prolong deployment 

and improve data accuracy. 

Advantages  

• Long battery life and power management to extend deployment periods. 

• Minimal power consumption. 

• Field-replaceable sensors to save you time. 

• High-impact plastic and titanium resists breaking. 

• Long-term continuous monitoring. 

YSI Sensors Comparison 

Table 2: Comparison between the nitrate and ammonium YSI ISE sensor. 

Sensor Parameter Range  Accuracy Response  Resolution 

Ammonium with 

PH sensor 

Ammonium 

(fresh water 

only) 

0 to 200 mg/L 

(0 to 300C) 

±10% of 

reading  

T65 < 30sec 0.01mg/L 

Nitrate Nitrate(fresh 

water only) 

0 to 200mg/l-

N (0 to 300C) 

±10% of 

reading 

T65 < 30sec 0.01mg/L 
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4.1.2 Nitrites 

Nitrite is an inorganic compound that is widely found in natural water, soil, fertilizers and food 

materials. In water, nitrite can react with secondary amines to form carcinogenic as well as 

mutagenic N-nitrosoamines. Nitrate also when present at high concentrations can be considered a 

pollutant since it can be reduced to nitrite and can be present as an intermediate step in the 

oxidation of ammonia [ZAE99]. The methods that have been described in literature for nitrite 

determination includes spectrofluorometry, chromatography, electrochemical detection, capillary 

electrophoresis and flow by injection [SM12]. Most of these methods are not suitable for routine 

determination of nitrite because some of them require expensive instruments or reagents and others 

are involved in difficult and time –consuming separation procedures. On the other hand, many 

analytical methods have also been proposed for the detection of nitrite and the majority of these 

methods employed for the detection of nitrite in water is based on colorimetric determination with 

diazocoupling reaction [OSL07]. Standard methods for nitrite analysis include colorimetric and ion 

selective methods. 

4.1.2.1 Colorimetric method (The Griess method)  

According to [DMN12], Griess proposed the reaction of sulfanilic acid 1-naphthylamine in the 

presence of nitrites and sulfuric acid and since 1879, the Griess method has been the most widely 

used colorimetric method for the determination of nitrites. Unlike nitrate, nitrite is usually present at 

a concentration lower than 0.01mg/L. 

 

Figure 4.1.13. Showing the mechanism of nitrite detection using the Griess reaction method. 
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TresCon Nitrite Analyser 

The TresCon online nitrite analyser works based on the azo dye method.  A reagent 

reacts with nitrite to change the sample solution color to pink. The intensity of the 

pink color is proportional to the nitrite concentration in the sample and this is 

measured by a double beam reference photometer. The analyser is capable of 

monitoring pollution in natural waters and it can be used in weakly polluted water 

without sample preparation. 

Figure 4.1.14. Trescon nitrite analyser. [WTW14] 

Nitrite Colorimetric Online Analyser CL112 

The CL112 is a microprocessor controlled online analyser that is specifically 

designed by AWA instruments for automatic nitrite monitoring on several types 

of water matrix. 

This analyser is very user friendly and has low operating cost and maintenance. It 

is rugged and reliable very ideal for deployment and ensures the highest level of 

robustness in its electronics, mechanics and hydraulics components. 

Figure 4.1.15. Nitrite CL112 analyser.[AWA14] 

Specification 

Colorimeter used: LED, photo detector 

Measurement time: Approx. 15mins 

Range: 0-0.36; 0-6.0; 0-30.0mg/l 

Detection limit: <2% of full scale 

Reagents consumption: 2500 measurement /liter 

Weight: Approx. Kg 17kg 

Fx-300 Online Monitor and Controller 

The Foxcroft Fx-300 uses the ISE technology to monitor and control ammonia NH3 and ammonium 

(NH4
+), Nitrate (NO3) and Nitrite (NO2) in fresh water.  The FX-300 is designed to be a simpler, lower 

cost alternative to other conditioning analyser. It comprises of a unique membrane technology which 

does not need rebuilding or maintenance and it provides increased selectivity over interfering ions. 

 

 

Advantages of the Fx 300 controller include: 

• Very rugged ISE Sensors that require no reagents. 

• Monitor nitrate or nitrite without interference from turbidity 

or chemical oxygen demand that can be problematic for 

optical sensors.  

• No sample preparation is needed. 

• No rebuilding. 

 

Specifications for Nitrite FX-300 Sensor 

• Concentration Range: 1 to 5 X 10-5 Molar, (46,000 to 0.460 

ppm)  

• Lowest Limit of Detection: 0.276 ppm (276 ppb)  

• pH Range: 4 to 9.0 pH  

• Temperature Range: 5 to 40 o C Pressure Range: 1 to 10 psig  

• Body Materials: CPVC, Ultem Junction: HDPE  
• Interfering Ion:  SCN- , ClO4 - , Br- , NO3 

- , Cl –  

Figure 4.1.16. Fx-300 Nitrite 

and Nitrate ISE Sensor. [FOX14] 
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4.1.3 Phosphates 

Eutrophication as already known, is a major pollutant of the ecosystem. Therefore the monitoring of 

phosphate level is a key step in the protection of natural water and aquatic life. The concentration of 

phosphate in solution is found in small amounts because the inorganic phosphate in the water 

sample changes as a result of biological processes. Hence the need for a cost effective sensor that is 

both specific for phosphate in a complex medium and robust enough to withstand field usage in 

order to monitor the eutrophication process effectively.  

In order to replace the acidification problems of the traditional method of colorimetric analysis being 

carried out on phosphate, various other detection strategies have been discovered for monitoring 

the concentration of phosphate online in order to allow for rapid detection and quantitative site 

evaluations. These methods includes electrochemical methods such as phosphate Ion selective 

Electrode based on potentiometric technique, Indirect voltametric detection based on the reaction 

of phosphate with various metals and associated complexes and the development of sensors 

exploiting enzymatic reactions [VMV09]. The main limitation in the development of phosphate 

sensors however is selectivity.   

 

Types of Online Phosphate Analyser 

� Electrochemical method 

• Potentiometric 

• Voltametric 

• Amperometric 

� Colorimetric Method 

• Microfluidic based analyser 

• HaCH Lange 5000 

• AutoLab 4 Analyser (EnviroTech Instruments) 

• Mini Analyser (stevenswater) 

• ChemScan Uv-6100 Analyser System 

• Aztec 600 phosphate analyser 

• Cycle phosphate sensor 

4.1.3.1 Electrochemical Method 

Potentiometric, amperometric and voltametric sensing approaches are widely used in the 

measurement of water nutrients. The properties of the sensor changes as a result of the interaction 

with the different components being measured. The species of interest is either oxidized or reduced 

at the working electrode causing a transfer of electrons, thus generating a measurable signal 
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[KMA12] Potentiometric detection is the earliest direct electrochemical approach taken to the 

detection of phosphate in natural water [VMV09]. It works based on the operational qualities of 

other Ion selective electrode (ISE) sensors. It is inexpensive to operate, highly portable but however, 

it possesses some disadvantage such as poor selectivity and sensitivity below 0.1ppm. The 

measurement of phosphate concentration in a sample depends on the change in potential as the 

phosphate sample is added but its poor selectivity is a major drawback because related ions affects 

its potential and also its analytical signal. Interfering ions include chloride, bromide, iodide and 

sulphide [CMA97]. According to [VMV09], phosphate determination based on cobalt/cobalt oxide 

electrode has shown to be capable of detecting phosphate to 0.1ppm whilst retaining its high 

selectivity.  

4.1.3.2 Colorimetric Methods (Molybdenum Blue method) 

The standard method for the determination of phosphate is colorimetric which involves the addition 

of ammonium molybdate to orthophosphate sample with ascorbic acid and antimony (III) which then 

produces a blue coloured phosphomolybdate complex. The concentration is then determined 

optically by a spectrophotometer at a wavelength of 880nm. This method however suffers from 

interference from sulphides, silicates, arsenates and oxidizing agents. Another disadvantage is that 

acidification of samples may lead to changes in phosphate content due to hydrolysis of other 

phosphorus containing compounds and to the desorption of phosphate from suspended particles 

[ENG98]. 

 

PO3+
4 + 12 (NH4)2MoO4 + 24H+ �(NH4)3[PO4(MoO3)12] + 21NH4

+ + 12H2O. 

 

Figure 4.1.17. Diagram showing a standard UV-Vis optical methods: 1) Molybdenum blue method, 2) 

Molybdate yellow method [KMA12] 

An example of this method is the Trescon phosphate analyser. 

TresCon OP 510 (Blue Method) 

The TresCon OP 510 is an automatic monitoring analyser that uses a 2-point calibration and high 

degree of accuracy. It uses the blue method for the determination of phosphorous in all natural 

waters. Its measuring principle consists of two units; in the first unit the (digestion unit), the sample 

undergoes a chemical thermal digestion whereby all the phosphorous compounds contained in the 

sample are converted to orthophosphate and this is determined photometrically. 

In the second unit, the total phosphorous content is determined. Analysis using the molybdenum 

blue method is carried out whereby the sample is mixed with a molybdate reagent which reacts with 

phosphate via an intermediate chemical step to form the blue coloration. The intensity of this 

coloration is then measured photometrically. 
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4.1.3.3 Microfluidics Based Analyser (Molybdate Yellow Method) 

The microfluidic analysis systems offer the ability to perform 

rapid analysis of samples while keeping the amounts of 

samples, reagents, waste storage and power to a minimum 

level. This analyser is developed such that it combines low 

power wireless communication systems with low cost analysis 

which can provide reliable information on the state of art of 

natural waters over a long period of time. The analyser is based 

on the molybdenum yellow method which is a simple 

colorimetric method. It involves the formation of 

vanadomolybdophosphoric acid when a phosphate containing 

sample is mixed with an acidic reagent containing ammonium 

molybdate and ammonium metavanadate [CSD09]. The 

absorbance of phosphate is measured at 370nm using a LED 

light source and a photodiode detector. The major advantage 

of this method is the stability of the reagent which can be used for up to a year without significant 

loss of activity therefore allowing longer deployment to be done without the need to change or 

replace the reagent solution. Other advantages include: portability, low cost and low power 

consumption. 

 

Figure 4.1.19.  Schematic diagram of the analyser system, showing various components [CSD09]. 

Trescon Phosphate analyser (PO4) yellow method 

The Trescon PO4 analyser works based on the vanadate/molybdate method (yellow method) for 

determining the orthophosphate content in natural water. A reagent reacts with phosphate in the 

sample to colour the sample solution yellow. The intensity of the colour is then recorded photo 

metrically and evaluated as a measure of the phosphate content. 

                                                  
(a)       (b) 

Figure 4.1.20. Trescon phosphate analyser using the 3(a) yellow method and 3(b) blue 

method [WTM14] 

Figure 4.1.18. The prototype 

phosphate analyser system 

[CSD09]. 
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Limitations of the optical methods of detection  

The advantages of phosphate sensors over traditional sampling techniques are fourfold and fall into 

the following categories - cost, time, accuracy, and mobility. According to [KMA12] the majority of 

the commercially available sensors that are based on colorimetric UV spectral suffer from a number 

of limitations such as sample handling and the acquisition of reference spectra and calibration 

process are necessary for sample of different origin. 

4.1.3.4 HACH Series 5000 Phosphate Analyser 

The HACH phosphate analyser is a continuous analyser that comes in two forms 

low range (LR) and high range (HR). The (LR) instrument is suited to monitor 

wastewater, drinking water, boiler water etc. and it gives continuous reading 

using ascorbic acid colorimetric method of analysis for measurement of 

phosphate at a wavelength of 880nm. It measures from a range of 0 to 5000µg/L. 

On the other hand, the (HR) uses molybdovanadate colorimetric method of 

analysis for measurement of orthophosphate at a wavelength of 480nm within 

the range of 0 to 50 milligrams/litre. The two analysers can 

work for 90 days continuously using only two litres of 

reagent.  

 

Specifications 

 Series 5000 Low Range 

Phosphate Analyser 

Series 5000 High Range Phosphate 

Analyser 

Range 0 to 5000 µg/L as PO4 0.0 to 50.0 mg/L as PO4 

Accuracy ±4 µg/L or ±4% of reading 

whichever is greater (typical) 

±0.5 mg/L or ±5% of reading 

whichever is greater (typical) 

Minimum Detection 

Limit 

Less than 4 µg/L Less than 0.2 mg/L 

Precision ±1% of reading ±0.5 mg/L or ±5% of reading whichever 

is greater 

Step Response Time 15 minutes 11 minutes 

 

*Operating Conditions: Temperature: 10 to 50°C (50 to 122°F)  

The Hach phosphate analyser auto zero on each sample analysis in other to prevent turbid and 

colored samples from interfering with analysis. 

4.1.3.5 CL201 Phosphate Colorimetric Analyser 

The CL201 is a microprocessor controlled online analyser specifically designed for automatic 

phosphate monitoring on several types of water. It has a dual compartments enclosure to ensure 

complete separation between electronics and hydraulics. The CL201 is very rugged and reliable and it 

is designed for industrial and environmental on-line applications. It has a low maintenance and low 

operating cost. 

 

Figure 4.1.22. Mode of operation of the CL201 analyser [AWA14]  

Figure 4.1.21. The HaCH Series 

5000 Phosphate Analyser [HAC14] 
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4.1.3.6 Autolab 4 Non Submersible Automatic Analyser (Envirotech Instruments) 

The AutoLAB 4 system uses established wet- chemistry methods to 

determine nutrient concentrations through standard analytical techniques 

which allows a direct comparison with lab data and avoids interferences 

and fouling problems associated with optical systems. The AutoLAB is a 

pumped field station nutrient analyser that is capable of measuring up to 

multiple nutrients such as (ammonia phosphate, nitrate or silicate) 

simultaneously. It can run unattended for long periods thereby making it 

useful for long field deployment. It consists of high frequency sampling and 

integral self-calibration which makes it very effective and provides reliable 

nutrient data. The aqua 4 analyser is very cost effective, gives 

real-time nutrients measurements and can be used in riverine 

or freshwater monitoring [KMA12]. Nitrate is detected at a 

range of 0 - 5mg/L at 543nm and phosphate 0.08 mg/L at 

880nm both with a sensitivity of 0.003 mg/L. 

4.1.3.7 Mini Analyser (Stevenwater) 

The mini analyser uses a colorimetric method to measure the phosphate 

level in water. It works based on the Molybdenum Blue method. Reagents 

added to the sample react with the dissolved phosphate present to produce 

a blue color. The higher the intensity of the color the more phosphate 

present in the sample. Measurements are carried out by using a 

spectrophotometer. 

 
 

4.1.3.8 Chemscan Uv-6100 Analyser System (Applied Spectrometry Associates (Asa)  

The ChemScan UV-6100 is an online UV spectrometer capable of measuring the concentration of 

multiple dissolved chemical constituents of an aqueous sample with a single analyser [KMA12]. It 

operates by transmitting UV light through the sample and a portion of the transmitted light is 

absorbed by the chemical constituents and the analyser splits the resulting light into different 

individual wavelengths ranging from 200 to 450nm. Chemometrics is then used to solve and calculate 

the concentration parameters. Operating range for phosphate is from 0.01 mg/l to 5.0mg/l. 

  

Figure 4.1.25. Chemscan Analyser System [KMD04]  

4.1.3.9 Aztec 600 Phosphate Analyser 

The Aztec 600 colorimetric series is an online-colorimetric analyser that has been designed 

specifically for measurements of phosphate in both potable water and raw water systems. It offers a 

reliable and accurate online analysis of phosphate up to 50ppm PO4. All samples and chemical fluid 

handling used for measurements, mixing and disposal is controlled by the Aztec fluid handling system 

Figure 4.1.24. Mini Analyzer (STE02] 

Figure 4.1.23. AutoLab4 Remote 

station nutrient/chemical 

analyser [KMA12] 
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that cleans the measuring cell with every movement. The analyser is designed in such a way that it 

can measure up to 4 samples per hour using the standard molybdate blue chemical method. 

 

Figure 4.1.26. Aztec 600 phosphate anlayser [ABB12] 

The advantages of the Aztec 600 phosphate analyser includes: 

• Real-time process control 

• Improve process reliability 

• Increase plant efficiency 

• Continual monitoring of remote or unstaffed sites 

4.1.3.10 Cycle Phosphate Sensor 

The cycle phosphate sensor is designed for unattended long term operations. The cycle 

line combines precision micro-fluidics with state-of –the-art optics to provide 

unparalleled precision and accuracy in operational; in-situ monitoring of nutrients. The 

cycle P04 features automated, on-board calibration of each measurement sample 

against a standard solution.  

Specifications 

Accuracy: 50 nM 

Wavelength: Phosphate absorption 870nm 

Sample rate: 2 per hour 

Dimension: 56cm *18cm 

Power supply: 9.5 to 18 VDC 

Parameters: Designed for long term deployment.  

4.1.3.11 Phosphate References 

[ABB12] ABB (2012). Aztec Phosphate Analyser – Reliable Online Monitoring of Phosphate for Potable Water 

Applications.  Web: 
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azt6p-en_d.pdf, accessed 13 August 2014  

[AWA14] AWA (2014). Phosphate Colorimetric Online Analyser CL201. Web: http://www.awa-

instruments.com/images/brochures/CL201-Phosphate.pdf, accessed 13 August 2014  

[CMA97] Chen, Z.L., De Marco, R and Alexander, P.W (1997). Flow injection potentiometric detection of 

phoposhate using a metallic cobalt wire ion selective electrode. Analytical Communication. 34: 93–95. 

[CSD09] Cleary, J., Slater, C. and Diamond, D. (2009). Analysis of Phosphate in Wastewater using an 

Autonomous Microfluidics-Based Analyser. World Academy of Science, Engineering and Technology, 52.  

[ENG98] Engblom, S.O., (1998). The Phosphate Sensor. Biosensors and Bioelectronics. 13:981-994. 

 [HAC14] Hach (2014). Series 5000 Low Range Phosphate Analyser. Web: http://www.hach.com/series-5000-

low-range-phosphate-analyser/product?id=7640281205, accessed 13 August 2014.   

[KMA12] Korostynska O., Mason A., Al-Shamma’a A. I (2012). Monitoring of Nitrates and Phosphates in 
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Figure 4.1.27. Cycle 

Phosphate Sensor [WET14] 
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orthophosphate, ammonia, nitrate and total suspended solids at Calgary’s Bonnybrook AWWTP. Applied 

Spectrometry Associates, Inc. 

[STE02] Stevenswater (2002). Mini Analyser – User Manual. Web: 

https://www.stevenswater.com/catalog/products/water_quality_sensors/manual/Mini_analyser_manual.pdf, 

accessed 13 August 2014. 
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 [Wet14] Wetlabs (2014). Cycle Phosphate Senor.  Web: http://www.wetlabs.com/cycle-phosphate-sensor, 
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[WTM14] WTM (2014). Analyser Modules for the Online orthophotsophae and Ptotal Measurement. Web: 

http://www.wtw.de/en/products/online/phosphate/analysers.html#c8976, accessed 13 August 2014  

4.1.4 Ammonia Sensors 

The measurement of the concentration of ammonia is very important in freshwater and seawater 

monitoring. Ammonia is a chemical combination of elemental hydrogen (H) and nitrogen (N) and it 

occurs extensively in nature. The physical state of ammonia is dependent on temperature and pH, 

but pH is the determining factor. At a high pH, ammonia is expressed as NH3 and it is referred to as 

free ammonia. In this state, ammonia NH3 is a colorless gas that is readily soluble in water. At a low 

pH it is completely soluble in water and forms ammonium ions (NH4
+) and other anions. The types of 

ammonia analyser listed below detect ammonia using different analytical methods. 

Types of online ammonia Analysers 

• Ion Selective Electrode 

� JUMO 

� Thermo Scientific 

� Q45N Dissolved Ammonia Monitor 

� Fx-300 Online Monitor and Controller 

� Idronaut 

� YSI Ammonia sensor 

� TresCon NH4 analyser (WTW Xylem Group) 

• Colorimetric Method 

� Aztec 600 ammonia analyser 

• UV or multiple wavelength UV absorbance Spectrophotometer. 

� Nessler Regents 

� Berthelot’s 

4.1.4.1 Ion Selective Electrode (ISE) Ammonia Analyser 

The online ISE ammonia analysers are probe type analysers that use a reference electrode and an 

ammonia ISE analyser. The ISE analyser feed sample through a flow cell whereby a reagent such as 

sodium hydroxide (NAOH) is added to the sample to raise its pH in order to convert all ammonia to 

free ammonia NH3. All the free ammonia released then penetrates into the ISE ammonia analyser 

membrane cap. The ISE analyser measures the change in pH of the membrane cap. The ISE is the 

cheapest method of analyser but it is not suitable for low-level concentrations, amines interfere with 

it and it is not applicable to some samples, such as sea water. 
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Figure 4.1.28: General Diagram of an ISE Ammonia Analyser [ITA10]  

Disadvantage: ISE too insensitive to ammonium ions. They are subject to unacceptably high 

interference from sodium and potassium. 

 

JUMO ISE 

The JUMO ammonia sensor uses a fast and simple way to measure ammonia (NH3) in aqueous 

solutions by using a membrane covered gas sensitive sensor that operates based on potentiometric 

principle. Ammonia when in an aqueous solution is in pH-dependent equilibrium with ammonium 

ions. If these ammonium ions are converted into ammonia by the addition of an alkali, then the 

sensor will detect the resulting ammonia gas. However, the ammonium ions themselves will not be 

detected. The JUMO sensor consists of a glass pH electrode and a reference electrode which are 

surrounded by a common electrolyte that is separated from the liquid being measured by a 

hydrophobic, gas permeable membrane. One of the advantages of the JUMO sensor is that 

measurement can be made directly in 

the liquid medium thereby 

eliminating unnecessary time 

consuming sample preparation. Also, 

a pre-fabricated membrane cap is 

available for the JUMO ammonia 

probe which makes the probe easy to 

quickly replace. The JUMO is very efficient in measuring 

seawater, fresh and salt water. 

Specifications 

Measuring range 

• 0.01 to 20000ppm (mg/l) NH3. 

• Temperature range: 0 to 500C 

• Accuracy: +/- 2% 

• Length: 120mm 

• Diameter: 12mm 

Thermo Scientific Gas sensing electrode 

The gas sensing electrode works by 

measuring a pH change caused by 

diffusion of gas through a hydrophobic but porous 

membrane. The membrane is permeable only to gas 

thereby allowing only gas to pass through until partial 

pressure is equal on the both sides. 

Figure 4.1.29. Showing a typical 

JUMO NH3 Sensor. [JUM14] 

Figure 4.1.30. Thermo Scientific Gas 

sensing Electrode [THE14] 
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Advantages include: Direct measurement can be done on many samples 

Precision is + or – 2% 

Rapid measurement 

Disadvantages include: 

Interferences by ions: although this can be overcome by using an Ionic Strength Adjuster (ISA). 

Figure 4.1.31. Ammonia Electrode structure 

ATI Q45N Dissolved Ammonia Monitor 

The dissolved ammonia monitor is a new low cost monitoring method which uses reaction chemistry 

that converts ammonia in solution to a stable monochloramine compound which is equivalent in 

concentration to the original ammonia level. The concentration of the chloramine is then measured 

with a unique amperometric sensor that responds linearly to chloramines while getting rid of 

interferences from excess free chlorine in solution. 

 

Figure 4.1.32. (a) Chloramination process monitoring and (b) ATI Dissolve ammonia monitor [ANA14] 

Advantages 

The dissolved ammonia monitor is very stable compared to typical ISE sensors which are subject to 

significant drift problems. The amperometric sensor provides excellent results which is repeatable 

and can be deployed over a long period of time. Furthermore, the ATI Q45N is both simple to 

operate and economical to purchase selling at 50% of the cost of many competitive ammonia 

monitors.  

Specifications 

Measurement: Total ammonia (as NH3 – N) 

Sensor type: Amperometric membrane cell 

Ammonia Range: 0 – 2.000 ppm minimum, 0 – 10.00 ppm maximum 

Monochloramine Range: 0 – 10.00 ppm 

Response Time: 90% in 120 seconds 

Accuracy: +/- 0.1 ppm or 2% 

Fx-300 Online Monitor and Controller 

See Section 4.1.2.1 and Figure 4.1.16 for description. 
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The FX-300 NH4 is capable of measuring ammonia in the presence 

of 20 to 30ppm potassium ions as low as 1ppm in the presence of 

up to 400ppm chloride ions while still maintaining its linearity and 

stability. 

The Idronaut Ammonium Sensor 

The Idronaut Ammonium, very similar to the Idronaut nitrate sensor is 

based on the same ion selective electrode mechanism as the nitrate ISE 

sensor. The ammonium ion selective electrode is the only ISE that is able to 

operate up to 200 bar pressure because its membrane cap is provided with 

a unique pressure compensation system which protects and avoids the 

breakage and stressing of the measuring membrane. The active membrane 

consists of an organic solvent which contains the ion exchanger. The ion 

exchanger is incorporated in a special PVC membrane, which is glued on 

top of the screwed membrane cap. It is very important that the membrane 

cap of the ammonium sensor is filled with a special ammonium electrolyte 

(NH4Cl 0.01M) before applying pressure oth

membrane will irreparably break when pressure is applied. Its measuring range is from 0 to 100mg/l

N. 

 

YSI Ammonia Sensor 

stability and short response time. Measurement is carried out directly in the medium without sample 

preparation. 

The sensor consists of a Ag/AgCl wire electrode

nitrate the internal solution is separated from the sample by a polymer membrane, which selectively 

interacts with nitrate ions. For the determination of ammonia the internal solution is separated fro

the sample medium by a non-actin membrane, which selectively binds with ammonium ions. The 

sum of the two forms of ammonias (i.e. unionized and ammonium ions) is then reported in form of 

total ammonia. See Section 4.1.1.3 and Table 2 for more information

TresCon Ammonium analyser (NH

The TresCon NH4 analyser used for the continuous determination of ammonium 

is based on potentiometric measuring principle with a gas

electrode. NaOH is added to the thermostated sample to convert the 

ammonium dissolved in the medium into undissociated ammonia gas. The 

gaseous ammonia alters the pH registered by the measuring electrode this 

alteration is then used for direct measurement

the sample. Calibration of the analyser

short response time and continuous monitoring is possible. 

 

4.1.4.2 COLORIMETRIC ANALYSER

A colorimeter is a light intensity meter capable of measuring the 

intensity of light at a specific wavelength. Colorimetric ammonia 

measure the color intensity of sample solutions. The 

Figure 4.1.34. Showing a typical YSI sensor.
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of 20 to 30ppm potassium ions as low as 1ppm in the presence of 

up to 400ppm chloride ions while still maintaining its linearity and 

Sensor  

The Idronaut Ammonium, very similar to the Idronaut nitrate sensor is 

based on the same ion selective electrode mechanism as the nitrate ISE 

sensor. The ammonium ion selective electrode is the only ISE that is able to 

because its membrane cap is provided with 

a unique pressure compensation system which protects and avoids the 

breakage and stressing of the measuring membrane. The active membrane 

consists of an organic solvent which contains the ion exchanger. The ion 

changer is incorporated in a special PVC membrane, which is glued on 

top of the screwed membrane cap. It is very important that the membrane 

cap of the ammonium sensor is filled with a special ammonium electrolyte 

Cl 0.01M) before applying pressure otherwise the measuring 

membrane will irreparably break when pressure is applied. Its measuring range is from 0 to 100mg/l

The YSI ammolyt plus sensor is an 

in- situ ammonium sensor with 

potassium compensation. It is 

economic, cost effective and 

calibration free. It has a long term 

stability and short response time. Measurement is carried out directly in the medium without sample 

The sensor consists of a Ag/AgCl wire electrode in a custom filling solution. For the determination of 

nitrate the internal solution is separated from the sample by a polymer membrane, which selectively 

interacts with nitrate ions. For the determination of ammonia the internal solution is separated fro

actin membrane, which selectively binds with ammonium ions. The 

sum of the two forms of ammonias (i.e. unionized and ammonium ions) is then reported in form of 

See Section 4.1.1.3 and Table 2 for more information 

(NH4) 

used for the continuous determination of ammonium 

is based on potentiometric measuring principle with a gas-sensitive NH3

electrode. NaOH is added to the thermostated sample to convert the 

ammonium dissolved in the medium into undissociated ammonia gas. The 

gaseous ammonia alters the pH registered by the measuring electrode this 

alteration is then used for direct measurement of the ammonia concentration in 

analyser is done automatically. The TresCon has a 

inuous monitoring is possible.  

ANALYSERS 

A colorimeter is a light intensity meter capable of measuring the 

intensity of light at a specific wavelength. Colorimetric ammonia analysers use this colorimeter to 

measure the color intensity of sample solutions. The analyser is set at a wavelength of 64

Figure 4.1.33.

Ammonium sensor design 

Figure 4.1.35.

Analyzer [DIR14]

Showing a typical YSI sensor. 
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membrane will irreparably break when pressure is applied. Its measuring range is from 0 to 100mg/l-

The YSI ammolyt plus sensor is an 

situ ammonium sensor with 

potassium compensation. It is 

economic, cost effective and 

calibration free. It has a long term 

stability and short response time. Measurement is carried out directly in the medium without sample 

in a custom filling solution. For the determination of 

nitrate the internal solution is separated from the sample by a polymer membrane, which selectively 

interacts with nitrate ions. For the determination of ammonia the internal solution is separated from 

actin membrane, which selectively binds with ammonium ions. The 

sum of the two forms of ammonias (i.e. unionized and ammonium ions) is then reported in form of 

used for the continuous determination of ammonium 

3 

electrode. NaOH is added to the thermostated sample to convert the 

ammonium dissolved in the medium into undissociated ammonia gas. The 

gaseous ammonia alters the pH registered by the measuring electrode this 

of the ammonia concentration in 

is done automatically. The TresCon has a 

s use this colorimeter to 

is set at a wavelength of 645nm – 

Figure 4.1.33. The Idronaut 

Ammonium sensor design  

Figure 4.1.35. TresCon NH4 

Analyzer [DIR14] 
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655nm. The color is produced by the addition of reagents to the 

sample and its intensity is proportional to the free ammonia 

concentration in the sample. The free ammonia in the sample is first 

converted to monochloramine by the addition of hypochlorous acid. 

NH3-N + HOCl � NH2Cl + H20. 

 

Disadvantage: Colorimetric test kits are inaccurate at low levels and 

impractical for field use. 

The Aztec 600 ammonia 

The Aztec 600 ammonia is an online 

colorimetric analyser used in the monitoring of ammonia. It 

comprises of a unique fluid handling system with the latest electronics platform. It is very compact 

yet very reliable in continual monitoring of ammonia in potable water 

applications. The Aztec 600 can measure up to 4 samples per hour using 

the indophenol blue chemistry to measure ammonia and ammonium ions 

up to 3ppm. ‘’The samples and chemical fluid is controlled precisely by the 

patented Aztec fluid handling system that cleans the measuring cell with 

every movement’’ 

 

Specifications 

Accuracy: < ±5% of reading or ±0.005ppm 

Repeatability: < ±5% of reading or ±0.005ppm 

Resolution: 0.001ppm or 1ppb 

Calibration: 2-point, automatic calibration 

Sample flow: Continuous 

4.1.4.3 UV or multiple wavelength UV absorbance Spectrophotometer 

Ultraviolet absorbance spectrophotometer uses 

ultraviolet light source to measure the 

absorbance of UV light waves passing through a 

sample. Generally, the UV light absorbance 

analysers is calibrated to measure the 

wavelength of UV light within a range of 200nm 

– 450nm. Measurements of ammonia 

concentration is done by collecting a sample 

and the addition of reagent to the sample that 

acts as a buffer.  Hypochlorite solution is also 

added and this reacts with free ammonia in the 

sample to form monochloroamine. As the UV 

light strikes the sample, some of the light is 

absorbed by the monochloramine 

concentration of the sample and the remaining 

UV light passes through. The ammonia 

analyser measures the difference in the transmitted UV light versus the light that passes through the 

UV spectrophotometer. Some UV ammonia analyser uses multiple paths of UV light to adjust for 

turbidity or other interferences. 

Disadvantages of the UV ammonia analyser however is interference from turbidity and some 

inorganic ions like chlorine. 

Figure 4.1.36. Colorimetric 

Ammonia [ITA10] 

Figure 4.1.37. A typical 

Aztec ammonia 

analyzer[ABB12]  

Figure 4.1.38. Ultraviolet Absorbance 

Spectrophotometer Ammonia analyzers [ITA10] 
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Spectrophotometry is a technique where a specific reaction causes a coloration of an analyte 

[TOV05]. There are two classical examples of spectrophotometric method for ammonia 

determination namely:  

• Nesslers reaction 

• Berthelot indophenol reaction 

Nesslers Reaction: The Nessler reaction method is readily available and it is mostly used for 

determining the total ammonia concentration in water. It is based on the reaction between ammonia 

and tetraiodomercuriate (II), the latter being formed on site from mercury (II) iodide in alkaline 

potassium iodide medium. A colloidal dispersion is formed as a result and this is detected by 

absorbance measurements at 400 and 425nm. The reagent used is, however, very toxic hence the 

use of the Nessler is very limited due to its toxicity.  

Berthelot’s Reaction: This is the second coloration method mostly used to measure ammonia 

concentrations in aqueous solution. The reaction is less toxic compared to the Nessler method as the 

reagents used are less dangerous and are water soluble [TOV05]. One disadvantage of the Berthelot 

however, is that the kinetics is rather slow. The detection limit is about 5µM of NH4 in water.  

The solid- state ammonia sensor is an example of a sensor based on Berthelot’s reactions which 

requires relatively slow reactions between ammonia and phenol in the presence of chlorine (sodium 

hypochlorite) from indophenol blue. The time required for an uncatalyzed reaction may take over an 

hour, therefore elevated temperatures have been used to speed up the colour development in order 

for results to be obtained in a much faster rate [LED04]. 

Bulk Acoustics Wave sensor 

The acoustic wave sensor is a type of sensor that is currently being 

proposed to replace the traditional methods of Berthelot’s 

spectrophotometric reaction. It uses a piezoelectric quartz crystal coated 

with a sensitive film [AGN10]. This sensor has a highly sensitive response 

compared to conventional methods and it can be applied to sample 

solutions which contains a large amount of unreacted foreign electrolytes. 

When the sensor probe comes in contact with a sample, gaseous 

ammonia will diffuse across the gas- permeable membrane and dissolve 

into the internal electrolyte solution until the ammonia partial pressures 

in the sample and in the thin film of the internal electrolyte 

solution are equal [XLC96]. 

NH3 + H2O →NH4
+ + OH- 

As the concentration of ammonia in the sample increases the amount of ammonia present in the 

internal electrolyte solution increases also and this in turn increases the conductance of the internal 

electrolyte solution. 

One drawback of the acoustic wave sensor is interference from volatile species like amines [XLC96]. 

The acoustics sensor when compared to potentiometric ammonia sensor has a higher detection limit 

of 1 x 10-7 and a quicker response time and it does not require an electrode.  

Table 3: Comparison of Acoustic Wave and Potentiometric Sensors. 

 Detection Limit Response Reference Electrode 

Acoustics Wave sensor 1 x 10-7 70 No 

Potentiometric sensor Ca. 10-7 110 Ag/Agcl 

*NH4 concentration changes from 1 x 10-6 to 1 x 10-7 

 

Figure 4.1.39. Schematic view of the 

piezoelectric quartz crystal with gold 

electrodes. 
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4.1.5 Chlorophyll Sensors 

Chlorophyll concentration is traditionally used as an 

indicative index of the phytoplankton abundance in 

the sea water, although there cannot be a genera

conversion from chlorophyll concentration to 

phytoplankton biomass, since the amount of 

chlorophyll per unit of biomass largely varies from one 

to another species and according to other 

environmental conditions. Chlorophyll concentration 

could also be indicative of the primary production by 

phytoplankton, although in addition to the above 

mentioned limitation, the amount of C fixed depends on 

many other factors such as light availability and 

physiological status of each phytoplankton 

Moreover, there are other primary producers such as 

bacteria that contribute, sometimes in a relevant fraction

to the total primary production 

is this such a popular measurement? 

indication of the environmental conditions of the waters

environment is clearly oligotrophic, then chlorophyll concentration must be low

chlorophyll concentration is found high, then it is a c

used to monitor the effectiveness of restoration plans in human perturbed marine environments and 

is a key parameter for monitoring 

At sea, chlorophyll will only be found 

segment of the light spectrum that is called Photosynthetic Active R

peaks: ~440 and ~665 nm (Fig. 1)

less rapidly, according to the extinction curve of PAR, there is no chance for chlorophyll to get any 

energy from light below 200m depth. 

COMMON SENSE Deliverable number 2.1  

 

 

 
project has received funding from the European Union’s Seventh Framework 

Ocean 2013-2) under the grant agreement no 614155. 

 

[ABB12] ABB (2012). Aztec 600 ammonia – ammonia analyser. ‘Reliable online monitoring of ammonia for potable water 

http://www05.abb.com/global/scot/scot203.nsf/veritydisplay/91995780e39c4647c12579bb004ff69f/$file/ds_azt6am

[AGN10] Antunes, V., Graca, M., Neves, P., Terasa, M. and Gomes S.R (2010), Determination of Ammonium Ion in water, 

Dissolved Ammonia Monitor Q45N 

http://www.analyticaltechnology.com/public/product.aspx?ProductID=1048 Accessed 13 August 2014

nalyser/ NO2-N. Web: http://www.directindustry.com/prod/wtw/on

1196267.html#product-item_500999, accessed 13 August 2014   

300 ISE Ammonia, Nitrite, Nitrite Monitor and Controller.  Web: 

http://www.foxcroft.com/Portals/15602/docs/FX-300%20Nitrogen%20brochure3.pdf, accessed 13/08/2014

[ITA10] Instrumentation Testing Association (2010). ’Ammonia Analyser Test Report’ ITA Summer 2010 E

http://www.instrument.org/enews/2010/summer2010/itaenewssummer2010_files/page731.htm, accessed 13 August 

[JUM14] Ammonia Sensitive Sensor (201040) 

http://www.jumo.de/products/liquid%20analysis/ammonia/sensor/201040/ammonia-sensitive-sensor

Ammonia Gas Sensing ISE Electrode 

http://www.thermoscientific.com/en/product/orion-ammonia-gas-sensing-ise-electrodes.html Accessed 

[TOV05] Timmer, B., Olthuis, W., and van den Berg, A. (2005). ‘Ammonia sensors and their applications

[XLC96] Xu, Y., Lu, C., Chen, K., Nie, L. and Yao, S (1996). ‘A novel bulk acoustic wave sensor for dissolved ammonia'. 

Chlorophyll concentration is traditionally used as an 

indicative index of the phytoplankton abundance in 

the sea water, although there cannot be a general 

conversion from chlorophyll concentration to 

phytoplankton biomass, since the amount of 

chlorophyll per unit of biomass largely varies from one 

to another species and according to other 

environmental conditions. Chlorophyll concentration 

dicative of the primary production by 

phytoplankton, although in addition to the above 

mentioned limitation, the amount of C fixed depends on 

many other factors such as light availability and 

phytoplankton cell [AME02]. 

are other primary producers such as 

imes in a relevant fraction, 

the total primary production [LF95]. So therefore, why 

popular measurement? Because it is relatively easy to obtain a semiquantitativ

indication of the environmental conditions of the waters. For example, if at a given location the 

environment is clearly oligotrophic, then chlorophyll concentration must be low

found high, then it is a clear indication of eutrophication. It can also be 

used to monitor the effectiveness of restoration plans in human perturbed marine environments and 

is a key parameter for monitoring according to the EU directives: [EU00] and [EU08

At sea, chlorophyll will only be found at depths where light is able to penetrate. In particular a 

the light spectrum that is called Photosynthetic Active Radiation (PAR)

peaks: ~440 and ~665 nm (Fig. 1). Since water is absorbing the different components of light more or 

less rapidly, according to the extinction curve of PAR, there is no chance for chlorophyll to get any 

m light below 200m depth.  

Figure 4.1.40. PAR spectrum 

showing the two peaks of maximum 

absorption. Note that the green 

colour corresponds to the minimum 

absorption 

 

European Union’s Seventh Framework 

30 

monitoring of ammonia for potable water 

http://www05.abb.com/global/scot/scot203.nsf/veritydisplay/91995780e39c4647c12579bb004ff69f/$file/ds_azt6am-

nd Gomes S.R (2010), Determination of Ammonium Ion in water, 

Accessed 13 August 2014 

N. Web: http://www.directindustry.com/prod/wtw/on-line-nitrite-

300%20Nitrogen%20brochure3.pdf, accessed 13/08/2014 

[ITA10] Instrumentation Testing Association (2010). ’Ammonia Analyser Test Report’ ITA Summer 2010 E-news. Web: 

0/itaenewssummer2010_files/page731.htm, accessed 13 August 

sensor-201040.html 

Accessed 13 August 2014 

[TOV05] Timmer, B., Olthuis, W., and van den Berg, A. (2005). ‘Ammonia sensors and their applications- A Review’. Sensors 

[XLC96] Xu, Y., Lu, C., Chen, K., Nie, L. and Yao, S (1996). ‘A novel bulk acoustic wave sensor for dissolved ammonia'. 

it is relatively easy to obtain a semiquantitative 

if at a given location the 

environment is clearly oligotrophic, then chlorophyll concentration must be low, but if in a survey, 

lear indication of eutrophication. It can also be 

used to monitor the effectiveness of restoration plans in human perturbed marine environments and 

EU08]. 

where light is able to penetrate. In particular a 

adiation (PAR) which has two 

he different components of light more or 

less rapidly, according to the extinction curve of PAR, there is no chance for chlorophyll to get any 

Figure 4.1.40. PAR spectrum 

the two peaks of maximum 

absorption. Note that the green 

colour corresponds to the minimum 



COMMON SENSE Deliverable number 2.1  

  

 

 
The COMMON SENSE project has received funding from the European Union’s Seventh Framework 

Program (Ocean 2013-2) under the grant agreement no 614155. 
 

31 

However since water transparency also depends on the presence of particles, the higher 

phytoplankton concentration in the upper layers the lower is the penetration of light in what is 

typically called self-shadow of phytoplankton. In stratified waters, far from any nutrient source from 

surface such as a river or sewage, or any other form of eutrophication, since there is no renewal of 

water, nutrients at the surface are being depleted.  

Thus, phytoplankton can only survive concentrated in a thin deep layer that can still be reached by 

the light, at the edge of the dark nutrient rich layer. This feature is very common in oligotrophic seas 

during summer (the hot season) and is known as Deep Chlorophyll Maximum (DCM) [Est85]. Where 

there is a natural source of nutrients at surface, from upwelling to riverine discharge, as well as when 

there is eutrophication, most of the chlorophyll will be found at the surface. 

4.1.5.1 Measuring chlorophyll 

Since chlorophyll is not a dissolved matter but a component of phytoplankton and other living 

microorganisms, it must be measured from suspended particulate matter. It can be done either by 

extracting this component from particulate matter, or by measuring some property of the particles 

that could be related to the chlorophyll. We will refer to as in-vivo chlorophyll this last method in 

opposition to the extracted chlorophyll in the first case. To obtain the extracted chlorophyll, particles 

must be first trapped and concentrated in a filter. In that case, filters could also be used to obtain 

other relevant information as well as a proxy of the biomass. Moreover, if different mesh size filters 

are being used, chlorophyll values can also be referred to groups of organisms sharing a size range. 

For example, diatoms and cocoliths (two of the most abundant phytoplankton groups) can be easily 

separated, so also their relative contributions to total chlorophyll [SG06]. Once obtained, filters are 

processed and chlorophyll is extracted with acetone or methanol and measured by 

spectrophotometry, fluorometry or high performance liquid chromatography (HPLC), [JH75], [YM63] 

and [Lat96], respectively. 

The measure of in-vivo chlorophyll is based either on the light spectrum absorbance, when a 

sufficient amount of water is being observed, or on the fluorescence response under UV excitation 

pulse. The first method being used are remote sensed measurements, typically images in the visible 

range of light from satellites or aircrafts, but also from cameras on top of towers, lighthouses, etc. 

Although this information may cover large areas it is restricted to the surface and upper layer 

chlorophyll while the contribution to the total chlorophyll by the deep layers such as the DCM cannot 

be recorded by this way. In particular, in oligotrophic environments during summer, total chlorophyll 

remotely sensed will be much underestimated. The second method, the fluorescence response, of 

measuring in-vivo chlorophyll is the most widely used for in-situ measurements, and will be 

presented and discussed below in the present report. 

4.1.5.2 Fluorescence and in-vivo chlorophyll. 

Chlorophyll is a molecule that is able convert light into chemical energy by changing its properties 

with the light action. The mechanism is too complex [KW91] to be detailed here but it can be 

summarized saying that the chlorophyll molecule will present two different states, stand-by and 

busy, as follows: We will say that chlorophyll is in stand-by when it is ready to receive photons, and 

busy otherwise, that is, when the energy obtained from photons is used to mobilise electrons. 

When chlorophyll is in stand-by, a pulse of UV light will cause a fluorescent emission however if 

chlorophyll is busy fluorescence will not be emitted. Then, fluorescence can be used as an indicator 

of the chlorophyll assuming that it is in stand-by during most of the time. This is obviously true when 

there is no light in the environment, for example, during the night. However, in the presence of light, 

a fraction of the total chlorophyll would be busy and fluorescence measurement will underestimate 

the total chlorophyll. Under most of the conditions the fraction of busy chlorophyll used to be 

relatively low, but not always negligible.  

[EMS96] found, comparing situations under similar light, that there can be differences in reaction 

because there is an additional quenching effect on the chlorophyll. The authors found that under 
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certain conditions the underestimation may be as high as 20% but in most cases it is not higher than 

5%. In oceanographic cruises, typically fluorometers are used attached to CTDs or other 

oceanographic instruments, working on water pumped from surface. In all these applications, 

fluorometers have been calibrated from phytoplankton cultures before the cruise starts.  

Then, during the cruise simple regression is used between in-vivo fluorescence and random samples 

where chlorophyll is directly measured from filters by extraction at certain points and depths to 

control the response in the natural environment. In any case, the best accuracy that can be obtained 

usually is not better than 5% because of the above mentioned problems in addition to the patchiness 

of the distribution of suspended particles.  

Therefore, the problem of underestimation using fluorometers is not crucial for general purpose 

monitoring of environmental conditions regarding eutrophication. 

4.1.5.3 Instruments 

The fluorometers adapted to measure in-vivo 

chlorophyll consisted of a UV source, traditionally a 

Xn lamp, that now is being substituted by a LED 

source, especially in autonomous devices powered by 

batteries, but also those mounted on CTDs online to 

reduce the power supply required. A filter covering 

the captor cell ensures the correct wavelength. 

Sensitivity used to be controlled by windows of different 

size that may change automatically, according to the 

light measured, or have to be set manually according to 

the characteristics of the zone to be sampled. All these 

characteristic are common for laboratory and 

submersible fluorometers. Laboratory instruments (Fig. 

2) are able to measure in-vivo fluorescence use to be the 

same as for measuring extracted chlorophyll, adapted to 

the corresponding fluorescence levels. They can also be adapted for a continuous flow of water 

circulating instead of from samples. Submersible fluorometers have the light source and the captor 

forming a square such as captor cannot receive any direct light from the source (Fig. 3). Although 

functional chlorophyll can only be present in shallow waters, since the instruments are to be lowered 

in an array with other sensors (e.g. CTDs) to cover the entire water column, they have to be mounted 

in pressure resistant housings to permit different depth ranges. Shallow submersible fluorometers in 

a plastic housing will not be able to go down 100 or 200m, while housing made with titanium can 

safely reach any oceanic depth.  

There are several manufacturers of oceanographic fluorometers. Turner Designs is considered the 

standard for laboratory use. Submersible fluorometers are manufactured by several companies such 

as: Turner Designs, Sea-Tech, Seapoint, WetLabs, Chelsea, among others. Although CTDs are 

prepared to admit anyone of them, there are some preferences and better adaptations. 

 

 
Figure 4.1.42. AquaTracka III (Chelsea), a compact, lightweight, submersible 

fluorometer for the detection of chlorophyll a, dye tracing or turbidity. 

Manufactured in titanium, it is rated to 6000m. 

Figure 4.1.41. Classic 10-AU Field 

and Laboratory fluorometer [TD11]. 

It is a field-portable instrument that 

can be set up for continuous-flow 

monitoring or discrete sample 

analyses with exceptionally high 

sensitivity 
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4.1.5.4 Concluding remarks 

Fluorescence methods are the most widely used, either for chlorophyll monitoring, in-vivo or 

extracted. Fluorescence is a relative measure that needs to be calibrated with a known standard 

obtained from phytoplankton cultures. In-vivo measurements have the advantage of being quick and 

permitting a wide coverage, vertical or horizontal, if fluorometers are respectively attached to a CTD 

or connected to a water pump on a ship. Accuracy of the method however is relatively low because 

of physiological restrictions or interferences with other substances. For a more detailed information 

on fluorometric methods, there is a complete and comprehensive report on chlorophyll 

measurements in sea water [TD11], with a complete list of scientific references, that has been 

produced by Turner Designs, a specialist manufacturer of fluorometers for sea water. 

4.1.5.5 Chlorophyll References 
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1019-1033. 
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277 
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[YM63] Yentsch, C.S., Menzel, D.W. (1963). A method for the determination of phytoplankton chlorophyll and 

phaeophytin by fluorescence. Deep-Sea Res. 10, 221–231. 

4.1.6 Heavy metals – Cd, Pb, Zn, Cu, Hg 

The release of different pollutants into environment has increased noticeably as a result of 

industrialization, and thereby, lowered the quality of the environment to alarming levels. Of such 

pollutants, heavy metals are the most important because of their non-biodegradability, with lead and 

cadmium ions being among the most toxic and hazardous. The presence of the trace elements such 

as copper, zinc, cadmium and lead in seawater may be a result of either human activity or due to the 

natural causes. 

Important sources of seawater pollution by heavy metals in the coastal and bay areas include 

industrial wastes and liquid effluents and paint degradation of naval ships. Such metals as copper, 

zinc and cadmium at the low concentrations are necessary for both plants and animals as 

micronutrients and are involved in the several biochemical processes. In contrast at slightly higher 

concentrations they become toxic for the aquatic biota, e.g. copper and zinc are used as toxicant in 

the antifouling coating. Therefore, simultaneous and real-time detection of the content and 

bioavailability of multiple heavy metals in the coastal areas and industrial effluents is required. 
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Two types of water quality criteria are employed for the evaluation of the element toxicity to the 

biota namely acute and chronic water criteria [EPA03]. Chronic values are usually defined as the 

geometric mean of the highest concentration of a toxic substance at which no adverse effect is 

observed and the lowest concentration of the toxic substance that causes an adverse effect. The 

significance of the observed effects is determined by statistical tests comparing responses of 

organisms exposed to the low-level (control) concentrations of the toxic substance against responses 

of organisms exposed to elevated concentrations. Acute criterion is defined as concentration 

associated with 50% mortality for a fixed exposure. Data from several species are necessary for the 

definition of the both criteria. 

Though water criteria are usually presented as total concentrations of an element in question, it has 

been established that free concentrations or activities of heavy metals and not their total 

concentrations primarily determine their biological availability and consequently toxicity [Sun83, 

Cam95]. Such metals as copper, zinc, lead and cadmium possess high affinity to the inorganic and 

organic ligands and sorptive surfaces abundant in the seawater. Due to this property activity of these 

metal ions in natural waters is several orders of magnitudes lower than their total concentrations 

and controlled by the ‘‘metal buffering capacity’’ of the system [BAF90]. Therefore, activity of the 

metal cations in the seawater is an indispensable parameter for the evaluation of their toxicity. 

Currently toxicity of a particular metal is estimated using several parameters such as total metal 

concentration, pH, total organic carbon, etc.  

Usually, the presence of trace amounts of heavy metals in environmental samples is determined by 

spectrophotometric techniques [RHR84, RBC86]. However, the direct analysis of some complex 

samples like seawater presents some difficulties due to the high salt content, causing matrix 

interference and insufficient precision. Therefore, in such cases, a typical dilution of the sample may 

be necessary before the analysis, which in turns can aggravate the problem and leads to poor results. 

4.1.6.1 Commercial portable heavy metal analysers  

Water pollution is a worldwide problem affecting developing and developed countries alike. Heavy 

metal contaminants are one prevalent type of water pollutant. They are persistent in the 

environment once discharged and removal from source waters is necessary to ensure a clean 

drinking water supply. The problem of heavy metal pollution arises from several sources. Heavy 

metals such as uranium can naturally exist in ground water. Lead can be present as a result of lead 

solder in copper piping. Mercury and cadmium can be a result of power plant emissions. Additionally, 

a variety of industrial processes can produce problematic heavy metal concentrations in discharged 

water from factories that are harmful to humans and can contaminate agricultural land.  

Limits on heavy metals in waste water and drinking water are often stated in parts per billion (ppb) 

and are heading in only one direction: down. Current techniques for detection of heavy metals in the 

low ppb range, such as inductively coupled plasma – mass spectrometry (ICP-MS), are expensive, 

requiring a six figure investment. These instruments are operated by a trained scientist and remain 

stationary once installed. Extensive sample preparation may be required and a single mislabelled 

sample can result in extensive downtime. These workhorse instruments excel at metals analysis, 

however a method simpler in implementation is advantageous. 

A portable alternative would allow for on-site analysis in real time without 

expensive sample transportation and preparation. Contaminants could be 

monitored on a regular basis and high contaminant concentrations can be 

detected before harm is done. Such metals test kits are currently available. 

The most of them are based on voltammetry technology but there are too 

analysers based on colorimetric principles. 

Addition of multiple reagents may be necessary, the test procedure for 

each metal is different, and the detection limits are usually not single ppb 

level. The USEPA’s (US Environmental Protection Agency) Maximum 

Contaminant Limits for Lead and Mercury (inorganic) are currently 15 ppb 

Figure 4.1.43.  

PDV6000 [MOD14] 
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and 2 ppb, respectively. Many colorimetric test kits fail to test below these levels. 

PDV 6000 plus Portable Heavy Metal Analyser 

The PDV6000 plus is an easy to use portable instrument designed to identify and measure the 

concentration of heavy metal ions in a wide range of sample types, both in the laboratory and out on 

site. Typical quantification limits are 5 parts per billion in the sample solution. The PDV6000 plus 

comprises a small analytical cell assembly and controller used together to provide a very convenient 

and portable tool for field screening for most heavy metals. The controller can be programmed with 

up to 10 analytical methods to detect 10 different metals. The results of the analysis are displayed on 

the controller screen. The PDV6000 plus is capable of better than 10% precision and accuracy used as 

a standalone instrument. When used in conjunction with VAS, a Windows software application 

provided with the kit, the PDV6000 plus is capable of highly accurate and reproducible metal ion 

analysis in the laboratory, with precision and accuracy better than 5%. The principle of analysis used 

by the PDV6000 plus is Anodic Stripping Voltammetry (ASV). 

Table 4. PDV6000 Specifications 

Analyser specifications Include as Standard Chemical specifications 

Glassy carbon or gold working 

electrode 
Waterproof carry case 

Detection Limit with VAS 5 

ppb 

Silver/silver chloride reference 

electrode 
Rechargeable NiMH battery pack 

Detection Limit without VAS 

10ppb 

Platinum counter electrode Battery charger Resolution 1 ppb 

10 Programmable working 

electrode analysis menus 

Reference electrode plating 

accessory 

Precision +/- 5% at 100 ppb 

using VAS 

5 Programmable conditioning 

menus 
110/240 V power supply 

Standard Applications include: 

As (III), total As, Cd, Pb, Cu, Zn, 

Hg, Cr and Ni 

RS232 interface Cell stand  

On screen instructions Resource CD containing  

application notes, manuals in PDF 

format and step by step  guides 

 

DC motor and stirrer 15 Disposable analysis cups  

9V power supply via battery or 

main supply 
VAS software 

 

Splash proof Manuals  

 

It is realistic to expect the PDV6000 plus to obtain data in the field that is within 20% of the actual 

value. For this reason when used on site it is best to use the PDV6000 plus to classify samples as 

“above a threshold concentration” or “below a threshold concentration”. For example, using Pb, with 

a limit of 20 ppb in drinking water. The PDV6000 plus should be calibrated with a 20 ppb Pb standard 

and any result that is above 20 ppb less 20%, i.e. 16 ppb, should be considered as potentially being 

above the 20 ppb limit.  

 

Portable Water Quality (Heavy Metals HM-3000P) Analyser  [SKY14] 

Portable Water Quality (Heavy Metals) Analyser is based on the authority-

approved standard method, anodic stripping voltammetry (ASV), which 

features low cost and high precision and are replacing traditional atomic 

absorption method in Europe. It is widely applied on on-site 

environment detection, tap water detection, waste water testing of 

electroplate and surface processing industries, waste water monitoring 

of food, medicines, and hospitals. American EPA and other authorities have listed this method, such 

as EPA7063 and 7472. This instrument not only can be used for on-site application in urgent cases 

Figure 4.1.44.  

Heavy Metals HM-3000P 
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(for instance, on-site testing of contaminated water), but also can be applied for precise heavy 

metals detection in labs. 

Advantages 

• Rapid testing: 30secs to 5mins testing time 

• Wide testing range: typical measurement ions include copper, cadmium, lead, zinc, 

mercury, arsenic, chromium, nickel, manganese, and thallium, etc 

• High precision: analytical precision accounts to 1ppb and detection limit is less than 

0.5ppb 

• Electrode advantages: special make-up ensures better stability and it is easy to change 

and maintain 

• Intelligent: intelligent operation program guide users finishing operation easily 

• Low cost: cheap reagents and little amount of use 

• Safe operation: non-toxic reagents ensure safety of users. 

Table 5. HM3000P Technological Specifications 

Sample name 
Minimum detection limit 

(ppb) 

Maximum detection 

limit (ppb) 

Cu 0.1 60.0 

Cd 0.1 60.0 

Pb 0.1 30.0 

Zn 0.5 60.0 

Hg 0.1 25.0 

As 0.1 30.0 

Cr 0.5 20.0 

Ni 0.5 30.0 

Mn 0.1 10.0 

Tl 0.1 30.0 

Fe 0.1 30.0 

Co 0.1 30.0 

Application Fields 

• On-site application in urgent cases (For instance, on-site testing of water pollution) 

• Precise heavy metals detection in labs 

• Water quality monitoring to surface water, underground water, seawater, industrial 

wastewater, drinking water and other waters 

• Heavy metals testing in soil, food, and other waste solids (analytes should be extracted from 

solids before testing) 

Nice Technology ASV3000 Portable heavy metal 

detector [NIC13] 

Instrument suitable for the detection of heavy metal in 

water and soil based on anodic stripping voltammetry. 

 

Product features 

1. Large-screen color display, guide-type operation. 

2. Can detect zinc, cadmium, lead, copper, mercury, 

arsenic, chromium, nickel, manganese, thallium, iron 

and other heavy metal ions. 

3. Detection accuracy is better than PPB class, the fastest 

detection time is less than 30 seconds 

Figure 4.1.45. ASV3000 

Portable Heavy Metal detector 
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4. The unique portable workbench design, easy for field testing. 

5. USB communication interface, supporting professional analysis software for online testing. 

6. Nanometer process Electrode, stable performance and easy maintenance. 

7. Professional analysis, design and package. It is suitable for a variety of water conditions. 

8. Waterproof and durable. 

Applications 

For the determination of drinking water, surface water, beverage, environmental water, sea water, 

industrial waste and other heavy metals in the water column; this method is widely used to check the 

soil, food, solid matter content of heavy metals. 

Metalyser HM1000 [TRA14] 

The Metalyser HM1000 has been designed specifically to allow 

easier, cost-effective monitoring of heavy metals most commonly 

associated with health and environmental problems. Developed 

and manufactured solely in the UK, the Metalyser offers a 

breakthrough in terms of a simple-to-use field instrument that 

offers high levels of accuracy at an attractive price. Analysis of 

heavy metals in water has traditionally been difficult in the field. 

By combining the proven method of Anodic Stripping 

Voltammetry (ASV) along with an innovative sonde design and a 

simple buffer delivery system, Trace
2
o has developed an 

instrument that can finally deliver reproducible results on site. The 

design of the Metalyser allows for the addition of future 

parameters, without the need to upgrade the instrument. 10 of 

the more common parameters are currently available for 

analysis using the HM1000. (Patent No. GB2481541). 

Specifications 

• Analytical principle: Anodic and Cathodic stripping voltammetry  using disc working 

electrodes 

• Parameters measured: Arsenic (III), Total Arsenic, Cadmium, Chromium, Copper, Lead, 

Manganese, Mercury, Nickel and Zinc  

• Operating Temperature: -20°C to +70°C 

• Results obtained in 5 minutes  

• Internal memory: 1000 data sets with facility to enter sample number, time and date  

• Transfer via USB to PC  

• New application methods can be downloaded to the unit via USB 

• LCD full graphics backlit display: 128 x 128 pixels  

• Joystick cursor control 

• Menu driven software 

• Rechargeable battery providing in excess of 50 tests per charge  

• Alternative power supply via mains adaptor or vehicle cigarette lighter 

• Waterproof to IP67; CE Mark 

• Dimensions: 470mm (L) x 370mm (W) x 170mm (D) Net Weight: 9kg 

  

Figure 4.1.46. Metalyser HM1000 
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Table 6. Metalyser HM1000 Limits of detection (fresh water) 

Parameter Lower limit (ppb) Upper limit (ppb) 
WHO guideline value 

(ppb) 

As (III) 5 500 <10 

As (Total) 10 500 <10 

Cd 3 500 <3 

Cr (VI) 50 500 <50 

Cu 5 500 <2000 

Pb 5 500 <10 

Mn 5 200 <100 

Hg 5 500 <6 

Ni 10 100 <70 

Zn 5 500 <4000 

 
 

Metalyser Deluxe HM2000 [TRA14] 

Similar to the above analyser but voltammetric and photometric 

technologies (metalyser and metalometer) have been combined into a 

compact portable solution, enabling to provide the user with simple, cost-

effective testing of heavy metals. Now the dual instrumentation provides 

the ability to measure 12 metals from ppb to ppm concentrations: Al, As, B, 

Cd, Cr (VI), Cu, Fe, Hg, Mn, Ni, Pb, Zn  

 

Table 7. Metalyser HM2000 Limits of detection 

Parameter 

Metallometer 
Lower limit (ppb) Upper limit (ppb) 

Al 10 250 

B 100 2000 

Fe 20 3000 

Cr (VI) 20 2000 

Cu 50 5000 

Mn 100 18000 

Ni 100 10000 

 

Istran Ltd PCA (Portable Coulometric Analyser) [IST14] 

PCA uses the principle of flow-through electrochemistry, 

coulometry and in-electrode coulometric titrations. The 

measurement is automatic and is controlled by a microprocessor. 

Samples and sample preparation 

• Water samples (process-, tap-, surface-, underground- 

and waste water): Simple sample pretreatment, just mix 

the sample with the reagent solution and inject. 

• Beverages and fruit- and vegetable-juice for determination of ascorbic acid or iodine: Filter 

• Foods and food additives for determination of ascorbic acid or iodine: To solve or leach and 

filter 

Determined species 

• Heavy metals in waters (Ni, Cu, Cr(VI), Pb, As...) 

• Nitrates, phosphates, acids, bases, chlorides, ...in waters 

• Dissolved oxygen in waters 

Figure 4.1.48. Istran Ltd PCA 

Figure 4.1.47. Metalyser HM1000 
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• Ascorbic acid in beverages, food, food additives, fruit and vegetable 

• Iodide in enriched beverages, food and food additives and others 

• Determination limits below 1 mg/l. 

Analysis 

PCA is a portable instrument rechargeable battery operated. This enables simple and quick analyses 

in the field or in the laboratory. The sample is aspirated into the disposable syringe containing the 

reagent solution and on mixing the content is injected into the measuring cell. The calibration is 

carried out in a similar way. The result is then shown on the graphical display and stored in the 

memory. Up to 20 results can be stored and then they can be transferred to a PC. 

Advantages 

• Portable instrument for fast analyses in the field and the laboratory 

• Broad linear concentration range 

• Simple handling, sample-preparation and dosing 

• No problems with coloured solutions 

• Communication with PC enables download of software for determination of different species 

• Communication with PC enables simple data transfer 

• Advantageous price and low running costs 

IDRONAUT VIP Voltammetric InSitu Probe [IDR14] 

IDRONAUT submersible VIP allows reproducible and reliable in 

situ, continuous monitoring/profiling of trace elements in natural 

aquatic ecosystems can be performed.  The whole VIP system 

consists of several units : the submersible voltammetric probe 

based on a unique microsensor, a submersible OCEAN 

SEVEN316Plus multiparameter probe, a calibration deck unit, a 

surface deck unit and a management software. It allows 

simultaneous measurements of Cu(II), Pb(II), Cd(II) and Zn(II) 

with a sensitivity at the ppt level, as well as Mn(II) and Fe(II) with 

a sensitivity at the ppb level (extension to other elements and 

organic compounds are foreseen). It is usable in sea and 

freshwater down to 500 m. It is controlled either by an operator 

from the surface, or in autonomous mode, under pre-

programmed sequence.  The heart of the VIP is its sensor. It 

measures a signal intensity, produced by the chemical reaction 

at its surface, which is proportional to the concentration of the 

analytes. However, to perform automatic measurements over 

extended periods in complex media such as natural waters, most 

of the currently available sensors are not reliable nor sensitive 

enough for monitoring very low concentration of chemical compounds. 

 

 

 

In addition, fouling problem, due to the adsorption of 

organic and inorganic matters at the sensor surface, is 

an important limitation of direct voltammetric 

measurements in complex matrices. The VIP sensor is a 

unique microsensor which has been developed by CABE 

(University of Geneve-CH) and IMT (University of 

Neuchatel-CH to solve all the above problems. It is produced by thin film technology on chips and 

photolithographic technique. It consists of an array of 5 x 20 interconnected Iridium microdiscs, 

Figure 4.1.49. Idronaut VIP 

Figure 4.1.50. Idronaut VIP 
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having a diameter of 5 µm and a centre to centre spacing of 150 µm, coated by Hg layers and 

covered by an hydrophilic protective gel membrane. Measurements with this gel

microsensor are performed in two successive steps: a) equilibration of the gel with t

(typically 5 min for a membrane thickness of 300 µm) and b) voltammetric analysis inside the gel. 

 

ANDalyze, Inc AND1000 fluorometer 

ANDalyze, Inc. has developed heavy metals tests based on catalytic DNA. Using catalytic DNA 

technology it is possible to reach single digit ppb level limits of detection and up to million

specificity over other metals. Colorimetric methods, though well developed, cannot easily match 

these capabilities. The selectivity and specificity comes from t

through a process known as in vitro 

Catalytic activity of the DNA strands or rapid binding to metal 

ions leads to very quick testing times 

Lead. To allow for portable heavy metals analysis, the selectivity 

of DNA has been paired with fluorescence detection 

sensitive technique – in the form of a custom designed portable 

fluorometer . The AND1000 fluorometer 

specifically with ANDalyze sensors. 

Combining catalytic DNA chemistry with fluorescence

detection results in detection limits well below the USEPA and 

other international regulatory limits 

water. Current metals that are detectable include Copper, Lead, 

Mercury, Zinc, Uranium with several other metals in development.

The combination of catalytic DNA and fluorescence

detection was developed and patented at the Uni

DNAs (also called DNAzymes or DNA enzymes) are DNA sequences that catalyze the cleavage of 

another DNA strand (the substrate) in the presence of a specific cofactor. Active DNA sequences are 

incorporated into a porous material using a proprietary method and then placed in a plastic housing 

that allows for liquid flow from a syringe. During testing, the housing is placed over a cuvette and a 

buffered sample is passed through the housing using a disposable 1 

The sample flows through the housing and passes through the porous material containing the DNA. 

The amount of DNA in each sensor housing is so small that it cannot be seen with the naked eye, 

though it is easily detected using fluorescence. As 

almost instantaneous process, the DNA begins reacting with metal ions in solution. Each metal ion 

leads to a cleavage event and a release of the substrate strand from the enzyme strand. This release 

also separates the fluorophore from the quencher, leading to a fluorescence signal that is directly 

proportional to the metal ion concentration.

instrument, though it may be connected to a computer via USB if de

AND1000 Fluorometer is used in conjunction with metal

fluorometer may be utilized independently as a research grade instrument. Fluorescence detection 

was chosen by ANDalyze due to the 

enhanced further by using a photomultiplier tube (PMT) as a detector, which is un

portable fluorometers. Excitation is accomplished using a light emitting diode (LED) and an excita

filter. An emission filter at located next to the PMT complet

is recharged via USB or a wall adapter, is water resistant with an IP54 enclosure rating, and is CE 

marked. 

 

Advantages of Catalytic DNA Technology

• Platform technology – analysis of metals as well as other analytes is possible using the same 

system with different cartridges and buffers for each target
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iameter of 5 µm and a centre to centre spacing of 150 µm, coated by Hg layers and 

covered by an hydrophilic protective gel membrane. Measurements with this gel

microsensor are performed in two successive steps: a) equilibration of the gel with t

(typically 5 min for a membrane thickness of 300 µm) and b) voltammetric analysis inside the gel. 

fluorometer [AND14] 

ANDalyze, Inc. has developed heavy metals tests based on catalytic DNA. Using catalytic DNA 

ology it is possible to reach single digit ppb level limits of detection and up to million

specificity over other metals. Colorimetric methods, though well developed, cannot easily match 

these capabilities. The selectivity and specificity comes from the ability of DNA strands, obtained 

in vitro selection, to bind one metal preferentially over another.

Catalytic activity of the DNA strands or rapid binding to metal 

ions leads to very quick testing times – e.g. under one minute for 

Lead. To allow for portable heavy metals analysis, the selectivity 

of DNA has been paired with fluorescence detection – a very 

in the form of a custom designed portable 

fluorometer  is designed to work 

specifically with ANDalyze sensors.  

Combining catalytic DNA chemistry with fluorescence-based 

detection results in detection limits well below the USEPA and 

other international regulatory limits for dissolved metals in 

water. Current metals that are detectable include Copper, Lead, 

Mercury, Zinc, Uranium with several other metals in development. 

The combination of catalytic DNA and fluorescence-based 

patented at the University of Illinois at Urbana-Champaign. Catalytic 

DNAzymes or DNA enzymes) are DNA sequences that catalyze the cleavage of 

another DNA strand (the substrate) in the presence of a specific cofactor. Active DNA sequences are 

nto a porous material using a proprietary method and then placed in a plastic housing 

that allows for liquid flow from a syringe. During testing, the housing is placed over a cuvette and a 

buffered sample is passed through the housing using a disposable 1 mL syringe. 

The sample flows through the housing and passes through the porous material containing the DNA. 

The amount of DNA in each sensor housing is so small that it cannot be seen with the naked eye, 

though it is easily detected using fluorescence. As soon as the DNA mixes with the liquid sample, an 

almost instantaneous process, the DNA begins reacting with metal ions in solution. Each metal ion 

leads to a cleavage event and a release of the substrate strand from the enzyme strand. This release 

arates the fluorophore from the quencher, leading to a fluorescence signal that is directly 

proportional to the metal ion concentration. The AND1000 Fluorometer is a portable self

instrument, though it may be connected to a computer via USB if desired to d

meter is used in conjunction with metal-specific kits from ANDalyze, and yet

meter may be utilized independently as a research grade instrument. Fluorescence detection 

was chosen by ANDalyze due to the inherent high sensitivity of the technique and the sensitivity was 

enhanced further by using a photomultiplier tube (PMT) as a detector, which is un

meters. Excitation is accomplished using a light emitting diode (LED) and an excita

filter. An emission filter at located next to the PMT completes the setup. The AND1000 Fluoro

is recharged via USB or a wall adapter, is water resistant with an IP54 enclosure rating, and is CE 

Advantages of Catalytic DNA Technology 

analysis of metals as well as other analytes is possible using the same 

system with different cartridges and buffers for each target 

Figure 4.1.51. AND1000 

Fluorometer
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iameter of 5 µm and a centre to centre spacing of 150 µm, coated by Hg layers and 

covered by an hydrophilic protective gel membrane. Measurements with this gel-integrated 

microsensor are performed in two successive steps: a) equilibration of the gel with the test solution 

(typically 5 min for a membrane thickness of 300 µm) and b) voltammetric analysis inside the gel.  

ANDalyze, Inc. has developed heavy metals tests based on catalytic DNA. Using catalytic DNA 

ology it is possible to reach single digit ppb level limits of detection and up to million-fold 

specificity over other metals. Colorimetric methods, though well developed, cannot easily match 

he ability of DNA strands, obtained 

selection, to bind one metal preferentially over another. 

Champaign. Catalytic 

DNAzymes or DNA enzymes) are DNA sequences that catalyze the cleavage of 

another DNA strand (the substrate) in the presence of a specific cofactor. Active DNA sequences are 

nto a porous material using a proprietary method and then placed in a plastic housing 

that allows for liquid flow from a syringe. During testing, the housing is placed over a cuvette and a 

 

The sample flows through the housing and passes through the porous material containing the DNA. 

The amount of DNA in each sensor housing is so small that it cannot be seen with the naked eye, 

soon as the DNA mixes with the liquid sample, an 

almost instantaneous process, the DNA begins reacting with metal ions in solution. Each metal ion 

leads to a cleavage event and a release of the substrate strand from the enzyme strand. This release 

arates the fluorophore from the quencher, leading to a fluorescence signal that is directly 

meter is a portable self-contained 

sired to download data. The 

specific kits from ANDalyze, and yet the 

meter may be utilized independently as a research grade instrument. Fluorescence detection 

inherent high sensitivity of the technique and the sensitivity was 

enhanced further by using a photomultiplier tube (PMT) as a detector, which is uncommon in 

meters. Excitation is accomplished using a light emitting diode (LED) and an excitation 

es the setup. The AND1000 Fluorometer 

is recharged via USB or a wall adapter, is water resistant with an IP54 enclosure rating, and is CE 

analysis of metals as well as other analytes is possible using the same 

Figure 4.1.51. AND1000  

meter 
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• Low detection limits – all sensors currently for sale test at or below the USEPA limits for 

drinking water 

• High selectivity - many classic metal analysis reagents react with multiple metals, whereas 

catalytic DNA has much higher selectivity 

• Highly portable 

• Reagents are not hazardous 

• No contamination issues as kits are disposable 

• Low initial investment compared to other solutions 

Table 8. ANDalyze Limits of detection 

ANDalyze Limit of Quantification (LOQ) versus USEPA Maximum Contaminant Level (MCL) 

Metal USEPA MCL
1 

ANDalyze LOQ ANDalyze Detection range 

Lead 15 ppb 2 ppb 2-100 ppb 

Copper 1300 ppb 
40 ppb (low range) 

600 ppb (high range) 

40-200 ppb (low range) 

600-3000 ppb (high range 

Uranium 30 ppb 2 ppb 2-60 ppb 

Mercury 2 ppb 2 ppb 2-50 ppb 
1 Drinking water contaminants: http://water.epa.gov/drink/contaminants/index.cfm 

Applications 

ANDalyze test kits may be utilized in a wide variety of matrices from drinking water to industrial 

wastewaters and new applications are constantly emerging. 

ANDalyze test kits were originally developed for testing drinking water and do not require sample 

preparation. Drinking water may include water from a utility or municipality, bottled water, and 

treated spring and well water. In short, any water intended for human consumption. 

The utility of ANDalyze test kits has been expanded to include waters such as: 

• Environmental fresh waters (rivers, lakes, streams, and ground water) 

• Seawater 

• Industrial process wastewater 

• Municipal final effluent 

 

4.1.6.2 Heavy Metal References 

[AND14] AND1000 fluorometer  

http://andalyze.com/products/fluorometer / Accessed 13 Aug. 2014 

[BAF90] Buffle J, Altman R S, Filella M, Tessier A (1990) Geochim Cosmochim Acta 54: 1535. 

[CAM95] Campbell P G C (1995) Metal speciation and bioavailability in aquatic systems. In: Tessier A, Turner D 

R (eds). John Wiley & Sons, New York, p 45 

[EPA03]EPA (2003) Draft update of ambient water quality criteria for copper (CAS Registry Number 7440-50-8). 

U.S. Environmental protection agency office of water office of science and technology, Washington, DC 

[IDR14] Voltammetric In-Situ Profiling System 

http://www.idronaut.it/products-groundwater-voltammetric-probes Accessed 13 Aug. 2014 

[IST14] Portable Coulometric Analyser 

http://www.istran.sk/images/stories/pca_en.pdf Accessed 13 Aug. 2014 

[MOD14] The Portable Metal Monitor - PDV 6000 

http://www.modernwater.com/monitoring/trace-metals/portable-and-laboratory-pdv Accessed 13 Aug. 2014 

[NIC13] Portable heavy metal detector 

http://www.nicestc.com/index.php?_m=mod_product&_a=view&p_id=342 Accessed 13 August 2014 

[RBC86] M.M. Reddy, M.A. Benefiel, H.C. Claassen, Mikrochim. Acta 88 (1986) 159. 

[RHR84] R. Rubio, J. Huguet, G. Rauret, Water Res. 18 (1984) 423.  

[SKY14] 6.1.2. Heavy Metals HM-3000P Portable Water Quality Analyser 

http://www.skyray-instrument.com/en/product/productshow.aspx?bookid=0a1c12a6-b8f4-473c-b200-

97117cec76a0 Accessed 13 August 2014 



COMMON SENSE Deliverable number 2.1  

  

 

 
The COMMON SENSE project has received funding from the European Union’s Seventh Framework 

Program (Ocean 2013-2) under the grant agreement no 614155. 
 

42 

[Sun83] Sunda WG, Ferguson R L (1983) Trace metals in seawater. In: Wong C S, Boyle E A, Bruland KW, Burton 

J D, Goldberg E D (eds). Plenum Press, New York, p 871 

[TRA14] Trace2O Heavy Metals Analysis Products 

http://www.trace2o.com/products/ Accessed 13 August 2014 

 

4.1.7 MicroPlastic 

4.1.7.1 Introduction 

Due to the massive use of plastic materials from the second half of the twentieth century, a 

significant portion of the waste generated by the population is formed by these materials. Plastic 

debris dumped at sea comprises a variety of sizes from a few microns to several meters. 

Microplastics, usually ranged at >5mm, are plastic particles originated from industrial precursors 

(pellets) or by fragments of larger plastic parts and fibers caused by erosion. Although long-term 

effects of microplastics are still unknown, their observation is crucial because of its extensive 

presence in seas and oceans and its ingestion by marine biota. 

For these reasons, in recent years efforts to monitor these microplastic debris have been intensified. 

In order to standardize obtained data, the EU Marine Strategy Framework Directive includes 

protocols for sampling and classification of microplastics. Following, a summary of the main current 

methods for sampling and characterization of microplastics and their main limitations is presented. 

4.1.7.2 Sampling methods 

Sampling methods for microplastics are strongly dependent of monitoring objectives (size range, 

spatial distribution or temporal variability) and the location of targeted microplastics (sea surface, 

water column or sediment). Within the Common Sense project, focus will be on seawater sampling 

for determination of microplastics concentration.  

Different methods for seawater sampling have been reported in bibliography depending on required 

sample depth. 

Sea Surface Trawls 

 For sea surface samples (up to 25cm depth) the most 

common method is dragging with different types of 

Surface trawls. The most commonly used nets for 

sampling the water surface are: Neuston nets, 

horizontal Bongo nets and Manta trawls [JRC11]. They 

are typically nets with medium-sized apertures which 

are designed to be trawled at (generally) low speeds 

behind the ships. Although different mesh sizes are 

reported (ranging from 80 µm to 2 mm), most of the 

studies have been done with mesh sizes in the range of 

330 µm, to optimize trawling speed, and because those 

dimensions are also used to sample for plankton. The 

nets are usually combined with a flow-meter in order to 

assess accurately the volume of water filtered during the sampling process. Once the sampling is 

done, the nets are lifted and their contents are taken to the laboratory for examination. The main 

advantage of this method is the capability of sampling large water volumes retaining only volume-

reduced samples. 

Rotating Drum Samples: 

In some cases where samples are restricted to surface micro-layers (up to 1000µm), a rotating drum 

sampler is used. This sampler consists of a partly immersed rotating glass cylinder with a clean 

hydrophilic surface, using capillary force to sample water from the surface micro-layer. Finally, for 

Figure 4.1.52. Net for microplastics 

sampling in seawater surface. The 

net is towed by a vessel for collecting 

solid samples. Courtesy of NOAA 

Okeanos Explorer Program 
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seawater column sampling (up to 200m. depth), circular zooplankton nets with opening diameter 

between 0.8m to 1.6m and lengths ranging from 1m to 8m are commonly used [LVK11]

Continuous plankton recorder (CPR)

This instrument is used to sample plankton and is designed to be towed at a depth of approximately 

10 m from merchant ships performing their normal activities. It works by filtering plankton and small 

pieces of debris from the water over long distances. The water enters 

entrance located on the front of the device, and the plankton and other material are collected on a 

moving band of silk, with a mesh size of 270 µm. The silk bands are then viewed under the 

microscope and plastic pieces identified an

Bongo/Plankton nets 

Bongo nets are paired mesh nets attached to a metal frame which can 

be used to take samples throughout the water column, either under 

continuous operation while being towed, thereby filtering water at all 

depths, or, if provided with a remotely closable mouth, taking samples 

at only selected depths. As in the other two cases, once the sampling 

finished, the nets are taken to the labs for inspection.

Although those methods allow volume

holds sampled water. This could be an advantage in those studies 

focusing just on microplastics but, in wider focus studies where cross

relations between different parameters are required, is a clear 

restriction. Furthermore, there is

other types of materials in case the nets’ mesh is not properly chosen, 

requiring sample preparation to avoid wrong results (under/over 

estimation). 

4.1.7.3 Sample preparation and characterization.

The methods described above allow particle selection according to their size by selecting different 

nets mesh. However, this method does not differentiate between different types of particles so it is 

necessary to apply additional steps to separate microplastics from other type

biota, etc.). 

Again, the chosen method will depend on sample characteristics. For samples mixed with different 

types of sediment, the most widely used method is to separate the particles by density. For this, 

sampled particles are immersed in a highly saturated solution (with NaCl or SPT). While sediments 

will settle to the bottom, the lower density of microplastics will cause them to remain floating near 
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seawater column sampling (up to 200m. depth), circular zooplankton nets with opening diameter 

between 0.8m to 1.6m and lengths ranging from 1m to 8m are commonly used [LVK11]

Continuous plankton recorder (CPR) 

is used to sample plankton and is designed to be towed at a depth of approximately 

10 m from merchant ships performing their normal activities. It works by filtering plankton and small 

pieces of debris from the water over long distances. The water enters the device by a 127mm

entrance located on the front of the device, and the plankton and other material are collected on a 

moving band of silk, with a mesh size of 270 µm. The silk bands are then viewed under the 

microscope and plastic pieces identified and separated. 

Bongo nets are paired mesh nets attached to a metal frame which can 

be used to take samples throughout the water column, either under 

continuous operation while being towed, thereby filtering water at all 

provided with a remotely closable mouth, taking samples 

at only selected depths. As in the other two cases, once the sampling 

finished, the nets are taken to the labs for inspection. 

Although those methods allow volume-reduced samples, none of them 

holds sampled water. This could be an advantage in those studies 

focusing just on microplastics but, in wider focus studies where cross-

relations between different parameters are required, is a clear 

restriction. Furthermore, there is the risk of losing particles or collecting 

other types of materials in case the nets’ mesh is not properly chosen, 

requiring sample preparation to avoid wrong results (under/over 

Sample preparation and characterization. 

above allow particle selection according to their size by selecting different 

nets mesh. However, this method does not differentiate between different types of particles so it is 

necessary to apply additional steps to separate microplastics from other type

Again, the chosen method will depend on sample characteristics. For samples mixed with different 

types of sediment, the most widely used method is to separate the particles by density. For this, 

ersed in a highly saturated solution (with NaCl or SPT). While sediments 

will settle to the bottom, the lower density of microplastics will cause them to remain floating near 
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seawater column sampling (up to 200m. depth), circular zooplankton nets with opening diameter 

between 0.8m to 1.6m and lengths ranging from 1m to 8m are commonly used [LVK11]. 

is used to sample plankton and is designed to be towed at a depth of approximately 

10 m from merchant ships performing their normal activities. It works by filtering plankton and small 

the device by a 127mm2 

entrance located on the front of the device, and the plankton and other material are collected on a 

moving band of silk, with a mesh size of 270 µm. The silk bands are then viewed under the 

 

above allow particle selection according to their size by selecting different 

nets mesh. However, this method does not differentiate between different types of particles so it is 

necessary to apply additional steps to separate microplastics from other types of particles (sand, 

Again, the chosen method will depend on sample characteristics. For samples mixed with different 

types of sediment, the most widely used method is to separate the particles by density. For this, 

ersed in a highly saturated solution (with NaCl or SPT). While sediments 

will settle to the bottom, the lower density of microplastics will cause them to remain floating near 
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the surface, allowing separation by filtration or sieving. If samples are not mixed with sediments, it is 

possible to directly apply filtering and sieving methods to separate microplastics from other types of 

particles. Next step consists in visual sorting to remove organic marine debris or other elements. This 

step can be performed by naked eye or with the aid of a microscope. For this purpose, it is necessary 

to standardize the identification parameters of microplastics in terms of size, morphology, color, etc.  

Another possibility for sample characterization is to apply infrared spectroscopy techniques. These 

techniques identify microplastic comparing the IR spectrum of an unknown sample with the known 

spectrum of certain plastics. The advantages of these methods are that they avoid human error 

during visual sorting, and allow identifying and quantifying the different types of plastics [HGT12]. 

The different steps described for samples’ preparation and characterization require the intervention 

of qualified specialist and transport of the samples to a laboratory. This, not only makes microplastics 

monitoring in the marine environment difficult and costly, it also prevents continuous and prolonged 

monitoring, hindering the obtaining of data about microplastics drift. 

4.1.7.4 Analytical methods. 

As mentioned above, there are different analytical methods for the identification and quantification 

of microplastics. Most of them are based on two spectroscopy techniques: Raman spectroscopy and 

Infrared (IR) spectroscopy.  

Raman spectroscopy is based on inelastic scattering of monochromatic light. This means that the 

frequency of photons in monochromatic light changes upon interaction with a sample. When a 

sample is irradiated with a monochromatic light, photons are absorbed and reemitted by the sample 

with a different frequency than original monochromatic light. This is called the Raman Effect and can 

be used to study gas, liquid and solid samples. Typical Raman spectroscopy equipment is formed by 

the following elements: 

1. Excitation source (usually a 

Laser). 

2. Sample illumination system and 

light collection optics. 

3. Wavelength selector (Filter or 

Spectrophotometer). 

4. Detector (Photodiode array, CCD 

or PMT). 

Main advantages of this technique are 

simple sample preparation and 

compatibility with wet samples and 

normal ambient. However, Raman 

spectrometers are designed for in lab operation and 

require skilled people to perform measurements. 

[Las01] 

Infrared spectroscopy is based on molecular absorption of specific frequencies (resonant 

frequencies) that are characteristic of their structure (molecular potential energy surfaces, masses of 

the atoms and associated vibronic coupling). In IR spectroscopy analysis an infrared light beam is 

passed through a sample. When the IR frequency matches the sample resonant frequency, 

absorption occurs. By recording the sample’s IR spectrum, it is possible to detect the resonant 

frequencies of the different elements forming the sample. Analyzing peaks at different frequencies 

(Fourier transform) it is possible to determine the composition of the sample [UC14]. 

The main advantage of IR spectroscopy is a relatively simple operation and the possibility of 

performing FT analysis using microprocessors. This characteristic makes this technique especially 

suitable to be used on mobile/portable equipment. On the other hand, its’ application is restricted to 

samples with covalent bonds.  
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4.1.7.5 Main existing limitations. 

According to existing bibliography about microplastics monitoring in marine environment, the 

following main limitations in state of the art methods and technologies have been identified: 

1. There is no standardized method for microplastics sampling and identification. Existing 

methods require human visualization for the sorting, and it is often quite difficult, in very small 

particles to distinguish plastic from other types of materials, like paints, wood, or organic 

fibers. This is especially difficult when no FTIR is used for the identification of the sorted 

material. This is expected to be partially addressed in Marine Strategy Framework Directive. 

2. Most common sampling methods just discriminate particles by size, which cause a risk of 

“under estimation” in case that mesh size is not properly chosen. This is of particular concern 

for two reasons. Firstly, because, whenever an accurate sampling of small particles has been 

carried out, it has been observed that they are in fact much more abundant than larger 

particles. Norén & Naustall [Nor11], for example, found 100.000 times more particles in the 

same location when using a mesh size of 80 µm than when using a mesh size of 450 µm, and 

the concentrations where even higher for smaller mesh sizes. The other major concern 

concern with the particle size issue is that it would seem that, with microplastics, the smaller 

the particle size (and thus the surface to volume ratio), the higher the potential for toxicity 

[WGT13]. 

3. Sample preparation must be done in a laboratory by skilled personnel, causing possible loss of 

information due to sample transport and manipulation. Additionally, the lab processing is very 

time consuming, and the final identification of the material with FT-IR requires expensive 

equipment and a highly trained operator. This prevents in situ measurements of microplastics 

concentration.  

4. Current sampling techniques are not well suited to evaluate the microplastic distribution along 

the water column, as shown by the conspicuous lack of data gathered to date on the subject. 

This is, however, a very important issue, as available time series do not show convincing trends 

in microplastic concentrations, implying that we are missing important issues, such as particle 

sinking due to particle fouling {GES12]. Modelling of microplastics behavior with ageing and 

the corresponding sinking rates is essential to understanding their impact on the marine fauna 

and the transport of alien species throughout the globe [LVK11] 

From available sources of information, it is possible to conclude that there is a real need for 

monitoring the concentration of microplastics in the marine environment in order to determine their 

movement patterns (drifts) and its influence on marine biota. However, there is a lack of methods 

and technologies specifically designed for in situ continuous monitoring of microplastics.  

Current image acquisition hardware should be perfectly adequate to the task, so the main challenges 

to be solved are: 

1. Adequately presenting the sample so that the particles are clearly visible to the imaging 

system and it can easily discriminate between them and the background, even in cases where 

the plastic particles are clear or translucent. This would also require developing adequate 

optics and illumination systems. 

2. Developing a software and corresponding data library to allow the system to discriminate 

between plastic particles and other type of suspended matter, such as plankton, paint chips, 

wood bits and organic fibers. Different strategies can be implemented to do this, form 

morphology criteria such as color, transparency and shape discrimination, to analyzing the 

reflectance/absorption of the particles at different illumination wavelengths. 

Such an automatic imaging system would have clear advantages over current methods: it would be 

much cheaper than all other alternatives and could conceivably be used without requiring highly 

qualified personnel. With an adequate compromise between speed and resolution it could allow for 

the detection of much smaller particles than those that are currently being counted. Obviously it 
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would not be as reliable for identifying types of plastic as FTIR lab measurements, but it would be 

very useful to perform cheap, exploratory surveys at sea, rapid identification of hotspots and 

accumulation zones, which would then be used to plan future monitoring programs. A sufficiently 

advanced device, coupled to a simple sampling system, could in future be installed on commercial 

ships and operated during their normal activities. 

Those points will be addressed in Common Sense project to improve data collection about 

microplastics by developing a new cost-affordable, small size microplastics sensor based on 

spectroscopy techniques requiring minimal sample preparation to allow its integration in different 

marine platforms (vessels, buoys) to enable in situ continuous monitoring of microplastics 

concentration at seawater surface.  

4.1.7.6 Microplastics References 

[LVK11] H.A. Leslie, M.D. van der Meulen, F.M. Kleissen, A.D. Vethaak; “Microplastic Litter in the Dutch Marine 

Environment”. http://hdl.handle.net/1871/49206 Accessed  on 17 August 2014 

[GES12] GESAMP, Working Group. “Highlights of a global assessement report on the sources, fate & effects of 

micro-plastics in the marine environment”, 2012. 
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[WTG13] S.L. Wright, R.C Thompson, T.S. Galloway. “The physical impacts of microplastics on marine 

organisms: A review”, Environmental Pollution (2013): 483-492 

  



COMMON SENSE Deliverable number 2.1  

  

 

 
The COMMON SENSE project has received funding from the European Union’s Seventh Framework 

Program (Ocean 2013-2) under the grant agreement no 614155. 
 

47 

4.1.8 Noise monitoring 

The EU has requested Member States to reach Good Environmental Status by 2020. Noise has been 

identified as a pressure and a Descriptor (D11) has been defined for Underwater Noise. The 

descriptor requires monitoring of underwater noise. The MSFD requires noise monitoring up to 

10kHz with specific data analysis on the 1/3rd octave bands centred respectively at 63Hz and 125Hz.   

We find that systems that are on the market are designed specifically to meet particular needs, such 

as: a) detection of marine mammals for noise mitigation purposes, and, b) behavioural studies on 

marine mammals. 

These are all bespoke systems with proprietary software and their ruggedness and durability has 

been tested in a limited number of field deployments. This does not guarantee the long term survival 

of the systems, and their success for multiple deployments. 

The one thing they seem to indicate is that some degree of onboard pre-processing of acoustic data 

is desirable in order to limit storage and transmission needs. Also, the advantage of pre-processing is 

to ensure that demands, both for data transmission but also power consumption are kept to a 

minimum. 

4.1.8.1 Commercially available systems 

IC-Listen [OCE14] 

The IC listen project is fairly innovative: four different products are offered to cover very low 

(nominally 1Hz) to high (200kHz) frequencies. All hydrophones come in an all-in-one packaging with 

batteries, storage and processing hardware. They are a portable solution that fits the traditionally 

distinct pieces namely hydrophone-preamplifier-filters-AD/DA converter-data storage into one 

package which is small and portable. Additionally they have a data input possibility for GPS or other 

data synchronization input. The setup and the access to data and settings during operation are 

achieved via web, which may prove very useful for operational changes that need to be carried out at 

short notice. In order to be fit for mobile monitoring solutions IC listen need to expand battery 

capacities and data storage (currently limited to 32GB). Also, it is unclear at this stage if IC records 

raw data (in wav or similar formats) and with which affective accuracy (24bits are declared). A 

further unknown is the possibility of calibrating the hydrophone in the field and if and how this can 

be done from the factory. To date the product is too young to be suitable for mobile prototype 

testing, and prices are unclear. However, it is certainly a very interesting tool to be monitored in the 

future. 

Decimus [PAM14] 

A system which is available on the market and that has been extensively tested is the pambuoy). The 

evolution to it is called Decimus, and has come very recently to the market. In substance, this is an 

autonomous sound recording-detection system that has been designed and built by the University of 

St Andrews in Scotland for the purpose of detecting and studying marine mammals for a variety of 

purposes, such as passive acoustic monitoring (PAM) as required with the oil and gas production 

industry. Currently a version is being adapted to be deployed of a surface unmanned service vehicle. 

Decimus is autonomous and bespoke-built and relies on proprietary hardware and software and is 

TM by SMRU Ltd and the University of St Andrews.  

At the present stage it appears as if Decimus' operational target is different than that of the MSFD 

and that the fact that it is bespoke built limits its application. 

DTAG-DMON [USN14] 

Originally built at Woods Hole Oceanographic Institute for the Office of Naval Research, the DTAG-

DMON family were very promising as autonomous and clever engineered sound recording devices 

with a number of additional capabilities that were developed for monitoring marine mammals 
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behaviour being deployed on board the animal. However, currently they are the property of the US 

Navy and are not made available for the wider market. 

4.1.8.2 Noise Monitoring References 

[OCE14] IC-Listen  http://oceansonics.com/iclisten-smart-hydrophones/  Accessed 14 Aug 2014 

{PAM14] Pambuoy Decimus www.pambuoy.co.uk  Accessed 14 Aug 2014 

[USN14] DTAG-DMON http://www.onr.navy.mil/reports/fy11/mbhurst.pdf Accessed 14 Aug 2014 

4.1.9 Dissolved Oxygen 

There are four common methods for measuring dissolved oxygen in natural waters. The first and 

most accurate is the Winkler titration method, against which all others are compared to and tested 

for accuracy. However, this Winkler involves the use of hazardous chemicals and requires a skilled 

analyst. Other methods that may be used include the Clarke type polarographic sensor which is the 

most common followed by the optical dissolved oxygen sensor and the galvanic oxygen sensor.  

• Azide-WINKLER Titration on collected samples. 

• Polarographic sensor – Clark Cell electrodes – In situ measurement. 

• Optical sensor – In situ measurement. 

• Galvanic sensor – In situ measurement. 

Each technology/method has its advantages and disadvantages and it is briefly introduced below. 

4.1.9.1 Winkler Titration 

The Winkler titration procedure [Win88, Ril76, Car66, Gol83] is the first recognized method for 

determination of oxygen concentrations in natural waters. The technique is an iodometric titration 

where aqueous samples are treated with manganous-sulfate, potassium hydroxide, and potassium 

iodide to form manganous-hydroxide, Mn(OH)2. Oxygen in the sample reacts with the Mn(II) species 

giving Mn(III). The Mn(III) is inherently unstable and will  further react with another O2 molecule to 

form the Mn(IV) species. In order to fix the reaction, acidification is used to convert MnO(OH)2 into 

manganic sulfate which acts as an oxidizing agent to release free iodine, I2. This iodine is 

stoichiometrically equivalent to the dissolved oxygen in the sample and is titrated with sodium 

thiosulfate or phenylarsine oxide to its starch indicator endpoint. The Winkler method is subject to 

numerous interferences such as the presence of nitrite ion, ferrous and ferric iron, suspended solids, 

and organic matter. The method is prone to over reporting Dissolved Oxygen 

concentrations in anoxic and under reporting Dissolved Oxygen concentrations 

in hyperoxic environments as the aqueous sample and Winkler reagents are 

exposed to air during the procedure. 

4.1.9.2 Polarographic oxygen sensors – Clark cell electrodes 

Membrane covered amperometric detectors are commonly used for the 

measurement of oxygen in natural waters, with most designs following 

principles described in a fundamental patent awarded to H. A. Clark [Cla59] 

“Clark cell” designs have a thin organic membrane covering a two-electrode cell, 

separating the cell and electrolyte solution from the test solution, and keeping a 

thin layer of electrolyte in direct contact with the cathode. Oxygen diffuses 

through the membrane and is reduced on the cathode surface. The reduction 

occurs because the cathode is held at a sufficiently negative voltage to reduce 

the oxygen, with careful consideration to keep the bias voltage sufficiently large 

to reduce the oxygen but not so high as to reduce other species. The dissolved 

oxygen in a given sample is calculated by measuring the cathodic current and 

sample temperature.  A relative measure of dissolved oxygen compared to a fully 

saturated sample is determined using the cathodic current, temperature, 

barometric pressure, and salinity. In a Clark cell electrode design, the greater the 

oxygen partial pressure, the greater the rate of oxygen diffusion through the membrane. To maintain 

A = Pt-Kathode, 

B = Ag/AgCl-Anode, 

C =  KCl-electrolyte 

D = Teflon membrane – 

E = sensor body, F battery, 

G = Galvanometer. 
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the accuracy and precision of dissolved oxygen measurements, it is necessary to maintain a sufficient 

flow of water across the sensor to avoid depletion of oxygen at the membrane surface. This is due to 

the consumption of oxygen at the cathode and the diffusion dependence of oxygen through the 

membrane, often referred to as the stirring effect. Other interferences include organic growth or 

decay that can add or remove oxygen from the water prior to transfer of oxygen through the 

membrane.  

In addition, contamination from oils and other polymers can lead to a decrease in diffusion rates, 

changing the calibration function of the electrode. Some materials used in commercial Clark cell 

electrodes are susceptible to poisoning by contaminants, which leads to a decreased response.  Over 

time, membranes n Clark cells deteriorate to the point of needing replacement, the chemical 

composition of the electrolyte changes, and the electrodes are consumed to the point of limited 

response to oxygen exposure. 

Full ocean (7000 dbar) polarographic oxygen sensors
1
 

In 1980, Idronaut (Italy) added the following improvements to the basic Clark oxygen sensor by: 

� Using the microcathode technique where a very small diameter platinum wire is embedded in 

a glass body, allowing very low oxygen consumption and so minimizing the need to stir or 

pump the sample;  

� Perfectly sealing the platinum wire in a special glass, which guarantees a zero current output 

when the sensor is exposed to an anoxic environment, thus avoiding the zero point calibration 

required by the traditional polarographic oxygen sensors; 

� Adding a membrane pressure compensator on its replaceable membrane cap to avoid 

stressing the measuring membrane and so to achieve 700 bar operation; 

� Leaving the oxygen sensor always polarized even when its electronic amplifier is off to avoid 

the usual drift after switching on the CTD equipped with oxygen sensor. 

This made available a very accurate and reliable full ocean oxygen sensor, widely used in the world, 

where more than 5000 units were produced in the last 30 years. 

The Idronaut oxygen sensor (from the Ocean Seven 316Plus CTD Operator’s  

Manual)   

“The oxygen sensor is of the polarographic type and consists of two 

half-cells, the anode and the cathode. The anode is a silver tube inside 

the sensor, which encircles a glass body where a thin platinum wire is 

sealed. The cathode is the small surface area of the platinum wire 

exposed at the tip of the sensor where the glass body is rounded. A 

cap with a gas-permeable replaceable membrane containing the 

electrolyte screws onto the sensor. The special electrolyte inside of 

the cap allows the diffusion current to flow between the anode and 

the cathode which is proportional to the amount of oxygen diffusing 

through the membrane. The membrane is shielded from accidental 

bumps by a protective ring. The anode acts as a reference cell, 

providing a constant potential with respect to the cathode. The 

cathode, where oxygen is consumed or reduced, is separated from the 

sample to be analyzed by a thin layer of electrolyte and a special 

composite membrane. The electrolyte permits the chemical reaction 

to occur whereas the membrane constitutes a barrier against ions and other substances. By applying 

a polarizing voltage to the half-cells, the sensor develops a current proportional to the concentration 

of oxygen in the sample in front of the cathode. Oxygen from the sample is drawn across the 

membrane, at the sensor tip, in the area of the cathode. The applied polarization voltage is such that 

                                                           
1
 www.idronaut.it 
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the sensor only responds to oxygen. The sensor is insensitive to nitrogen, nitrous oxide, carbon 

dioxide and other gases. In order to avoid stray ground current leaks, in case of membrane leaks, the 

anode is kept at ground potential while the cathode is polarized at a fixed negative voltage. The 

oxygen sensor limits stirring effects on the measurement and reads at least 97% of the true value, 

even with a stagnant aqueous sample. This is because the very small cathode area and special 

cathode geometry, associated with a unique composite membrane, minimize the consumption of the 

oxygen contained in the sample in contact with the membrane. The function of this sensor depends 

on the reduction of oxygen at the cathode, as expressed by the formula: 

 

O2 + 2 H2O + 4e- >>> 4 OH- 

 

The developed electrons represent the measuring current and are supplied by the silver/silver chloride 

anode.” 

In 2002 SeaBird Electronics introduced on the market the full ocean SBE 43 dissolved oxygen sensor. 

Since the SBE pumping system is already available to pump the SBE conductivity cell, no pump is to 

be added when user requires this additional sensor together with the SBE basic CTD. 

This oxygen sensor, despite being less stable than the optical one, is still successfully and widely 

used, and well accepted by the scientific community. 

The Sea-Bird Electronics  oxygen sensor for 7000 m max depth (from SBE’s brochure) 
2
 

“The SBE 43 sets the oxygen measurement standard for 

oceanographic research. The sensor is a complete redesign of 

the Clark polarographic membrane type in which careful 

choices of materials, geometry, and sensor chemistry are 

combined with superior electronics interfacing and 

calibration methodology to yield major gains in performance. 

Calibration stability is improved by an order of magnitude, and the sensor requires less frequent 

calibration. Calibration drift is caused primarily by membrane fouling from ocean contaminants, and 

less so by chemical processes inside the sensor. If the membrane is kept clean, the sensor’s improved 

chemical stability yields demonstrated calibration drift rates of less than 0.5% over 1000 hours of 

operation (on time). 

Temperature response is dramatically improved. The chemical and physical processes that underlay 

the oxygen measurement are very sensitive to temperature. Accurate characterization of the internal 

sensor temperatures that control these processes, especially when water temperature is changing 

rapidly, is a key accomplishment of this design. Not only does the SBE 43 sensor measure 

temperature in the right place: the temperature equilibration time of the entire sensor head has 

been reduced to a few seconds, so it tracks the changing water temperature much more faithfully. 

Hysteresis is largely eliminated in the upper ocean (1000 meters) due to improved temperature 

response. Residual mismatch between up and down casts in this part of the ocean is due to sensor 

alignment, correctable in post-processing.  At higher pressures, changes occur in gas-permeable 

Teflon membranes that affect their permeability characteristics. These changes have long time 

constants, depend on the sensor's time-pressure history, and result in hysteresis at depths greater 

than 1000 meters. These effects are predictable and are also correctable in post-processing. The 

resultant SBE 43 measurement resolves oxygen features more precisely, reducing the ambiguity 

about locking measured sensor values to bottle Winklers. 

Continuous polarization eliminates stabilization wait-time after power-up. The sensor is always 

ready for immediate use. Earlier sensors required several minutes to polarize following power-up. 

During that time, sensor readings were inaccurate. In the SBE 43, micropower electronics and an 

internal, five-year, board-mounted battery eliminate power-up delay. 

                                                           
2
 www.seabird.com 
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Poisoning in hydrogen sulfide environments was a phenomenon common to early oxygen sensor 

designs that used silver as the cathode element. The SBE 43 uses a noble metal (gold) as the cathode 

and silver as the anode, and shows no degradation of signal or calibration when used for profiling in 

hydrogen sulfide environments. 

Signal resolution is increased by on-board temperature compensation, and a CTD channel is made 

available for other purposes because there is no temperature output signal. Even when oxygen 

concentration is constant, the normal range of ocean temperatures causes the output of earlier 

sensors to vary by a factor of two. The SBE 43’s internal temperature compensation eliminates this 

variation, allowing the sensor to pre-amplify the signal proportionately; resolution with existing CTD 

systems is correspondingly increased. 

Effective plumbing strategies allow for longer moored deployments. Plumbing isolates the SBE 43 

from continuous exposure to the external environment, allowing trapped water to go anoxic, 

minimizing electrolyte consumption between samples. The black plenum and installing black tubing 

block light, reducing in-situ algal growth”. 

 
Conclusions on the polarographic oxygen sensors (advantages and disadvantages) 

The advantage of the polarographic sensor is that it is a mature, well-known and accepted 
measurement technique and that  cleaning and maintenance are easy. Furthermore,  re-calibration 
of the sensor is very easy and can be carried out in air without needing any special equipment. In 
addition, the polarographic electrode,  thanks to the fast response time < 3s, is ideal for the real-time 
water profiling. 
Its main great limitation is that it requires frequent, but a very simple calibration in air and its drift is 
unpredictable with time. 
 

4.1.9.3 Optical Oxygen sensors 

Optical oxygen sensors work according to the principle of 
dynamic fluorescence quenching. The sensors contain 
fluorescent dye that is excited by light of a certain wavelength. 
Depending on the amount of oxygen molecules present, the 
luminescence response of the optical sensor varies. A polymer 
optical fiber transmits the excitation light of the sensor and at 
the same time also transmits the fluorescence response of the 
sensor to the measurement device. The optical fiber can, but 
does not have to be in contact with the sensor material which 
enables non-invasive measurement through transparent or semi-
transparent vessel walls. 
The oxygen sensitive dye is immobilized in a polymer matrix. This polymer can be applied to carrier 
material and used as sensor spots or sensor foil. It can also be coated directly onto the optical fiber.  
Oxygen quenching luminophores have been studied from at least 1939 when Kautsky described 
quenching of luminescence by oxygen [Kau39]. More recently, as optical sources, detectors, and data 
processing have become more advanced, the application of luminophores to the measurement of 
oxygen concentrations in liquids has resulted in bench-top instruments and optodes, with significant 
advances made in the 1990’s3. Recent advances in blue light-emitting diodes and low-powered high-
speed electronics have enabled the miniaturization of oxygen sensitive optodes to the point of field-
deployable units. The sensors do not consume oxygen and are stable over long deployment periods.  
As shown in the above figure, the luminescent dissolved oxygen sensor’s active optical components 
consist of a pair of blue and red light-emitting diodes (LEDs) and a silicon photodetector.  

The sensor cap has a coating of a platinum based luminophor that is excited by the light from the 

blue LED. The luminophor is coated on the outside with a carbon black polystyrene layer for optical 

insulation, providing excellent protection against photobleaching from external light sources when 

the sensor cap is attached to the sensor. The blue excitation LED is sinusoidally modulated at a 

frequency related to the luminophor’s luminescence lifetime and the upper and lower lifetimes of 

analytical interest. The measured parameter of interest from the optode is the phase delay 
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(essentially a time delay) between the exciting blue LED signal and the detected red emission from 

the luminophor, with the phase delay inversely related to the amount of dissolved oxygen near the 

luminophor, typically oxygen in the water of interest. This phase-modulation technique is used to 

measure the lifetime of the oxygen-dependent quenching of luminescence. 

The use of the phase-modulation technique means that intensity fluctuations of the blue LED or 

bleaching effects of the luminophor have no discernable impact on the lifetime measurement 

throughout the life of the sensor.   

The first full ocean (7000 dbar) optical oxygen sensor on the market since 2004 was the Aanderaa 

oxygen Optode, as per the below description and because of the PreSens invention and 

development.  

The AAnderaa oxygen optode (from Aanderaa-Xylem’s  brochure)
3
 

“The oxygen optode is designed to measure absolute oxygen concentration and 

% saturation. The optode can be used from streams to deep sea, from fish farms 

to waste water and from polar ice areas to hydrothermal vents. The lifetime-

based luminescence quenching principle offers the following benefits: 

• Response time <8 sec (63%). 

• High accuracy. 

• Not stirring sensitive (it consumes no oxygen). 

• Lower fouling sensitivity. 

• Measures absolute oxygen concentrations without repeated calibrations. 

• Better long-term stability. 

• Hot water monitoring. 

• Less affected by pressure. 

• Not sensitive to H2S. 

• Not freezing sensitive. 

 

Since oxygen is involved in most of the biological and chemical processes in aquatic environments, it 

is one of the most important parameters to be measured. Oxygen can also be used as a tracer in 

oceanographic studies. For environmental reasons it is critical to monitor oxygen in areas where the 

supply of oxygen is limited compared to demand, e.g.: 

• In shallow coastal areas with significant algae blooms. 

• In fjords or other areas with limited exchange of water. 

• Around fish farms. 

• In areas interesting for dumping of mine or dredging waste. 

The Aanderaa oxygen optodes are based on the ability of selected substances to act as dynamic 

fluorescence quenchers. The fluorescent indicator is a special platinum porphyrin complex 

embedded in a gas permeable foil that is exposed to the surrounding water. A black optical isolation 

coating protects the complex from sunlight and fluorescent particles in the water. This sensing foil is 

attached to a window providing optical access for the measuring system from inside a watertight 

housing. The foil is excited by modulated blue light, and the phase of a returned red light is 

measured. By linearizing and temperature compensating, with an incorporated temperature sensor, 

the absolute O2 concentration can be determined. 

 

Advantages 

• Optical measurement principle. 

• Lifetime-based luminescence quenching principle. 

                                                           
3
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• Long time stability. 

• More than one year without recalibration. 

• Low maintenance needs. 

• User friendly. 

• Smart sensor technology - provides calibrated data directly. 

• Use with SmartGuard, RCM 9 and RDCP. 

• Use as stand-alone sensor. 

• Output format: SR10, RS232, Analog 0-5V/4-20mA. “ 

The Sea-Bird Electronics SBE 63  optical dissolved oxygen sensor  (from SBE’s brochure)
4
  

 “Due to the increasing demands of science, Sea-Bird developed an 

individually calibrated, high-accuracy, optical oxygen sensor to assist in 

critical hypoxia and ocean stoichiometric oxygen chemistry research. With 

this new sensor, a myriad of moored and float-based platforms can 

contribute significantly in these driving areas of importance. The SBE 63 sets 

the oxygen measurement standard for oceanographic research. Careful 

choices of materials and geometry are combined with superior electronics 

and calibration methodology to yield significant gains in performance. 

Each SBE 63 is calibrated individually in a temperature-controlled bath. Bath 

temperatures are varied at each of 4 oxygen values, providing a comprehensive 24-point calibration. 

Two reference sensors in each bath are standardized against Winkler titrations. Response time tests 

are conducted on each sensor, using gas. Salinity and pressure impacts on sensor response are each 

checked at two separate points. 

The SBE 63 is designed for use in a CTD's pumped flow path, providing optimum correlation with CTD 

measurements. The elapsed time between the CTD and associated oxygen measurement is easily 

quantified, and corrected for in post-processing. The plumbing's black tubing blocks light, reducing 

in-situ algal growth.” 

 

JFE-Advantech manufacturers two kinds of optical dissolved oxygen sensors: 

 

The Rinko II - IID (from JFE-Advantech’s brochure)
5
 

Rinko II is a digital output version with the fast optical DO sensor. 

The instrument can be easily integrated on platforms, because it 

works with communications by RS-232C or RS-485 and an external 

power (12 to 24V DC). 

Rinko IID has not only a temperature sensor but also a depth 

sensor. Their models can monitor DO in real time, if you have a 

personal computer and an external power. 

 

The Rinko III (from JFE-Advantech’s brochure) 

Rinko III is an analog version with the fast optical DO sensor and a 

temperature sensor. With an external 12 DCV power, the instrument seamlessly outputs the analog 

data (0 to 5V) of the sensors. 

Rinko III can be easily integrated on various platforms with an Impulse cable. By the fast response, 

the instrument provides high accurate DO data without restricting profile speeds. 

More recently, the Optical Sensor has been improved with the “REDFLASH” technology (from PyroScience 

GmbH)6 

                                                           
4
 www.seabird.com 

5
 www.jfe-advantech.co.jp 
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“The new REDFLASH technology is based on the unique oxygen-sensitive REDFLASH dyes. In contrast 

to common techniques using blue-light excitation, the REDFLASH dyes are excitable with orange-red 

light and show an oxygen-dependent luminescence in the near infrared (NIR).  The REDFLASH 

technology impresses by its high precision, high reliability, low power consumption, low cross-

sensitivity, and fast response times. The orange-red light excitation significantly reduces 

interferences caused by auto-fluorescenced samples. Further, the NIR detection technology 

significantly reduces interference with ambient light, known from the old blue-light techniques The 

new REDFLASH technology is based on the unique oxygen-sensitive REDFLASH indicator showing 

excellent brightness. The measuring principle is based on the quenching of the REDFLASH indicator 

luminescence caused by collision between oxygen molecules and the REDFLASH indicator 

immobilized on the sensor tip or surface. The REDFLASH indicators are excitable with red light (more 

precisely: orange-red at a wavelength of 610-630 nm) and show an oxygen-dependent luminescence 

in the near infrared (NIR, 760-790 nm). Principle:  Red light excited REDFLASH indicators show 

luminescence in the near infrared (NIR), which decreases with increasing oxygen (quenching effect). 

A) high NIR emission at low oxygen and B) low NIR at high oxygen. The measuring principle is based 

on a sinusoidally modulated red excitation light. This results in a 

phase-shifted sinusoidally modulated emission in the NIR. The 

FireSting O2 measures this phase shift (termed “dphi” in the 

software). The phase shift is then converted into oxygen units based 

on the Stern-Vollmer-Theory. 

The red light excitation significantly reduces interferences caused by 
autofluorescence and reduces stress in biological systems. The 
REDFLASH indicators show much higher luminescence brightness 
than other optical sensor working with blue light excitation. Further, 
due to the excellent luminescence brightness of the REDFLASH 
indicator, the actual sensor matrix can be now prepared much thinner, leading to fast response times 
of the oxygen sensors.”  
 

Optical oxygen sensor calibration 

The optical quenching of the luminophore is strongly temperature dependent. It is important to 
measure the temperature with high precision (repetitiveness to a measured temperature) and to 
closely monitor the temperature of the luminophore sensor cap during the measurement cycle. 
When calibrating the instrument, it is critical that the luminophore sensor cap be in thermal 
equilibrium with the water of interest and with the temperature probe measuring the temperature 
of the water of interest.  

For example, when using water-saturated-air for calibration, it is necessary that the luminophore 

sensor cap and the temperature probe both be completely out of the water and in temperature 

equilibrium with the water-saturated-air for the calibration of 100% saturation for the probe. 

Similarly, when using air saturated-water for calibration, it is necessary that the luminophore sensor 

cap and the temperature probe both be fully immersed in the water and in temperature equilibrium 

with the air-saturated-water for the calibration of 100% saturation for the probe.  

The Sea & Sun fast optical oxygen sensor (from Sea & Sun Technology’s brochure)  

 “The measuring principle is based on red light excitation. Indicators showing luminescence in the 

near infrared (NIR), which decreases with increasing oxygen (quenching effect). The red light 

excitation significantly reduces interferences caused by autofluorescence and reduces stress in 

biological systems.  

The sensor is equipped with an own temperature sensor for internal calculation and linearization. 

Due to its analog output it can easily be connected to SST multiparameter probes as well as to third 

party equipment. 

                                                                                                                                                                                     
6
 www.pyroscience.com 
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Technical Specifications 

• excitation wavelength: 620 nm  

• detection wavelength: 760 nm  

• max. sample rate: 2 samples / second  

• internal resolution: 14 bit  

• low power consumption  

• analog Output: 0–2.5 VDC  

• operational depths down to 6000 m  

• titanium housing.” 

 

Conclusions on the optical  oxygen sensors (advantages and disadvantages) 

Optical oxygen sensors present the advantage, compared to commonly used 

polarographic electrodes, that no electrolyte solution is necessary and oxygen is 

not consumed in the measurement process. The optical sensors presents 

excellent long-term stability, are not influenced by the flow rate of samples,  do 

not consume oxygen and are stable over long deployment periods.  

On the contrary,  optical oxygen  sensors have a rather slow response time, typically with t0.63 of less 

than 60 seconds, often less than 30 seconds for changes as high as 8 mg/l, and have important 

dependency on the temperature that must be accurately measured to correct the reading. 

Furthermore, calibration is cumbersome and must be carried out in the laboratory (mainly the 

manufacturer’s calibration laboratory), using special equipment. Another disadvantage is that as the 

luminophore cannot last more than three months/one year after the beginning of its use, it must be 

routinely replaced by sending back the sensor to the manufacturer or by locally replacing the 

membrane cap (if present) and recalibrating the sensor by following the rather complex 

manufacturer instructions. “ 

The main and key disadvantage of the optical sensors is that any accidental abrasion of the foil 

surface, which is rather delicate, requires the return of the optical sensor to the manufacturer, if the 

sensor is not provided with a sort of “field replacement membrane cap”.  

In any case, the cost of the “membrane cap” or of the luminophore foil is much more expensive than 

any common Teflon (or similar material) membrane used on the polarographic oxygen sensor. 

4.1.9.4 Galvanic Sensor 

The OxyGuard International OxyGuard 505  oxygen galvanic sensor (from OxyGuard International’s 

brochure)
7
 

 “The OxyGuard 505 Probers a combined dissolved oxygen sensor and transmitter 

with galvanic isolation. It is designed to be fitted to a sonde or sensor array for 

measurements in the sea, lakes or similar. Two types are available. When fitted 

with an Ocean sensor the OxyGuard 505 can be used at depths up to 2000 m, and 

when fitted with a Profile sensor it can be used for making profiling 

measurements where it is moved through the water. The Profile sensor can, 

however, only be used at depths up to 150 m. The OxyGuard 505 Probe has 

separate output signal and power supply. It therefore has two connections for the 

output of 0-5V and two for the supply. It can be powered by supplies between 8.5 

and 24 VDC. The probe can be supplied with a cable, with a cable and connector 

or be fitted with a connector to suit user specifications. 

The output signal is directly proportional to the oxygen partial pressure sensed 

and is compensated for the temperature characteristics of the membrane. As 

standard the output signal of 0-5 V corresponds to 0-200% saturation dissolved oxygen.” 

                                                           
7
 www.aanderaa.com 
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Conclusions on the galvanic  oxygen sensors (advantages and disadvantages) 

Advantages 

The advantage of the galvanic sensor is that it is a mature, well-known and accepted measurement 

technique and that  cleaning and maintenance are easy. Furthermore,  re-calibration of the sensor is 

very easy and can be carried out in air without needing any special equipment.  

Disadvantages 

Measurements are influenced by temperature, pressure and barometric pressure variations respect 

to the sensor calibration conditions. Thus sensor needs dedicated algorithms to compensate these 

influences. Other limitation is that it can only operate at 2000 m depth and that it requires frequent 

calibration in air and its drift is unpredictable with passing of time. 

4.1.9.5 Dissolved Oxygen References 

 [Win88] Winkler, L. W. (1888), Die Bestimmung des im Wasser gelösten Sauerstoffes. Ber. Dtsch. Chem. Ges., 

21: 2843–2854. doi: 10.1002/cber.188802102122  

[Ril76] Bryan, J.R., Riley, J.P., and Williams, P.J. (1976). A Winkler procedure for making precise measurements 

of oxygen concentration for productivity and related studies. J. Exp. Mar. Biol. Ecol. 21: 191–197. 

[Car66] Carritt, D.E., and Carpenter, J.H. (1966). Comparison and evaluation of currently employed 

modifications of the Winkler method for determining dissolved oxygen in seawater; a NASCO report. J. Mar. 

Res. 24: 286–318. 

[Gol83] Golterman, H.L. 1983. The Winkler determination. In Polarographic oxygen sensors. Edited by E. 

Gnaiger and H. Forstner. Springer- Verlag, New York. pp. 346–351. 

[Cla59] Polarographic DO2 sensors: Clark US Patent 2,913,3866, “Electrochemical device for chemical analysis” 

November 1959. 

 [Kau39] Kautsky, H. Quenching of luminiscence by oxygen. Trans. Faraday Soc., (1939), 25, pp. 216-219.  

4.1.10 Temperature 

Oceanic pressure and temperature data have been measured with a variety of different platforms 

and instruments at various depths over the post-industrial period. Today most measurements come 

from ships, fixed and drifting buoys, unmanned vehicles and satellites. In this report we will broadly 

review some of the most important temperature and pressure sensors and detection devices used in 

monitoring those properties of sea water. 

 

Table 9. Ocean state variables, their typical ranges and mean values in the ocean, and the accuracy to 

which they are measured (or estimated) in the deep ocean (they can be lower at surface or in coastal 

regions where the natural variability is much higher). 

Variable Ocean Range Ocean Mean Required Accuracy 

Temperature -2°C to 40°C 3.5°C ±0.002°C 

Pressure 0 dbar to 11000 dbar 1850 dbar < ±3 dbar 

 

Temperature, pressure, and salinity are the three most important properties of a seawater parcel 

since they determine other physical characteristics of the seawater such as density, specific heat, 

sound velocity, solubility of other substances, etc. Density in particular is an important property in 

ocean science because it is the main driver for ocean dynamics. For instance, horizontal density 

gradients as small as 0.001kg/m3/km will result in spatial variations in pressure generating current 

velocities of some cm/sn. [Paw13] Temperature has been both the earliest and wide most measured 

property of sea water, according to the classical oceanographic literature e.g. [SJF42]. In addition to 

its role on the ocean dynamics through its participation in the water density, temperature is involved 

in many oceanic processes associated to heat and mass budgets. In particular, it is a key factor on air-

sea exchanges, including the water cycle and oceanic heat storage and release. Additionally, it is a 
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relevant parameter for most of the water chemical properties since solubility of many substances, 

such as CO2, depends on temperature. The importance of temperature monitoring is reflected in its 

designation as an essential climate variable of the global climate observing system.  

As a consequence the monitoring of the different physical properties of sea water is crucial to 

understand and predict oceanic behavior. In the following table it is possible to observe the different 

ranges and mean values of temperature and pressure observed for sea water. 

 

4.1.10.1 Temperature Measurement 

As previously described water temperature is one of the most important physical characteristics of 

seawater. Temperature is used to determine the density through the International Equation of State 

for Sea water [UNESCO81] and to calculate salinity through electrical conductivity (see the 

corresponding report). In the following pages we will review the different devices that have been 

used for the measuring of temperature. 

Reversing thermometers 

The first thermometers were based on the thermal expansion rate of substances, such as mercury. 

Its use for manual temperature readings has been widely spread and applied to the air, water and 

other environmental conditions. Thermometer however must be read by human eyes and in situ, 

while in contact with the body whose temperature is being measured. Both conditions prevented use 

of thermometers as autonomous temperature sensors. By the end of 19th century (1874) the so-

called reversing thermometers were developed by Negretti & Zambra in London [SJF42] to overcome 

the second problem (Fig. 4.1.54).  

Such thermometers were designed to 

keep the temperature reading after 

they were reversed. In addition, there 

is also an unprotected version of those 

thermometers, leaving the bulb and 

glass column exposed to the 

environmental pressure thus giving a 

pseudo-temperature reading. The 

difference between protected and 

unprotected thermometer readings 

was used to estimate the pressure where thermometers were reversed (see [SJF42] for details). High 

precision reversing thermometers, properly calibrated, could reach accuracies from 0.02°C to 

0.001°C, according to the temperature ranges for which they were produced. Reversing 

thermometers have been used in all oceanographic expeditions during almost the whole 20th 

century to give the first precise worldwide global distributions of ocean temperature, based on 

discrete measurements in space and time (e.g. the Atlantic Ocean atlas published on occasion of the 

International Geophysical Year 1957-58 [Fug60]). 

 

Thermograph 

Mechanical temperature recording sensors, thermographs, have also been used in fixed positions, 

typically at coastal stations, to obtain continuous time-dependent temperature records. The method 

consisted on a stylus or a pen attached to a temperature sensitive coil, writing on a slow rotating 

paper drum. Thermographs have also been used attached to an inflow water of a ship so that the 

time-dependent temperature record could be translated into the space record along the ship’s track. 

Figure 4.1.54. Self-registering thermometer by Negretti & 

Zambra  
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During the ‘30s, the bathythermograph was the first attempt for a mechanical automatic recording 

sensor of both temperature and pressure [Spi38]. Its mechanism consisted of a stylus attached both 

to a long coil and to a membrane covering a small oil tank. Expansion or contraction of the long coil 

due to temperature changes controlled the horizontal displacement of the stylus while the 

membrane, under the environmental pressure, controlled its vertical displacement. The stylus 

against a glass slide covered by a smoke coating thus produced a graph of temperature vs depth 

when the bathythermograph was lowered into the ocean. After rinsing and fixing the graph on the 

smoked glass it could be read using a calibrated mesh to obtain a vertical profile of temperature (Fig 

4.1.55) 

Electronic temperature measurements 

By the mid 20th century, with the onset of electronics, electrical properties of materials began to be 

exploited for temperature measurement. The first attempts were based on the well-known property 

of changes in resistance of any material as its temperature changes. The rate of change would 

depend on the material and also the temperature because in most cases the relationship is far from 

being linear. In any case, a good instantaneous measurement of the resistance could be converted to 

a temperature value provided a conversion formula, according to a known resistance versus 

temperature relationship after a calibration process. The quality of the temperature measurement, 

then, depends on several factors, assuming a good calibration:  

(i) the stability of the electronics of the circuit. 

(ii) the bias caused by heating effect of the current on the resistor. 

(iii) the precision of the resistometer in relation to the amplitude of the resistance variation at 

the environmental temperature range.  

In addition to the mentioned conditions there are other crucial factors influencing the quality of the 

temperature measure, such as the response time to a change or the stability and shape of the 

resistance versus temperature function, which is related to the minimum number of points required 

for a calibration. The ideal situation would be a material showing wide amplitude with nearly linear 

response at the -3° to 33°C temperature interval. Platinum (Pt) was one of the best materials for this 

purpose: it is the most stable, has a wide response range and is almost linear, but because of its slow 

response time, high frequency variability of temperature cannot be solved with such sensors. 

Thermocouples 

Early electronic temperature measurements used Pt resistance sensors but they had the problem of 

self-heating and instability of the rest of the circuit components, giving low accuracy of the readings. 

To avoid some of these problems other electrical properties of materials have also been used. One of 

them is the relation between the voltage generated by a bimetallic union and temperature, called 

thermocouple. There is no self-heating since no current is needed but has other problems such as, 

drifts and low precision because the water temperatures range is small as compared with the typical 

total range of most of thermocouples. Currently thermocouples are by far the most widely used type 

of sensor in industry. They are very rugged and can be used from sub-zero temperatures to 

temperatures well over 2000°C. 

Figure 4.1.55. A bathytermograph and a vertical temperature profile obtained with it 
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A thermocouple is formed by joining two different metal alloy wires at a point called a junction. This 

point is called the measuring or “hot junction”. The thermocouple lead ends are usually attached to a 

temperature indicator or controller. This connection point is called the refere

When there is a temperature difference the measuring junction is heated, a small DC voltage is 

generated in the thermocouple wires. The controller converts this millivolt signal into the 

temperature reading. Among the different type

alloys have become standards. In the following table you can find some of the most used.

Table 10. Thermocouple Standard Types

Thermocouple 

Standard Type 

Metal content in 

Positive Leg.

B 
70.4% Platinum (Pt)

29.6% Rhodium (Rh)

E 
90% Nickel (Ni)

10% Chromium (Cr)

J 99.5 % Iron (Fe)

K 
90% Nickel (Ni)

10% Chromium (Cr)

N 

84.4% Nickel (Ni)

14.2% Chromium 

(Cr) 

1.4% Silicon (Si)

R 
87% Platinum (Pt)

13% Rhodium (Rh)

S 
90% Platinum (Pt)

10% Rhodium (Rh)

T 100% Copper (Cu)

C* 
95% Tungsten (W)

5% Rhenium (Re)

D* 
97% Tungsten (W)

3% Rhenium (Re)

G* 100% Tungsten (W)

Other temperature sensors widely used are the resistance temperature detectors

Resistance Temperature Detector (RTD)

Metallic RTDs are precision temperature sensors used in industrial and laboratory applications. RTD 

are typically more accurate than thermocouples and maintain that accuracy over a longer period of 

time. They are usually used up to 650°C.

Figure 4.1.56. Thin Film RTD
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joining two different metal alloy wires at a point called a junction. This 

point is called the measuring or “hot junction”. The thermocouple lead ends are usually attached to a 

temperature indicator or controller. This connection point is called the reference or “cold junction”. 

When there is a temperature difference the measuring junction is heated, a small DC voltage is 

generated in the thermocouple wires. The controller converts this millivolt signal into the 

Among the different types of thermocouples certain combinations of metal 

alloys have become standards. In the following table you can find some of the most used.

Table 10. Thermocouple Standard Types 

Metal content in 

Positive Leg. 

Metal content in 

Negative Leg 

Temperature 

Range Standard

70.4% Platinum (Pt) 

29.6% Rhodium (Rh) 

93.3% Platinum (Pt) 

6.1% Rhodium (Rh) 
870-1700°C ±0.5%

90% Nickel (Ni) 

10% Chromium (Cr) 

55% Copper (Cu) 

45% Nickel (Ni) 
0-900°C 

±1.7°C or 

±0.5°C

99.5 % Iron (Fe) 
55% Copper (Cu) 

45% Nickel (Ni) 
0-750°C 

±2.2°C or 

±0.75%

90% Nickel (Ni) 

10% Chromium (Cr) 

95% Nickel (Ni) 

5% Various 

Elements 

0-1250°C 
±2.2°C or 

±0.75%

84.4% Nickel (Ni) 

Chromium 

1.4% Silicon (Si) 

95.5% Nickel (Ni) 

4.5% Silicon (Si) 
0-1250°C 

±2.2°C or 

±0.75%

87% Platinum (Pt) 

13% Rhodium (Rh) 
100% Platinum (Pt) 0-1450°C 

±2.2°C or 

±0.75%

90% Platinum (Pt) 

10% Rhodium (Rh) 
100% Platinum (Pt) 0-1450°C 

±2.2°C or 

±0.75%

100% Copper (Cu) 
55% Copper (Cu) 

45% Nickel (Ni) 
-200-350°C 

±1.0°C or 

±0.75%

95% Tungsten (W) 

5% Rhenium (Re) 

74% Tungsten (W) 

26% Rhenium (Re) 
0-2135°C 

±4.5°C or 

±1.0%

97% Tungsten (W) 

3% Rhenium (Re) 

75% Tungsten (W) 

25% Rhenium (Re) 
0-2135°C 

±4.5°C or 

±1.0%

100% Tungsten (W) 
74% Tungsten (W) 

26% Rhenium (Re) 
0-2135°C 

±4.5°C or 

±1.0%

Other temperature sensors widely used are the resistance temperature detectors

Resistance Temperature Detector (RTD) 

Metallic RTDs are precision temperature sensors used in industrial and laboratory applications. RTD 

are typically more accurate than thermocouples and maintain that accuracy over a longer period of 

are usually used up to 650°C. 

In a RTD sensor that are based on metals, resistance changes 

linearly with temperature and a controller measures the value of 

the resistance and transform it into temperature. Unlike on a 

thermocouple there is no electrical signal generated by a RTD. 

 

 

 

Figure 4.1.56. Thin Film RTD 
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joining two different metal alloy wires at a point called a junction. This 

point is called the measuring or “hot junction”. The thermocouple lead ends are usually attached to a 

nce or “cold junction”. 

When there is a temperature difference the measuring junction is heated, a small DC voltage is 

generated in the thermocouple wires. The controller converts this millivolt signal into the 

s of thermocouples certain combinations of metal 

alloys have become standards. In the following table you can find some of the most used. 

Tolerances 

Standard Special 

±0.5% - 

±1.7°C or 

±0.5°C 

±1.0°C or 

±0.4% 

±2.2°C or 

±0.75% 

±1.1°C or 

±0.4% 

±2.2°C or 

±0.75% 

±1.1°C or 

±0.4% 

±2.2°C or 

±0.75% 

±1.1°C or 

±0.4% 

±2.2°C or 

±0.75% 

±1.1°C or 

±0.4% 

±2.2°C or 

±0.75% 

±1.1°C or 

±0.4% 

±1.0°C or 

±0.75% 

±0.5°C or 

±0.4% 

±4.5°C or 

±1.0% 
- 

±4.5°C or 

±1.0% 
- 

±4.5°C or 

±1.0% 
- 

Other temperature sensors widely used are the resistance temperature detectors or RTDs. 

Metallic RTDs are precision temperature sensors used in industrial and laboratory applications. RTD 

are typically more accurate than thermocouples and maintain that accuracy over a longer period of 

In a RTD sensor that are based on metals, resistance changes 

linearly with temperature and a controller measures the value of 

the resistance and transform it into temperature. Unlike on a 

signal generated by a RTD.  
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Table 11. RTD Types 

Element type Temperature Range Base Resistance TCR (Ω /Ω/°C) 

Platinum DIN -200 600 °C 100Ω at 0°C 0.00385 

Platinum JIS -200 600 °C 100Ω at 0°C 0.003916 

Copper -100 260 °C 10Ω at 25°C 0.00427 

Nickel -100 205 °C 120Ω at 0°C 0.00672 

Finally the role of temperature modifying the current across a diode or any other, more or less 

complicated, integrated circuit has also been used as sensor and is being used in controlling internal 

temperatures as well as environmental thermometers in many electronic instruments. All these 

properties have been used at certain steps of the electronics development during the last 60 years. 

However, since the stability and precision of the electronic components has become much higher, 

these methodologies have been progressively abandoned in towards the use of the thermistors. 

Thermistor 

Thermistors are also temperature-sensitive resistors, generally composed of semiconductor 

materials, which are the most sensitive sensors in terms of the rate of resistance change per unit of 

temperature. As a consequence, thermistors are currently the most used non-remote sea water 

temperature monitoring devices. 

It has to be noted that most thermistors have a negative 

relationship, that is, their resistance decreases with increasing 

temperature. The advantage of thermistors, in addition to its 

potential precision, is the fast response time. The disadvantages 

are the highly non-linear relationship of resistance versus 

temperature and its relatively low stability. The first problem 

requires a high number of calibration points. The second is being 

improved with new materials. 

Thermistors exhibit a very large resistance change for a small 

temperature change (usually 3-5% vs. the 0.4% of RTDs) this 

makes them very sensitive to small temperature changes. Their 

typical working ranges are from -100 to 300°C. Currently there are no standards for thermistors. 

Remote temperature monitoring sensors 

Thus, far we have explored contact temperature sensors, where the sensor must physically touch a 

material before it can sense its temperature. However, temperature can also be measured from the 

long-wave emitting energy of a body according to the Stefan-Boltzmann law [SBL14]. This method is 

used in remote sensed temperatures from an aircraft or a satellite. The main limitation of the 

method is that since long wave radiations does not penetrate into a water body, readings of infrared 

are limited to the few microns of the skin of the oceans. Another problem related to remote sensed 

temperatures is caused by clouds, vapor or dust interfering net radiation from the ocean. In contrast, 

infrared remote sensed temperatures may cover simultaneously a wide area of the ocean surface 

enabling simultaneous information over large areas. 

Commercial Marine Temperature Sensors 

The SBE3 series from Sea-bird Electronics contains a range of sensors intended for environmental, 

marine or industrial monitoring. These include thermistors and digital reversing thermometers in a 

range of housings. Sensors are analog or digital with multiple communications options and long 

battery lifetimes. 

One of the latest products on offer is the SBE 39plus [SBE14], is a high-accuracy temperature 

(pressure optional) recorder with internal battery pack and non-volatile memory for deployment at 

depths up to 10,500 meters. The 39plus is intended for moorings or other long-term, fixed-site 

Figure 4.1.57. Thermistor 
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applications, as well as deployments on nets, towed vehicles, or ROVs. Calibration coefficients are 

stored in EEPROM, allowing output in decimal or XML ASCII engineering units (raw output available). 

It has an internal USB connector for fast upload and a RS-232 serial interface with optional external 

connector 

 

Figure 4.1.58. SBE 39plus from Seabird Electronics 

 

IDRONAUT Temperature sensor 

The temperature sensor consists of a platinum resistance thermometer (type Pt 100 ohms at 0°C), 

fitted on a thin stainless steel housing, able to withstand up to 700 bar. The sensor has a very low 

response time (50 ms) and a high stability of reading with ageing. The drift of reading is less than 

0.0003 °C per year. 

Table 12. Temperature Sensor Comparison Chart. Extracted from [Wat95] 

 

 

4.1.10.2 Temperature References 
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1980. Unesco technical papers in marine science 36, 25 p .  
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International Geophysical Year of 1957-1958. Woods Hole Oceanographic Institution, 209 p. 

4.1.11 Conductivity (Salinity) 

Conductivity is an intrinsic property of any given material indicating its ability to transfer electric 

charge. Seawater, due to the presence of dissolved salts, is a good electrolyte, in which the electric 

charge is maintained by the presence of positive and negative ions resulting from the dissociated sea 

salts. Seawater conductivity increases with temperature and with the salt content, i.e. salinity.  

The conductance, Λ, expressed in Siemens (S), is equal to the reciprocal of the resistance, R 

expressed in Ohms (Ω), i.e.: 

R

1=Λ                                                                                              (1) 

Since cell geometry affects conductivity values, the specific conductivity, χ, expressed in Siemens per 

cm (S cm-1), as absolute measurement value, is defined as the conductivity of a measurement surface 

of a length = 1 cm and an area = 1 cm2. In practice, it is given by: 

Λχ ⋅=c                                                                                             (2) 

where:  c = l/A is the measurement “cell constant”, with l = the distance between the electrodes (cm) 

and A= the electrode area (cm2). 

Oceanographic sensors measure the conductance, i.e. the voltage produced in response to the flow 

of a known electrical current. From the measured conductance, conductivity is estimated by the 

means of the "cell constant", that reflects the ratio of length and cross-sectional area of the sampled 

water volume in which the electrical current actually flows. The first conductive salinometer was 

developed by the International Ice Patrol [WSS30]. Since then the estimation of salinity by the 

measurement of conductivity gradually substituted early salinity estimation methods by titration. 

The requirements for modern oceanographic instruments must 

meet the following specifications [UNE88]: 

• Range: 1-65 mS/cm, 

• Accuracy: 0.005 mS/cm 

• Resolution: 0.001 mS/cm 

• Stability/month: 0.003 mS/cm 

Today, the CTD (Conductivity, Temperature, Depth) or 

multiparameter probes for profiling or monitoring seawater use 

two main kinds of conductivity sensors:  i) Inductive sensors; ii) 

Platinum Poly-electrode sensors. Both alternative technologies 

for the measurement of conductivity are offered on the oceanographic instrumentation market and 

there is a competition between the manufacturers in order to satisfy customers' requirements to 

meet these specifications.  

Apart from the inductive and poly-electrode conductivity sensors,  there are research institutes, in 

particular around Europe,  which are studying an alternative design like micro-fabrications (sensor on 

chip) to develop  innovative low-cost miniaturized conductivity sensors. However, to date, nothing 

seems to be coming out from the laboratory and/or soon adopted in commercialized CTDs. 

4.1.11.1 Inductive Conductivity sensors 

A toroidal inductive measurement of conductivity may be made by passing an alternating current 

(AC) through a toroidal generating coil as it induces a current in the electrolyte solution. The induced 

solution current induces, in turn, a current in a second (receiving) toroidal coil. The amount of 

current induced in the receiving coil is proportional to the solution conductivity. 
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Different types of inductive conductivity sensors exist: the single transformer, the double 

transformer and the double transformer with an additional loop. 

All existing inductive cell types have external fields.  

Sensors that have external fields are prone to shift their 

calibration, if nearby objects such as guards, struts, sensor 

housings -- or marine growth -- distort the external field. 

Antifoulant-bearing materials placed close enough to be 

effective also distort the external field, and in a way that will 

change as the antifouling material leaches out, as it must. 

Ironically, the calibration shifts resulting from placing antifoulant materials on the outside of an 

external field cell also prevent the protection of its internal "hard parts". 

With inductive conductivity sensors, the electrical current flows in closed paths through the "hole" in 

the transformer cores. The magnitude of this current (and therefore the output signal from the 

sensor) depends on the field density along the path.  In the area away from the hole, the paths are 

widely separated and the resistance is low. In the "hole" through the cell,  the paths converge and 

the resistance is higher; the area immediately exterior to the hole will also contribute significantly to 

the total resistance. But typically about 20% of the resistance occurs outside the relatively well-

defined hole itself. 

The main advantage of the inductive conductivity sensor is that it is mechanically strong and so it is 

largely used especially for monitoring. Moreover, it does not require any cleaning (or replatinization) 

of the platinum electrodes because the electrodes themselves are not present! In addition, the 

inductive coils are protected by a plastic film. 

The disadvantages are the following: 

• The magnetic field irradiated from the sensor is spread over a large water sample area, and 

so any geometrical or mechanical change of the measuring area alters the calibration. This is 

often referred to as the proximity effect.  

• To achieve an accurate calibration, a rather large calibration tank (filled with well-stirred 

seawater) is needed if proximity effects are to be avoided. 

• Since the sensor construction cannot be miniaturised, the sensor cannot be installed in 

confined spaces unless it is calibrated in situ. 

• The electrical signal generated by this sensor is very small and particularly affected by the 

other physical variables (temperature and pressure). Hence, a rather complex associated 

electronics is needed. Since this kind of electronics basically requires a rather significant 

amount of current, this sensor cannot be used where very little power is available. The 

sensor requires temperature and pressure compensations; the latter is rather difficult to be 

obtained as the pressure error to be quantified for each specific sensor needs a big volume 

pressure simulator. The cost for manufacturing this simulator is very high if very high 

pressures are required  (150  -  1000 bar) and a lot  of  time for testing is needed.  

There are four main manufacturers of inductive conductivity sensors: Aanderaa, RBR, RDI/Teledyne 

and Valeport8. 

4.1.11.2 The platinum polyelectrode sensors  

Polyelectrode sensors, provided with (2), 3, 4, 5 and 7 electrodes are currently present on the market 

to carry out profiles and/or monitoring: fresh, sea and ocean waters.  

The two-electrode conductivity sensor 

Traditional conductivity cells, which have existed since the late 19th century, are based on two planar 

electrodes facing each other at a given distance. The best performance is obtained by using platinum 

                                                           
8
 www.valeport.co.uk, www.rbr-global.com, www.rdinstruments.com,  www.aanderaa.com  
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as the electrode material. Other possible materials to 

produce “low cost” electrodes are carbon, nickel and 

stainless steel. An AC square wave or sinusoidal 

voltage is applied to the two electrodes, which 

generates a current when the cell is immersed in the 

measuring solution. Amplification and record of this 

current allows determining the resistance of the 

media in accordance with Ohm’s Law and finally the 

specific conductivity by combining eqs. 1 and 2 

above presented. This is the most common 

conductivity sensor, as it has been used in the 

laboratory and in the field probably for 100 years. The two electrodes are usually sealed and 

supported inside a glass tube which acts as the measuring cell.  This avoids/limits the induction of the 

electrical fields outside the measuring area. The two electrodes are to be electrochemically covered 

with a black sponge platinum deposit, to avoid the polarisation effects created by the measuring 

current circulating through the water sample.  Due to the electrolytic effect, the measuring current is 

the cause of H2 and O2 gases formation by the two electrodes which are, at the same time, the 

measuring and the excitation electrodes. The limitations of this simple sensor are several, especially 

as far as the measurement or rather high conductivity of marine waters is concerned. Since the 

sensor needs the black platinum deposit, it cannot be mechanically cleaned as this action may 

partially remove the black sponge, thus altering the calibration dramatically. Furthermore,  the black 

platinum porosity favours the adsorption of organic, colloidal and/or particulate matters which may 

be present in the measuring media. Therefore, the black platinum layer must be removed and plated 

again, quite frequently, depending on the application type. Most end-users are unsuccessful in 

accomplishing this operation, so a cell with contaminated electrodes must be discarded or returned 

to the manufacturer for maintenance. The two-electrode sensor requires specific AC frequency 

excitation, depending on the measuring range.  Especially at very high conductivity levels (sea water), 

the frequency to obtain the best linearity can be up to 10 KHz and this presents some electronic 

difficulties.  

In conclusion, this two-electrode conductivity sensor is not used any more in the modern CTDs   

The SBE three-electrode conductivity sensor
9
 

 Evolution of the two-electrode sensor is the three-

electrode sensor (See the SBE three-electrode schematics 

below). The three-electrode sensor does not generate 

any external field  because its outer electrodes are 

connected together and no voltage creates any external 

electrical current. In practice,  it is a "two-electrode" cell in which the electrode resistances are in 

series with (and indistinguishable from) the cell resistance proper. Because the electrode resistances 

are low and the cell resistance high, errors resulting from changes in the electrode resistances are 

very small. On the other hand, the sample volume entirely determined by the cell's "hard parts" is 

immune to proximity errors. This sensor is probably the most used for oceanographic measurements, 

as it is installed in all the SBE CTDs. However, it must be used in clean waters only, as the three 

electrodes are provided with black platinum coating which, if contaminated, requires the return of 

the sensor to the factory for replatinization. The small internal diameter of the measuring cell makes 

it mandatory to install a cumbersome and power-consuming submersible pump for sampling and 

flushing and, to prevent the recessed conductivity cell from getting clogged, SBE must use Tributyltin 

(TBT) as an antifouling, which is a heavy chemical poison 

(TBT is toxic to fish and other aquatic life and are accumulated by these species. At an international 

level, the use of TBTs in marine situations is gradually being phased out as the potentially harmful 

                                                           
9
 www.seabird.com 
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effects they may have on aquatic life are recognised. TBTs are listed as substances for priority action 

under the Helsinki and OSPAR Conventions which protect the marine environments of the Baltic Sea 

and north-east Atlantic Ocean respectively).

The four-electrode conductivity sensor

Another important improvement on the basic two

was the addition of another two electrodes, to get the four

based on 4-ring electrodes, embedded in a glass support, at a given spacing distance. In this cell, the 

AC excitation voltage is applied to the two outer electrodes and the current generated, when the cell 

is immersed in the water, causes a drop of voltage 

between the two inner electrodes. Measurement of 

this voltage is achieved by high

amplifiers which prevent any current flow at the two 

measuring inner electrodes and, by the way, the 

electrode polarization and thus the need for the 

black platinum coating. Thanks to the advantages 

linked to the 4-electrode cell design and 

measurement principle, important improvements in 

conductivity measurements have been achieved with 

respect to the basic two-electrode sensor.

The four-electrode technique allows several kinds of 

layouts. We herewith show only the simplest one.

 

The above picture shows the layout and the schematic of an on

excitation electrode also generates external stray currents

however, is used for laboratory applications only, as it cannot well withstand high pressures.

The limitation of this 4-ring electrode design is that the cell requires one (or more) hole, to allow the 

sample flushing inside the cell. This hole causes part of the current flowing from the innermost 

electrode  (to which is applied the excitation voltage) and the outermost (which represents the 

ground) to flow through the hole thus reaching the ground electrode from 

This generates a measuring error when the cell is placed in a small container, 

alters the external current flow depending on the distance between the cell (and in particular its 

hole) and the wall itself. In practice, the sensor suffers from a sort of “wall effect” where, if the hole 

diameter for venting the cell is very small, the error potentially generated is small, 

flushing of the cell becomes rather difficult and, if the hole is rathe

good but the error due to the “wall effect” becomes important, even 10% of the reading.
The AML OCEANOGRAPHIC full ocean  four
 
 
 
 
 
 
 
 

Figure 4.1.60. AML Oceanographic 

AML OCEANOGRAPHIC does not provide any detail about characteristics of this cell, apart from 
accuracy which, with its associated electronics,  is 0.01 mS/cm.
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ects they may have on aquatic life are recognised. TBTs are listed as substances for priority action 

under the Helsinki and OSPAR Conventions which protect the marine environments of the Baltic Sea 

east Atlantic Ocean respectively). 

trode conductivity sensor 

Another important improvement on the basic two-electrode conductivity sensor, made in the fifties,  

was the addition of another two electrodes, to get the four-electrode cells. The cell design is usually 

ring electrodes, embedded in a glass support, at a given spacing distance. In this cell, the 

AC excitation voltage is applied to the two outer electrodes and the current generated, when the cell 

er, causes a drop of voltage 

between the two inner electrodes. Measurement of 

this voltage is achieved by high-impedance input 

amplifiers which prevent any current flow at the two 

measuring inner electrodes and, by the way, the 

hus the need for the 

black platinum coating. Thanks to the advantages 

electrode cell design and 

measurement principle, important improvements in 

conductivity measurements have been achieved with 

electrode sensor. 

electrode technique allows several kinds of 

layouts. We herewith show only the simplest one. 

The above picture shows the layout and the schematic of an on-line 4-electrode sensor where the 

excitation electrode also generates external stray currents which affect the current flow. This design, 

however, is used for laboratory applications only, as it cannot well withstand high pressures.

ring electrode design is that the cell requires one (or more) hole, to allow the 

shing inside the cell. This hole causes part of the current flowing from the innermost 

electrode  (to which is applied the excitation voltage) and the outermost (which represents the 

ground) to flow through the hole thus reaching the ground electrode from the outside of the cell. 

This generates a measuring error when the cell is placed in a small container, e.g.

alters the external current flow depending on the distance between the cell (and in particular its 

In practice, the sensor suffers from a sort of “wall effect” where, if the hole 

diameter for venting the cell is very small, the error potentially generated is small, 

flushing of the cell becomes rather difficult and, if the hole is rather big, the flushing of the cell is 

good but the error due to the “wall effect” becomes important, even 10% of the reading.
The AML OCEANOGRAPHIC full ocean  four-electrode conductivity cell

10
 

AML Oceanographic Four electrode conductivity sensor (a) New Style and (b) Old Style

AML OCEANOGRAPHIC does not provide any detail about characteristics of this cell, apart from 
accuracy which, with its associated electronics,  is 0.01 mS/cm. 

                   

Figure 4.1.59. Four electrode 

conductivity sensor 
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ects they may have on aquatic life are recognised. TBTs are listed as substances for priority action 

under the Helsinki and OSPAR Conventions which protect the marine environments of the Baltic Sea 

electrode conductivity sensor, made in the fifties,  

The cell design is usually 

ring electrodes, embedded in a glass support, at a given spacing distance. In this cell, the 

AC excitation voltage is applied to the two outer electrodes and the current generated, when the cell 

electrode sensor where the 

which affect the current flow. This design, 

however, is used for laboratory applications only, as it cannot well withstand high pressures. 

ring electrode design is that the cell requires one (or more) hole, to allow the 

shing inside the cell. This hole causes part of the current flowing from the innermost 

electrode  (to which is applied the excitation voltage) and the outermost (which represents the 

the outside of the cell. 

e.g. a beaker, as its wall 

alters the external current flow depending on the distance between the cell (and in particular its 

In practice, the sensor suffers from a sort of “wall effect” where, if the hole 

diameter for venting the cell is very small, the error potentially generated is small, e.g. 1%, but the 

r big, the flushing of the cell is 

good but the error due to the “wall effect” becomes important, even 10% of the reading. 

(a) New Style and (b) Old Style 

AML OCEANOGRAPHIC does not provide any detail about characteristics of this cell, apart from 

Figure 4.1.59. Four electrode 
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The Idronaut five-electrode conductivity sensor
11

 

 To overcome the limitation of the 4-ring sensors, the 5-

electrode cell, has been developed by Idronaut (patent applied 

for it) few years ago. By adding a fifth outer electrode near the 

excitation voltage electrode and grounded together with the 

other external ground electrode. In this way, no stray currents 

are present and the “wall effect” no longer exists. Another 

important advantage is that if, for any reason an electrical 

current is circulating in the solution to be measured, this 

cannot influence or alter the internal measurement as, 

because of the two external grounded electrodes, this cell is completely shielded. Another innovation 

of this sensor is the removable (glass) “cuvette” which allows very easy cleaning of the 5-ring 

platinum electrodes.  

This sensor does not require the black platinum coating of the five electrodes but, due to its 

complete glass construction, it is rather fragile and so is only used for laboratory applications. 

 

The Idronaut seven-electrode conductivity sensor 

CTDs, based on a high-performance seven- electrode 

conductivity cell, have been present on the market for more 

than 30 years.  This type of conductivity sensor is a flow-through 

cell and consists of a double-cell differential measuring system 

using seven platinum rings fused and deposited in the slots of a 

quartz tube.  

The central ring is excited with an alternate current flowing to 

both the outermost rings. The two adjacent pairs of rings sense, 

differentially, the relative drop in voltage due to the electrical 

conductivity of the measured water. The outermost pair of rings 

is grounded to shield the measuring cell from any outside electrical interference and so this sensor 

does not suffer from any proximity effect.   

The cell is mounted in a cylindrical plastic body which guarantees thermal insulation and which is 

filled with silicone oil and provided with a rubber bellow to achieve pressure compensation, gaining 

full ocean deployment.  

The conductivity sensor can well operate even in polluted waters since its seven platinum electrodes  

do not need to be coated with platinum black sponge,  which can be easily contaminated and so 

requires to be replatinized by the factory. The measuring cell can be easily cleaned in the field if any 

foreign material is deposited onto the platinum rings, causing a decrease in the electric signal,  to 

obtain the original calibration. The cleaning is simply accomplished with cotton buds and liquid soap, 

without requiring any particular precaution. 

The only drawback of this sensor is that its construction is rather complex and time consuming and 

so its manufacturing cost is rather high. 

 

Conclusions on the poly-electrode conductivity sensors 

The conductivity sensors equipped with 3, 4, 5 and 7 electrodes, are good conductivity sensors 

(based on electrodes and inductive) for clean oceanic waters. However, for monitoring polluted 

waters and/or harbour areas, only the non-platinized (without black platinum coating) electrodes are 

those which can be used more successfully, as they can be mechanically cleaned (even with 

hydrochloric acid) when contaminated. 
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4.1.11.3 Conductivity References 

[UNE88] UNESCO, 1988: The acquisition, calibration, and analysis of CTD data. A report of SCOR Working Group 

51, UNESCO technical papers in marine Science, 54.  

 [WSS30] Wenner, F., E.H. Smith, and F.M. Soule, 1930: Apparatus for the determination aboard ship of the 

salinity of sea water by the electrical conductivity method. Bureau of Standards Journal of Research, 5, 711-

732. 

4.1.12 Pressure 

According to its definition, pressure is the normal force per unit area exerted by water (or air in the 

atmosphere) on both sides of the unit area. Usually, ocean pressure is usually reported in decibars 

where 1 dbar = 0.1 bar. The force due to pressure arises when there is a difference in pressure 

between two points. In the ocean, pressure increases with increasing depth and the pressure at a 

given depth depends on the mass of water lying above that depth. A pressure change of 1 dbar 

occurs over a depth change of slightly less than 1 m. Pressure in the ocean thus varies from near zero 

(surface) to 10,000 dbar (deepest). Pressure is usually measured in conjunction with other seawater 

properties such as temperature, salinity, and current speeds. The properties are often presented as a 

function of pressure rather than depth. Horizontal pressure gradients drive the horizontal flows in 

the ocean. For large-scale currents (of horizontal scale greater than a kilometer), the horizontal flows 

are much stronger than their associated vertical flows and are usually geostrophic. The horizontal 

pressure differences that drive the ocean currents are on the order of one decibar over hundreds or 

thousands of kilometers. Horizontal variations in mass distribution create the horizontal variation in 

pressure in the ocean. Pressure is usually measured with an electronic instrument called a transducer. 

The accuracy and precision of pressure measurements is high enough that other properties such as 

temperature, salinity, current speeds, and so forth can be displayed as a function of pressure. 

However, the accuracy, about 3 dbar at depth, is not sufficient to measure the horizontal pressure 

gradients. Therefore other methods, such as the geostrophic method, or direct velocity 

measurements, must be used to determine the actual flow. Pressure sensors are also employed on 

the measurement of the sea level (or even swell). When used for this purpose, sensors must be 

placed at very low depth at a geodetically well defined point. The precision of these instruments 

usually reaches the millimeter and require a simultaneous measurement of the atmospheric pressure.  

Numerous pressure sensor technologies are available on the market. Only a small number fit these 

criteria. This section presents two of the sensors that are often encountered in oceanography. 

 

Piezoresistive pressure sensors 

Piezoresistive sensors use strain gauges that generate an electrical signal 

when deformed. Thus, the pressure changes suffered by a system can be 

monitored by measuring the electrical signals generated by the pressure 

mediated deformation of the strain gauge. Common technology types are 

Silicon (Monocrystalline), Polysilicon Thin Film, Bonded Metal Foil, Thick Film, 

and Sputtered Thin Film. Generally, the strain gauges are connected to form a 

Wheatstone bridge circuit to maximize the output of the sensor and to reduce 

sensitivity to errors. This is the most commonly employed sensing technology for general purpose 

pressure measurement. Generally, these technologies are suited to measure absolute, gauge, 

vacuum, and differential pressures. 

 

Piezoelectric pressure sensors 

Piezoelectric pressure sensors make use of the piezoelectric 

effect (generation of electricity by material deformation, 

strain,) in certain materials such as quartz to measure the 

strain upon the sensing mechanism due to pressure. In order 
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to improve the metrological characteristics of the sensors, certain manufacturers have made 

oscillators from them. By inserting quartz crystal electrodes into an oscillating electrical circuit, it is 

possible to move the frequency of the circuit if the blade is subject to compression. This technology 

is commonly employed for the measurement of highly dynamic pressures. 

4.1.12.1 Examples of real oceanic monitoring devices 

In order to respond to recommendations dictated by WOCE HPO, oceanographers [FM91] must have 

appropriate instruments at their disposal that are fit for in situ use. Their performance must be close 

to the limits that can be reached with the most advanced laboratory instruments. Conductivity–

temperature–depth (CTD) profilers have been created to achieve such limits. Today, CTDs are 

regularly used when measuring the profile of water columns. The carrier ship comes to a stop, the 

CTD descends vertically into the water with the help of a winch and temperature, conductivity and 

pressure are continually measured at a rate allowing the correct sampling of crossed water layers 

during phases of descent and ascent. 

SEABIRD PRESSURE sensor 

Strain Gauge: the SBE 29 [SBE14] pressure sensor, used on the SBE 25 SEALOGGER CTD, is a modular 

sensor consisting of a mechanical strain-gauge pressure transducer with thermistor temperature 

compensation. The SBE 29 measures absolute pressure in one of seven full-scale pressure ranges 

from 20 to 7000 meters depth. The sensor elements and their interface electronics are modular and 

self-contained, providing easy installation, service, and calibration An internal pressure sensor is 

mounted inside foam insulation near the bottom of the card file. A properly operating sensor exhibits 

a square wave frequency of 32 - 40 kHz at this point.  

IDRONAUT Pressure sensors [IDR14] 

PA-10: The Series PA-10 pressure transducers cover all pressure ranges from 100 mbar to 1000 bar. 

They have been produced for over 20 years.  These pressure transducers are in use world-wide in a 

variety of different applications. Main fields of application are: Level technology, pneumatics, 

hydraulics, avionics. A high-sensitivity piezoresistive silicon chip is used for pressure sensing. The chip 

is protected against ambient influences by a stainless steel housing sealed with a concentrically 

corrugated diaphragm. The housing is filled with silicone oil so as to ensure the transfer of the 

pressure from the diaphragm to the sensing component. All metal parts in contact with the pressure 

media are made of stainless steel 316L. The fully welded housing is vacuum-tight.  Each pressure 

transducer is subjected to comprehensive tests as to its pressure response and temperature 

characteristics. 

Highly precise pressure sensor: This high-precision 0,01 %FS pressure transmitter is based on the 

stable, floating piezoresisitive transducer and the newly developed XEMICS microprocessor with an 

integrated 16-bit A/D converter. Temperature dependency and nonlinearity of the sensor are 

mathematically compensated by the interfacing electronics. The output rate is 400 Hz. Accuracy and 

Precision: “Accuracy” is an absolute term, “Precision” a relative term. Deadweight testers are 

primary standards for pressure, where the pressure is defined by the primary values of mass, length 

and time. Higher class primary standards in national laboratories indicate the uncertainty of their 

pressure references with 70 to 90 ppM or close to 0.01%. Commercial deadweight testers used to 

calibrate the transmitters indicate an uncertainty or accuracy of 0.025 %. Below these levels, 

expression “Precision” is the ability of a pressure transmitter to be at each pressure point within 0.01 

%FS relative to these commercial standards. 

Disadvantages of current pressure sensors: 

The sensor technologies described earlier allow the accuracy required by oceanographic 

measurements to be achieved. When dynamic measurements are taken, however, errors can appear 

because of: 
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Problems with hysteresis. As the instrument rapidly increases in pressure, then returns to the surface, 

the load cell of the sensor does not instantly revert to its initial form.

Problems in temperature lags. Sensors used being compensated in temperature, this compensation 

can happen with lags or advances on the true temperature of the sensor as the instrument crosses 

zones of high thermal gradients, which then leads to errors in the measured and corrected pressure.

4.1.12.2 Pressure References 

[FM91] Fofonoff N.P., Millard R.C. (1991) Calculation of physical properties of seawater, WHP Operations and 

Methods, WHP (WOCE Hydrographic Program Office).

[IDR14] Idronaut Pressure Sensors 

http://www.idronaut.it/cms/view/products/sensors/pressure/s339 

[SBE14] Seabird SBE-29 Pressure Transducer

http://www.seabird.com/products/spec_sheets/29data.htm Accessed 01 Aug 201

 

4.1.13 pH 

Currently, the lack of accurate 

apart from very few exceptions, 

of natural pH variability. In order to predict future pH 

changes in the oceans, quality high temporal resolution pH 

data are needed.  

Ocean acidification is a pressing environmental problem 

that has gained widespread recognition as an early 

manifestation of coastal climate change. Observed changes 

in the marine carbonate system include a rise in the 

oceanic partial pressure of CO2 (pCO2)

and decrease in carbonate ion concentration due to the 

absorption of anthropogenic CO2. Very little is known 

about the inherent  variability in pCO2 in near shore 

marine waters or the relationships between ocean 

acidification, pCO2, and pH values in estuaries.

The hydrogen ion is a ubiquitous species encountered in 

most chemical reactions [KAG07]. It is

activity: 

The pH sensors are widely used in chemical and 

monitoring (water quality), blood pH measurements and laboratory pH measurements amongst 

others. The earliest method of pH measurement was by means of chemical indicators, e.g. litmus 

paper that changes its color in accordance to a solution’s pH. For example, when litmus is added to a 

basic  solution it turns blue, while when added to an acidic solution the resultant color is red. Since 

many chemical processes are based on pH, almost all aqua samples have their 

point. The most common systems for pH sensing are based upon either amperometric or 

potentiometric devices. The most popular potentiometric approach utilizes a glass electrode because 

of its high selectivity for hydrogen ions in a solutio

selective membranes, ion selective  field effect transistors, two terminal microsensors, fibre optic 

and fluorescent sensor, metal oxide and conductometric pH

developed [KAG07]. However, these types of devices can often suffer from instability or drift and, 

therefore, require constant re-calibration.
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29 Pressure Transducer 

http://www.seabird.com/products/spec_sheets/29data.htm Accessed 01 Aug 2014 

Currently, the lack of accurate in situ pH measurements, 

part from very few exceptions, limits our understanding 

of natural pH variability. In order to predict future pH 

changes in the oceans, quality high temporal resolution pH 

Ocean acidification is a pressing environmental problem 

that has gained widespread recognition as an early 

manifestation of coastal climate change. Observed changes 

in the marine carbonate system include a rise in the 

oceanic partial pressure of CO2 (pCO2), decrease in pH, 

and decrease in carbonate ion concentration due to the 

absorption of anthropogenic CO2. Very little is known 

about the inherent  variability in pCO2 in near shore 

marine waters or the relationships between ocean 

H values in estuaries. 

The hydrogen ion is a ubiquitous species encountered in 

most chemical reactions [KAG07]. It is quantified in terms of pH –the negative logarithm of its 

pH = - log aH+    (1) 

 

The pH sensors are widely used in chemical and biological applications such as environmental 

monitoring (water quality), blood pH measurements and laboratory pH measurements amongst 

others. The earliest method of pH measurement was by means of chemical indicators, e.g. litmus 

or in accordance to a solution’s pH. For example, when litmus is added to a 

basic  solution it turns blue, while when added to an acidic solution the resultant color is red. Since 

many chemical processes are based on pH, almost all aqua samples have their 

point. The most common systems for pH sensing are based upon either amperometric or 

potentiometric devices. The most popular potentiometric approach utilizes a glass electrode because 

of its high selectivity for hydrogen ions in a solution, reliability and straight forward operation. Ion 

selective membranes, ion selective  field effect transistors, two terminal microsensors, fibre optic 

and fluorescent sensor, metal oxide and conductometric pH-sensing devices have also been 

7]. However, these types of devices can often suffer from instability or drift and, 

calibration. 
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. As the instrument rapidly increases in pressure, then returns to the surface, 

. Sensors used being compensated in temperature, this compensation 

can happen with lags or advances on the true temperature of the sensor as the instrument crosses 

ones of high thermal gradients, which then leads to errors in the measured and corrected pressure. 

[FM91] Fofonoff N.P., Millard R.C. (1991) Calculation of physical properties of seawater, WHP Operations and 

Accessed 01 Aug 2014 

the negative logarithm of its 

biological applications such as environmental 

monitoring (water quality), blood pH measurements and laboratory pH measurements amongst 

others. The earliest method of pH measurement was by means of chemical indicators, e.g. litmus 

or in accordance to a solution’s pH. For example, when litmus is added to a 

basic  solution it turns blue, while when added to an acidic solution the resultant color is red. Since 

many chemical processes are based on pH, almost all aqua samples have their pH tested at some 

point. The most common systems for pH sensing are based upon either amperometric or 

potentiometric devices. The most popular potentiometric approach utilizes a glass electrode because 

n, reliability and straight forward operation. Ion 

selective membranes, ion selective  field effect transistors, two terminal microsensors, fibre optic 

sensing devices have also been 

7]. However, these types of devices can often suffer from instability or drift and, 
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4.1.13.1 The pH glass electrode 

A pH electrode is a potentiometric or electrochemical sensor that has a voltage output. A 

potentiometric sensor consists of two electrochemical cells or electrodes:  the measuring sensor and 

the Ag/AgCl reference sensor. The active part of a pH measuring electrode is the sensor glass 

membrane. The glass membrane can be manufactured in different shapes, depending on the 

application and is constructed from a special composition glass which senses the hydrogen ion 

concentration. This glass is mostly amorphous silicon dioxide (SiO2), with embedded oxides of alkali 

metals, mainly Na. It is made to be as thin as possible, about 0.1 mm thick To keep its electrical 

impedance as low as possible, the pH measuring electrode, which is sensitive to the hydrogen ion, 

develops a potential (voltage) directly related to the hydrogen ion concentration of the solution. The 

reference electrode provides a stable potential against which the measuring electrode is referred. 

When immersed in the solution, the reference electrode potential does not change with the 

changing hydrogen ion concentration. A solution in the reference electrode makes the electrical 

contact with the sample solution and the measuring electrode through a junction, completing the 

circuit.  Output of the pH measuring electrode changes with temperature (even though the process 

remains at a constant pH), according to the Nerst equation,   so a temperature sensor is necessary to 

correct it.   

4.1.13.2 Commercially available Marine pH Sensors  

The SBE pH sensor [SBE14] 

“The SBE 18 pH Sensor uses a pressure-balanced glass-electrode /Ag/AgCl-reference pH probe to 

provide in-situ measurements at depths up to 1200 meters (3900 ft). The replaceable pH probe is 

permanently sealed and is supplied with a soaker bottle attachment that prevents the reference 

electrode from drying out during storage. The sensor and associated interface electronics is a 

modular, self-contained package that is easy to install, service, and calibrate. 

The SBE 18 is intended for use as an add-on auxiliary sensor for profiling CTDs.  Power / signal 

interface cables and mounting hardware are available separately. The SBE 18's interface circuits 

buffer and offset the differential glass-electrode/reference potential to produce a high-level pH-

dependent output voltage. Computation of pH in engineering units is typically done using a specific  

software. Sea-Bird calibrates the pH sensor against precision buffer solutions (4, 7, and 10 pH ± 0.02 

pH). These calibration results are tabulated on a certificate furnished with each sensor.” This 

combined pH/reference sensor, in practice, is the “traditional” 12 mm diameter pH electrode 

commonly used in the laboratories. 

The ADM pH sensor [ADM14] 

“The pH sensor for depths of up to 6,000 m consists of a pre-amplifier covered by a titanium housing 

and a separate pH and a reference electrode. This complete sensor has been developed for the 

external interfacing to CTD probe systems and can be used for monitoring or profiling. Differing from 

the standard single tube design, a separate 

reference electrode is used with a 

silver/silver chloride cell in a chloride gel. 

Contact with the unknown solution is made 

through a small hole in the tip of the sensor. 

This minimises and stabilises the potential 

between electrolyte and sample.” The pH and separate reference sensors installed are made by 

Idronaut. 

 

The problem: 

Measuring pH in sea water with glass electrodes demands a special sensor construction to avoid 

mistakes caused by the high ionic strength of the sea water. 

Figure 4.1.61. ADM pH Sensor The AMT pH-

combined sensor for submersible probe 
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Troubles may also occur when using conventional reference electrodes with ceramic diaphragm 

because of the high and variable junction potentials which are developed at pressures. This was the 

reason, that up to now pH electrodes have been offered only for depths of up to 1,500 m. Besides, 

sometimes it was a little bit inconvenient to use two channels of the pro

measurement - one for the glass electrode and another one for the reference electrode.

 

The solution - a new combined electrode for submersible probe systems

with the signal stability during pressure changes. The interface reference electrode/sample is realized 

in this case by means of a hole diaphragm. Inside the reference electrode follows a KCl containing gel 

with a special built-in second diaphragm containing the Ag/AgCl

chloride solution. The pH-combined sensor for the 

sea version (up to 600 bar) without integrated temperature sensor.”

The limitation of this approach is that, since the pH and reference electrodes are combined, there is 

not too much space for the KCl gel of the reference electrode and so this sensor can have a limited 

lifetime for monitoring.  

The combined pH/reference sensor 

The pH and reference electrodes are usually built together into one 

device called “the combined pH sensor for laboratory application”. In the 

past decades, these combined pH sensors have been modified and 

installed in CTD multiparameter probes in the attempt to get 

ocean data. One company (Idronaut), more than 30 years ago, decided 

to go back and use again the original separate pH and reference 

electrodes and an optional and innovative NaCl gel reference sensor,  

designed for long-term monitoring in the ocea

descriptions. 

The Idronaut pH  sensor [IDR14a]

The measurement of pH in seawater demands high accuracy since seawater has a high ionic strength 

and is weakly buffered. The pH range in the oceans is particularly restricted and, only in very special 

cases, the observed values are outside the range of 7.8

extends from 6.5 to 9.0 pH.  Some problems have always arisen from the use of traditional reference 

sensors with porous diaphragms, when measuring the pH in seawater, in 

particular at pressures in excess of a few ba

junction potentials that are generated. 

body and a very low-impedance “blue” pH sensitive glass tip, which can 

withstand pressures up 700 bar. The sensor head is made of titanium.  During 

all periods of inactivity, the glass tip must be fitted with a white plastic 

hydrating cap filled with the pH 7 Buffer Solution, or simply with clean water. 

This is to prevent the pH-sensitive glass from dehydration, which slows down 

the sensor response.  

The Idronaut reference sensor [IDR14b]

The Idronaut reference sensor is in contact with the unknown solution by 

means of a small hole in the glass tip. This minimizes and stabilizes the 

junction potential between the inner gel electrolyte and the liquid to

Figure 4.1.62. The AMT pH-combined sens

for submersible probe system 
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Troubles may also occur when using conventional reference electrodes with ceramic diaphragm 

high and variable junction potentials which are developed at pressures. This was the 

reason, that up to now pH electrodes have been offered only for depths of up to 1,500 m. Besides, 

sometimes it was a little bit inconvenient to use two channels of the pro

one for the glass electrode and another one for the reference electrode.

a new combined electrode for submersible probe systems 

The pH-combined sensor consists of a reference 

electrode and a pH sensitive glass electrode in 

one housing to save one free channel of the 

probe system. To realize accurate measurements 

in the deep sea too, a double diaphragm for the 

reference electrode was used to avoid problems 

with the signal stability during pressure changes. The interface reference electrode/sample is realized 

in this case by means of a hole diaphragm. Inside the reference electrode follows a KCl containing gel 

second diaphragm containing the Ag/AgCl-reference system in a potassium 

combined sensor for the in-situ determination of pH is available as deep 

sea version (up to 600 bar) without integrated temperature sensor.” 

this approach is that, since the pH and reference electrodes are combined, there is 

not too much space for the KCl gel of the reference electrode and so this sensor can have a limited 

The combined pH/reference sensor  

reference electrodes are usually built together into one 

device called “the combined pH sensor for laboratory application”. In the 

past decades, these combined pH sensors have been modified and 

installed in CTD multiparameter probes in the attempt to get valuable 

ocean data. One company (Idronaut), more than 30 years ago, decided 

to go back and use again the original separate pH and reference 

electrodes and an optional and innovative NaCl gel reference sensor,  

term monitoring in the oceans.  See the below 

[IDR14a] 

The measurement of pH in seawater demands high accuracy since seawater has a high ionic strength 

and is weakly buffered. The pH range in the oceans is particularly restricted and, only in very special 

cases, the observed values are outside the range of 7.8 and 8.4 pH and, in some seas, the range 

extends from 6.5 to 9.0 pH.  Some problems have always arisen from the use of traditional reference 

sensors with porous diaphragms, when measuring the pH in seawater, in 

particular at pressures in excess of a few bars, due to the high and variable 

junction potentials that are generated. The Idronaut pH sensor has a glass 

impedance “blue” pH sensitive glass tip, which can 

withstand pressures up 700 bar. The sensor head is made of titanium.  During 

all periods of inactivity, the glass tip must be fitted with a white plastic 

hydrating cap filled with the pH 7 Buffer Solution, or simply with clean water. 

sensitive glass from dehydration, which slows down 

[IDR14b] 

reference sensor is in contact with the unknown solution by 

means of a small hole in the glass tip. This minimizes and stabilizes the 

junction potential between the inner gel electrolyte and the liquid to be 

combined sensor 
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Troubles may also occur when using conventional reference electrodes with ceramic diaphragm 

high and variable junction potentials which are developed at pressures. This was the 

reason, that up to now pH electrodes have been offered only for depths of up to 1,500 m. Besides, 

sometimes it was a little bit inconvenient to use two channels of the probe system for pH 

one for the glass electrode and another one for the reference electrode. 

combined sensor consists of a reference 

electrode and a pH sensitive glass electrode in 

one housing to save one free channel of the 

probe system. To realize accurate measurements 

in the deep sea too, a double diaphragm for the 

s used to avoid problems 

with the signal stability during pressure changes. The interface reference electrode/sample is realized 

in this case by means of a hole diaphragm. Inside the reference electrode follows a KCl containing gel 

reference system in a potassium 

determination of pH is available as deep 

this approach is that, since the pH and reference electrodes are combined, there is 

not too much space for the KCl gel of the reference electrode and so this sensor can have a limited 

The measurement of pH in seawater demands high accuracy since seawater has a high ionic strength 

and is weakly buffered. The pH range in the oceans is particularly restricted and, only in very special 

and 8.4 pH and, in some seas, the range 

extends from 6.5 to 9.0 pH.  Some problems have always arisen from the use of traditional reference 
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measured. The reference sensor is a Silver/Silver Chloride cell in a saturated potassium chloride solid 

gel and the sensor head is made of titanium. The glass body of the sensor is fitted with a plastic 

hydrating cap filled with the Idronaut Reference Sensor Storage Solution based on 3-mol KCl (or 

NaCl) or, if not available, even with KCl saturated solution to avoid drying of the gel when not in use. 

Idronaut has been providing these pH and reference sensors to ADM, AML, RBR, Valeport, others for 

a long time, as declared in their web sites. 

The Idronaut NaCl reference sensor [IDR14b] 

Several years ago, Idronaut developed an innovative NaCl gel reference 

electrode to minimize the diffusion potential at its junction, which causes 

systematic pH errors on seawater measurements and related calibration. 

When a reference electrode is immersed in a calibration or in a measuring 

solution, some liquid junction potential is generated by any salt flowing from the 

inside of the reference electrode into the solution and/or vice versa, as below 

described. If the reference electrode is based, as in most cases, on a KCl 

saturated or a 3-mol solution or gel and is immersed in a seawater sample, KCl 

flows from the reference electrode into seawater and NaCl flows into the 

reference electrode through its junction (ceramic, fibre or simply a small hole, 

when a solid gel electrolyte is placed inside the reference electrode), due to the 

high difference in concentrations of both metals between the internal 

electrolyte of the reference electrode and the seawater media. In such a case, the junction potential, 

which is caused by the cations flow, is the greatest as both potentials are summed, their flow being 

opposite.  Therefore, in order to obtain accurate pH measurements, the calibration buffer and the 

measuring solution must have, in particular, very similar salt composition so that the junction 

potential generated is practically identical and becomes nullified during the pH zero calibration 

phase.  

In this case of seawater measurements, some additional advantages are obtained by using a NaCl 

reference electrode instead of the “traditional” KCl reference electrode. In fact, the NaCl flow outside 

is small being minimal the difference of concentration of NaCl of the two solutions and, in addition,  

in one way only both during the calibration and the measuring phases; the residual junction potential 

is nullified during the pH zero calibration phase. Another important advantage of using the NaCl 

reference electrode for seawater determination is that it will last much longer than any other high 

quality KCl reference electrode as its internal NaCl salt will not be “stripped” during prolonged 

measurements and continuous seawater monitoring, and NaCl seawater salt will not contaminate 

the inner AgCl half-cell with the passing of time, thus causing a prolonged drift of up to about 30 mV 

when KCl is completely replaced by NaCl. A particular construction is adopted as one or two thin 

glass concentric tubes will be installed inside the NaCl gel electrode so as to avoid that the inner Ag-

NaCl half-cell soon becomes contaminated because of the near junction hole. This mechanical 

approach, which to the best of our knowledge is innovative, makes it possible to obtain similar 

performance of a very long and cumbersome reference electrode in small dimensions.   

The ISFET  pH sensor 
ISFET (Ion Sensitive Field Effect Transistor) is a 10-year 

mature technology applied to industrial and laboratory 

applications that is now attracting interest for the 

environmental pH monitoring too. This type of sensor, 

based on the Ion sensitive field effect transistor,  is 

combined with integrated reference sensor. The ISFETs are 

sensible to the sample temperature and therefore a 

thermal compensation is mandatory to achieve results 

comparable to the glass pH electrode. The advantages of ISFET include robustness, stability and 
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precision, which make it suitable for ocean pH measurement at low pressure. A novel sensor based 

on the ISFET technology is the SEAFET pH sensor

Bay Aquarium Research Institute (MBARI) and Dr Todd Martz of the Scripps Institution of 

Oceanography, University of California San Diego and presently c

Satlantic [SAT14. 

 

SeaFET Ocean pH-Sensor 

The SeaFET Ocean pH Sensor is designed to accurately measure pH in both marine and freshwater 

environments. Satlantic has collaborated with MBARI and Scripps to make the instrument available 

to the scientific community.  The SeaFET ut

technology which has been used extensively for industrial, clinical and environmental pH monitoring. 

The ISFET offers unsurpassed robustness, stability and precision that together, represents a 

substantial improvement in performance over traditional pH sensors. With data logging, scheduling 

and internal battery pack, the SeaFET provides flexible 

deployment options. The SeaFET can be deployed 

autonomously or integrated with existing sensors and 

systems. The sensing element of the SeaFET™

sensitive field effect transistor (ISFET) which is potentially  

measured against a reference electrode bearing a liquid junction (internal 

reference) and against a solid state reference electrode,  without a liqu

junction (external reference).

SP100-SM  QUIMA  pH sensor

SensorLab was established in 2011, and QUIMA group prototypes gave birth to 

the first commercial sub

with this sensor led to the new 

the previous generation of sensors. These improvements included a 40 percent 

reduction in the sensor power consumption, thanks to a redesigned higher 

efficiency electronic controller, and a new low

corrosion resistance has also been improved with the addition of an epoxy 

coating, plus polyurethane finishing on top of the 6060 hard anodized aluminum 

housing.  

The SP101-SM is a rugged and extremely stable pH sensor for shallow waters, des

oceanographic research. The design of the SP101

scale, but autonomously deployed in the ocean, allowed long

intervention.  

4.1.13.3 pH References 

[ADM14] ADM Sensors 

http://www.adm-elektronik.com/senors.html Accessed 01 August 2014

[IDR14a] Idronaut pH Sensor 

http://www.idronaut.it/products-ph

[IDR14b] Idronaut Reference Sensors

http://www.idronaut.it/cms/view/products/sensors/ph

[SEN14]SensorLab SP101-SM 

http://www.sensorlab.es/ph-sensor

[SBE14] SBE18 pH Sensor 

http://www.seabird.com/products/spec_sheets/18data.htm

4.1.14 Partial Pressure Of Carbon

Measuring dissolved gases is always a challenging task. Taking samples for lab analysis is complex and 

any interaction with the sample will change the concentration, especially while working with 
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precision, which make it suitable for ocean pH measurement at low pressure. A novel sensor based 

on the ISFET technology is the SEAFET pH sensor,  developed by Dr Kenneth Johnson of the Monterey 

Bay Aquarium Research Institute (MBARI) and Dr Todd Martz of the Scripps Institution of 

Oceanography, University of California San Diego and presently commercialized by a USA company, 

The SeaFET Ocean pH Sensor is designed to accurately measure pH in both marine and freshwater 

environments. Satlantic has collaborated with MBARI and Scripps to make the instrument available 

to the scientific community.  The SeaFET utilizes Ion Sensitive Field Effect Transistor (ISFET) 

technology which has been used extensively for industrial, clinical and environmental pH monitoring. 

The ISFET offers unsurpassed robustness, stability and precision that together, represents a 

al improvement in performance over traditional pH sensors. With data logging, scheduling 

and internal battery pack, the SeaFET provides flexible 

deployment options. The SeaFET can be deployed 

autonomously or integrated with existing sensors and 

he sensing element of the SeaFET™ is an ion 

sensitive field effect transistor (ISFET) which is potentially  

measured against a reference electrode bearing a liquid junction (internal 

reference) and against a solid state reference electrode,  without a liqu

junction (external reference). 

SM  QUIMA  pH sensor [SEN14] 

SensorLab was established in 2011, and QUIMA group prototypes gave birth to 

the first commercial submarine sensor, the SP100-SM . The experience acquired 

with this sensor led to the new SP101-SM, packing several improvements over 

the previous generation of sensors. These improvements included a 40 percent 

reduction in the sensor power consumption, thanks to a redesigned higher 

efficiency electronic controller, and a new low-power LED ligh

corrosion resistance has also been improved with the addition of an epoxy 

coating, plus polyurethane finishing on top of the 6060 hard anodized aluminum 

SM is a rugged and extremely stable pH sensor for shallow waters, des

oceanographic research. The design of the SP101-SM allowed the same accuracy obtained on lab

scale, but autonomously deployed in the ocean, allowed long-term measurements without human 

elektronik.com/senors.html Accessed 01 August 2014 

ph-sensors-water-quality 

[IDR14b] Idronaut Reference Sensors 

http://www.idronaut.it/cms/view/products/sensors/ph-reference/s338  Accessed 01 August 2014

sensor-sp101-sm  Accessed 01 August 2014 

http://www.seabird.com/products/spec_sheets/18data.htm  Accessed 01 August 2014 

Partial Pressure Of Carbon Dioxide (pCO2) measurements  

Measuring dissolved gases is always a challenging task. Taking samples for lab analysis is complex and 

any interaction with the sample will change the concentration, especially while working with 
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precision, which make it suitable for ocean pH measurement at low pressure. A novel sensor based 

,  developed by Dr Kenneth Johnson of the Monterey 

Bay Aquarium Research Institute (MBARI) and Dr Todd Martz of the Scripps Institution of 

ommercialized by a USA company, 

The SeaFET Ocean pH Sensor is designed to accurately measure pH in both marine and freshwater 

environments. Satlantic has collaborated with MBARI and Scripps to make the instrument available 

ilizes Ion Sensitive Field Effect Transistor (ISFET) 

technology which has been used extensively for industrial, clinical and environmental pH monitoring. 

The ISFET offers unsurpassed robustness, stability and precision that together, represents a 

al improvement in performance over traditional pH sensors. With data logging, scheduling 

measured against a reference electrode bearing a liquid junction (internal 

reference) and against a solid state reference electrode,  without a liquid 

SensorLab was established in 2011, and QUIMA group prototypes gave birth to 

. The experience acquired 

SM, packing several improvements over 

the previous generation of sensors. These improvements included a 40 percent 

reduction in the sensor power consumption, thanks to a redesigned higher 

power LED light source. The 

corrosion resistance has also been improved with the addition of an epoxy 

coating, plus polyurethane finishing on top of the 6060 hard anodized aluminum 

SM is a rugged and extremely stable pH sensor for shallow waters, designed for 

SM allowed the same accuracy obtained on lab-

term measurements without human 

ccessed 01 August 2014 

Measuring dissolved gases is always a challenging task. Taking samples for lab analysis is complex and 

any interaction with the sample will change the concentration, especially while working with 
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pressurised samples from different depths. Therefore, reliable sensors for in-situ measurements 

need to be used. In addition, not every sensor is suitable for every application. A “cheap” sensor used 

for industrial boundary value detection will most of the time not meet the requirements (in terms of 

resolution and accuracy) for a scientific application. Furthermore, Sensors for salt water are always 

exposed to extreme conditions and special engineering for reliable and long lasting solutions is 

required. For autonomous application the power consumption of a sensor is always a limiting factor 

and need to be as low as possible.  

The partial pressure of CO2 in water is a parameter which is hardly directly measurable. Methods to 

determine the pCO2 of water directly are high pressure liquid chromatography (HPLC), mass 

spectrometer analyses and measurements based on colorimetric methods. There are different 

methods to determine the pCO2 in water and seawater indirectly. The first one is to measure the 

pCO2 value of gas which is in equilibrium with a water sample. The second one is to measure the 

pCO2 concentration as a change in pH using an electrode. Both methods are based on an 

equilibration measurement. The third method is based on a colorimetric analysis. The fourth indirect 

method is to estimate the pCO2 from the sea surface temperature.  

• HPLC – Laboratory measurement. 

• Colorimetric analysis – In situ measurement. 

• Severinghaus electrode – In situ measurement. 

• pCO2 gas analyser – In situ measurement. 

• pCO2 estimation using sea surface temperature – correlation method. 

Each technology/method has its advantages and disadvantages which are briefly introduced below. 

 

In addition, it is important to point out that most of the available systems deliver data which need to 

be corrected by different parameters, such as water temperature (for flow-through systems at the 

water intake and at the sensor), salinity and pressure. Each parameter needs to be measured with 

high accuracy at the right place in parallel to the pCO2 measurement.    

Currently available instrumentation using these methods are available from the following suppliers: 

Battelle, Franatech, ,General Oceanics, IDRONAUT, NKE instrumentation, OxyGuard International, 

SubCtech, Sunburst and Turner. 

4.1.14.1 High pressure liquid chromatography (HPLC) 

The HPLC is used to identify and quantify each component of a sample. It relies on pumps to pass a 

pressurized liquid solvent containing the sample mixture through a column filled with a solid 

adsorbent material. Each component in the sample interacts slightly differently with the adsorbent 

material, causing different flow rates for the different components and leading to the separation of 

the components as they flow out the column. Due to the small sample amount separated in 

analytical HPLC, typical column dimensions are 2.1–4.6 mm diameter, and 30–250 mm length. 

This method is used in laboratories and needs a lot of know-how from the person handling the 

sample.  

4.1.14.2 Colorimetric analysis 

The colorimetric analysis uses a water sample which is prepared with a reagent and different 

wavelength to determine the concentration of pCO2. This method determines a quantitative, physical 

relationship between colour intensity and concentration of the solved matter.12 

The advantages of this method are the high accuracy and the long-time stability. The use of reagents 

is a disadvantage, especially when the system is difficult to reach and the reagent needs to be 

replaced often. The disposal of a sample contaminated with some reagent is always an issue which 

needs to be considered when used on an autonomous system.  

Systems working with this method are from NKE and Sunburst. 

                                                           
12

 http://www.spektrum.de/lexikon/biologie/kolorimetrie/36710 accessed on 23 July 2014 
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The nke instrumentation Carioca system 
13

 

CARIOCA is an automated drifting buoy that measures the partial pressure of dissolved CO2 in 

seawater in order to quantify air/ocean exchanges. pCO2 is measured in liquid phase by colorimetry 

on a reagent using a 3-wavelength spectrophotometer with a 4 µatm accuracy. 

The buoy is autonomous, data is sent via the ARGOS satellite system, which also controls the 

positioning. The buoy's autonomy is one year based on an hourly measurement rate. 

Measuring campaigns have been carried out in the Mediterranean, Greenland Sea, Equatorial Pacific 

and the Antarctic. The CARIOCA project is part of the EUREKA EU 819 programme. 

The Sunburst Sensors SAMI-CO2 
14

 

• Measures the partial pressure of carbon dioxide pCO2 in water from 150-700 μatm (other 

ranges available by request) 

• Uses a highly precise and stable colorimetric reagent method 

• Provide researchers with valuable in-situ time series data 

• Deployable to depths up to 600 meters 

• Can be deployed in the ocean or in freshwater 

• Long-term deployments - can run for more than a year taking hourly measurements 

• Can support up to 3 external instruments such as PAR, dissolved oxygen, chlorophyll 

fluorometer, or CTD 

• Can support inductive modems or external loggers if required.  

• Biofouling Package available for deployments in productive environments 

  

                                                           
13

 http://www.nke-instrumentation.com/products/profilers/surface-drifting-buoys/carioca.html?m=0 accessed on 23 July 2014 

14
 http://www.sunburstsensors.com/products/oceanographic-carbon-dioxide-sensor.html accessed on 23 July 2014 
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Table 13: SAMI-CO2 Performance Parameters 

Typical calibration range* 150-700 μatm 

Deployment duration ~10,000 measurements 

Response time ~5 minutes 

Accuracy** +/- 3 μatm 

Precision <1 μatm 

Long term drift <1 μatm units over 6 months 

Thermistor accuracy, precision 0.1° C,  +/- 0.01º C 

Dimensions (housing length, 

diameter) 
55 cm, 15.2 cm 

Weight in air/seawater 7.6 kg / 1.1 kg 

 

4.1.14.3 pCO2 Gas Analyser 

To get the pCO2 value of water samples (continuously or from a single sample) for gas analysis, they 

need to be in equilibrium with a carrier gas and the pCO2 of the gas is measured. 

Equilibration  

To reach equilibrium between a gas and water four different kinds of equilibrators are used (Figure  

and Figure ). The aim of the first three types is to get a maximum surface (phase boundary) between 

the gas and the water for an optimal exchange. The fourth equilibrator is using a membrane to 

separate the water and the gas but still enables an exchange though it.  

Shower type (a): The water is spread in small water drops into a chamber filled with carrier gas. 

Bubble Weiss type (b): The carrier gas is bubbled through a frit into the water (in many small 

bubbles). 

Laminar flow type (c): Both types of equilibrators mentioned above have a curved surface as phase 

boundary. However, the “Laminar flow type” equilibrator has a constant flow of water and of carrier 

gas. These flows are in contact, but the direction of the flow is in the opposite direction, the phase 

boundary is flat. [Koe95] 

 

Figure 4.1.63. Schematic representation of the most common equilibrator set ups: a) Shower type, b) 

Bubble Weiss type, c) Laminar flow type. 

Flat-Membrane Equilibrator: The water and the gas are separated by a semi-permeable membrane 

which allows CO2 as well as H2O molecules to pass through and allows therefore an equilibration. The 

materials for theses membranes are silicon and silicon-composites. The thickness of the membrane 

has an influence of the mechanical and chemical properties in terms of exchange rate and pressure 

resistance. [HCT04] 
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Figure 4.1.63. Picture of flat-membrane equilibrator for flow

The advantages/disadvantages are listed in Table X

Table 14. Advantages/Disadvantages of equilibrators

Equilibrator A 

Size Big 

Suitable for flow-through 

systems 

Yes 

Suitable for in-situ under 

water measurements 

No 

Effected by sediments Yes, might cause 

damage to the 

analyser

Effected by biofouling Yes 

 

The gas used for the analyses is either exchanged every time after measured (open cycle system) or 

reused all the time (closed cycle system). The closed cycle has an advantage for small changes 

because of the pre-equilibration; however, for bigger changes an open system equilibrat

[Koe95, HCT04] 

Analysis of the gas 

The equilibrated gas can be either analysed with a gas

infrared measurements.   

Gas-phase chromatograph: The CO

this method the volume of the sample has to be known and the time to process a single sample is 

long. To take a sample for this analyses special equipment and knowledge is needed. [Koe95]

Infrared: The infrared method is one of the commonly used methods and based on the absorption of 

energy by the CO2 inside the gas phase. The analyser correlates the detected, not absorbed, rays with 

the values from a reference channel [GKR03]. This method is appl

Biosciences®. 

Cavity-ring-down-Spectroscopy:

that enables measurement of absolute optical extinction by gashouse samples that scatter and 

absorb light. A typical CRDS setup consists of a laser that is used to illuminate a high

cavity, which in its simplest form consists of two highly reflective mirrors. When the laser is in 

resonance with a cavity mode, intensity builds up in the cavity due to cons

laser is then turned off in order to allow the measurement of the exponentially decaying light 

intensity leaking from the cavity. During this decay, light is reflected back and forth thousands of 
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membrane equilibrator for flow-through application (SubCtech).

The advantages/disadvantages are listed in Table X 

Advantages/Disadvantages of equilibrators 

B C 

Big Big  

Yes Yes 

No No 

Yes, might cause 

damage to the 

analyser 

Yes, might cause 

damage to the 

analyser 

Yes, might 

cause damage 

to the analyser 

Yes Yes 

yses is either exchanged every time after measured (open cycle system) or 

reused all the time (closed cycle system). The closed cycle has an advantage for small changes 

equilibration; however, for bigger changes an open system equilibrat

The equilibrated gas can be either analysed with a gas-phase chromatograph or detectors based on 

The CO2 is reduced with hydrogen to methane, which is detected. For 

this method the volume of the sample has to be known and the time to process a single sample is 

long. To take a sample for this analyses special equipment and knowledge is needed. [Koe95]

The infrared method is one of the commonly used methods and based on the absorption of 

inside the gas phase. The analyser correlates the detected, not absorbed, rays with 

the values from a reference channel [GKR03]. This method is applied by analyser

Spectroscopy: This method is a highly sensitive optical spectroscopic technique 

that enables measurement of absolute optical extinction by gashouse samples that scatter and 

CRDS setup consists of a laser that is used to illuminate a high

cavity, which in its simplest form consists of two highly reflective mirrors. When the laser is in 

resonance with a cavity mode, intensity builds up in the cavity due to constructive interference. The 

laser is then turned off in order to allow the measurement of the exponentially decaying light 

intensity leaking from the cavity. During this decay, light is reflected back and forth thousands of 
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through application (SubCtech). 

d 

Small 

Yes 

Yes 

Yes, might 

cause damage 

No influence on 

measurement 

quality 

Strong biofouling 

might slow down 

the transfer through 

the membrane 

yses is either exchanged every time after measured (open cycle system) or 

reused all the time (closed cycle system). The closed cycle has an advantage for small changes 

equilibration; however, for bigger changes an open system equilibrates faster. 

phase chromatograph or detectors based on 

is reduced with hydrogen to methane, which is detected. For 

this method the volume of the sample has to be known and the time to process a single sample is 

long. To take a sample for this analyses special equipment and knowledge is needed. [Koe95] 

The infrared method is one of the commonly used methods and based on the absorption of 

inside the gas phase. The analyser correlates the detected, not absorbed, rays with 

analysers from LI-COR 

This method is a highly sensitive optical spectroscopic technique 

that enables measurement of absolute optical extinction by gashouse samples that scatter and 

CRDS setup consists of a laser that is used to illuminate a high-finesse optical 

cavity, which in its simplest form consists of two highly reflective mirrors. When the laser is in 

tructive interference. The 

laser is then turned off in order to allow the measurement of the exponentially decaying light 

intensity leaking from the cavity. During this decay, light is reflected back and forth thousands of 
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times between the mirrors giving an effective path length for the extinction on the order of a few 

kilometers. 

If something that absorbs light is placed in the cavity, the amount of light decreases faster—it makes 

fewer bounces before it is all gone. A CRDS setup measures how long it takes for the light to decay to 

1/e of its initial intensity, and this "ringdown time" can be used to calculate the concentration of the 

absorbing substance in the gas mixture in the cavity. 15  These methods are applied in systems from 

Los Gatos and Picarro, Inc.. However, currently they are not implemented in the available 

commercial salt-water sensors.  

The infrared and cavity-ring-down-spectroscopy have a lot of advantages in terms of reliable results 

and the quick response time. Most of the time the analyser is connected directly to the equilibrator 

and the gas is pumped through the analyser and no manual sample taking is needed (reduction of 

contamination risks). However, there are although some disadvantages in terms of size, weight and 

price for the analyser used for scientific applications. Especially cavity-ring-down- spectroscopy 

analyser have a high power consumption (250W). Infrared and cavity-ring-down-spectroscopy 

analyser are initially designed high resolution atmospheric measurements. When lower resolution 

and data quality is needed (e.g. for aquaculture and leak detection) less expensive industrial sensors 

(e.g. for smoke detection) are implemented (e.g. from Edinburgh Inc.). The internally used analyser 

mainly determines the accuracy and precision of the whole sensor.  

The General  Oceanics pCO 2  Analyser 
16

 

General Oceanics supplies complex, autonomous, flow-through pCO2 measurement systems for 

scientific research since 1999. The actual version is Model 8050. The Analyser (normally Li-COR 

analyser, infrared method) is not included and need to be bought and installed separately by the 

owner of the system. For this system a shower type 

equilibrator is used. The resolution and accuracy is 

depending on the analyser bought and the calibration gases 

(calibration is recommended several times a day).   

Specifications: 

• Wet Box: Length 24 inch (61 cm) Width 24 inch (61 

cm) Depth 10 inch (25.4 cm)  

• Dry Box: Length 24 inch (61 cm) Width 24 inch (61 

cm) Depth 10 inch (25.4 cm) 

• Satellite Box: Length 14 inch (35.6cm) Width 10.5 inch 

(26.7cm) Depth 8 inch (20.4cm) 

 

• Note: The User must supply the following items: 

1. Main water intake pump and plumbing (interfaces to the wet box), see pump and 

through hull intake plumbing option above. 

2. Calibration gases and connecting lines. 

3. CO2 analyser (Licor 6262 or 7000 recommended) 

The Model 8050 pCO2, Measuring System is an autonomous analytical system for measuring carbon 

dioxide in oceanic surface water. The system is modeled after instruments previously built by Craig 

Neill/University of Bergen. The system may be used on a ship underway or, on a variety of at -sea 

platforms. The present pCO2 system operates fully automatically and consists of:  

• An equilibrator that balances the CO2 in seawater with a headspace gas that is analyzed 

                                                           
15

 https://www.tu-braunschweig.de/pci/forschung/gericke/forschung/crds accessed on 23 July 2014 

16
 http://www.generaloceanics.com/product.php?productid=1462&cat=69&page=1#tabs accessed on 23 July 2014 

Figure 4.1.64. Flow-through system 

by General Oceanics 
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• An infrared analyser (User Supplied) to quantify the CO2 concentration in the equilibrator 

headspace and marine air 

• A network of valves and pumps that select, control, and monitor flows of seawater, 

equilibrator headspace, marine air, and CO2 gas standards 

• An on deck enclosure that provides a GPS signal, atmospheric pressure measurement and 

satellite data transfer. 

• An integrated notebook computer, computer interface, and software to control valves and 

pumps and to log data (pressures, temperatures, flows, analyser response, date, time and 

position). 

The system consists of three enclosures: the dry box, the wet box, and the satellite deck box. The dry 

box contains a Li-COR CO2 analyser (user supplied), electrically actuated valves to control the gas flow 

through the analyser, a gas flow sensor, computer and interface with solid-state relays. There are 

inlets for up to eight gases. Each inlet has a needle valve for adjusting the flow rate. A three-way 

solenoid valve directs the gas exiting the analyser towards a vent or towards the equilibrator (when 

analyzing the equilibrator headspace). The dry box utilizes an RS485 module and cables to 

communicate with the other two boxes.” 

The SubCtech pCO 2  Analyser 
17

 

Since 2007 the existing flow-through systems were analyzed and weaknesses and strengths 

determined. The following issues were identified and addressed by SubCtech and successfully 

realized.  

- Reducing the size 

- Reducing the complexity 

- Reducing the maintenance 

- Lowering the operation cost 

- Increase the robustness 

- Reliable autonomous application 

- High precision CO2-analyser already included 

- High quality after sale support 

- Installation and training support 

For flow-through as well as for in-situ measurements sensors were developed. The used analyser are 

from the LI-840x (for water measurements) and Li-7200x (for air measurements) from Li-COR® 

Biosciences and already included. Other analysers like 

CO2 analysers (e.g. Picarro) can be included instead of 

Li-COR on request. The equilibrator used is a flat-

membrane type, which allows the system to be quite 

small.  

•  LI-COR® Biosciences LI-840x CO2/H2O 

sensor fully included: Highest accuracy due 

to automatic temperature, pressure and 

H2O compensation - dual-wavelength NDIR 

detector 

• Patented robust Flat-Membrane-

Equilibrator cassette – lifetime 10+ years, 

easy to handle  

• Hand-held, easy to operate and maintain 

system with intuitive overall design. Low maintenance costs! No special setup required. 

Just plug’n’play. 

                                                           
17

 http://subctech.eu/empemco2_monitoring/pco2_analyzer/  Accessed on 14 August 2014 

Figure 4.1.65. pCO2 analyzer by SubCtech 
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• Robust, versatile and compact housing for offshore and laboratory applications. No need 

for special filters. Just provide water up to 20 l/min – max. 6 Bar (best: 5-10 l/min – 1 

Bar) 

• High time series stability due to obligatory standard offset zeroing. Optional auto- or 

manual span gas calibration or reference gas measurements supported. 

• SmartDI® (Smart Data Interface) Datalogger concept: easy instrument integration 

for e.g. Aanderaa Optode; TriOS, Turner or WET Labs Fluorometer; Seabird or Sea&Sun 

CTD and Thermosalinograph; SYSTEA nutrient analyser any may other. 

• Optionally connection of external devices through RS-485 bus, e.g. meteorology sensors 

or sea- water pumps. A full water supply is supported. 

• Real-time data interface NMEA-0183: simple ASCII protocol, configurable to your needs. 

• 12/24V dc or 110/230V ac power supply  

• Data logging on 2GB CF (Compact-Flash) Card. Automatic report of interferences and 

initiation of diagnostic routines. Redundant data and configuration files. 

• Optional GPS geo reference for all data and position event control 

The Battel le pCO 2  Analyser 
18

 

In 2009 Battelle (USA) was chosen by NOAA's (National Oceanic and Atmospheric Administration) 

Pacific Marine Environmental Lab (PMEL) to meet the requirements for a sensor to detect air-sea 

CO2 fluxes.   

The self-contained, modular design has the ability to be deployed on a wide variety of platforms. It is 

designed to operate unattended for more than 12 months at a time. Currently, more than a dozen 

systems are placed on a variety of buoys around the world. NOAA is using this system to develop a 

global array of moored observation systems to determine air-sea flux in support of the Global Ocean 

Observing System (GOOS).This new analytical instrument measures the partial pressure of carbon 

dioxide (pCO2) in the ocean and atmosphere, which is needed to understand the global ocean uptake 

of atmospheric CO2. The need for ocean carbon measurements is becoming increasingly important 

because high levels of carbon dioxide in the oceans have led to ocean acidification in surface waters, 

which could have significant effects on a variety of marine organisms and ecosystems. The system 

has a measurement range of 100 to 600 parts per 

million, with an extended range available upon 

request. Incredibly, the system also has a precision 

accuracy to about one part per million. Self powered 

by batteries, the system contains compact flash 

memory storage and an Iridium satellite 

communications link. 

The Franatech pCO 2  Analyser 
19

 

In 2012 Franatech (Germany) developed a flow-

though sensor as well as an in-situ analyser for process 

control in aquaculture, long-term monitoring in 

hydroelectricity reservoirs and for attachment to a 

Ferrybox system.  

 

Specifications of in-situ CO2-sensor 

• Weight of sensor alone: 2.3 kg 

• Range: 0-50 mg/l  

                                                           
18

http://www.battelle.org/media/press-releases/battelle%27s-field-tested-autonomous-pco2-monitoring-system-is-now-commercially-

available accessed on 23 July 2014 

19
 http://www.franatech.com/co2sensor.html accessed on 23 July 2014 

Figure 4.1.66. In-Situ pCO2 sensor by 

Franatech 
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• Operation temperature: +2°C to +40°C 

• Storage temperature: -10°C to +50°C, < 85% humidity 

• Water tight: IP68 5bar 

• Output: 4-20mA 

• Power supply: 110 / 230 VAC (50 / 60 Hz 

• Current drain: 200mA” 

 

The OxyGuard International  pCO 2  Analyser  

This sensor is normally used in aquaculture applications 

(industrial) to monitor the CO2 concentration in water 

and to avoid fish dying.  

Principle of Operation 

The probe measures the carbon dioxide content of the 

water directly by detecting the carbon dioxide partial 

pressure in the water. It is important to note that it is 

NOT based on a pH measurement - it does NOT detect 

any change in pH that carbon dioxide causes. Neither 

does it withdraw a sample for analysis - it detects the 

free dissolved CO2 - the carbon dioxide partial pressure 

- in the water. 

The instrument's range is 0-50 mg/l. Before use the 

system is calibrated using mixtures of water and 

calibration chemicals in a special calibration beaker with stirrer.  

Specification  

Size: Probe: 40 mm dia. x 140 mm. Cable length 7 m. 

Meter: 120 x 120 x 58 mm 

Calibration beaker: 65 mm dia. x 260 mm.  

Weight: Probe with cable and transmitter 1.0 kg. 

Calibration accessories: 1.0 kg. 

Supply: 230 VAC (115 VAC or 24 V DC on request) 

Range: 0 - 50 mg/l dissolved carbon dioxide. 

Operating conditions: 3-35°C 

Accuracy: Depends on calibration. Practical accuracy up to +/- 1 mg/l. 

Response time: Typically 5 minutes at 20°C depending on flow velocity past probe. 

In still water up to 15 minutes. 

Flow requirements: The instrument does not consume carbon dioxide for its measurement, but a 

certain flow is necessary to ensure that the sensing element of the probe is in equilibrium with the 

surrounding water and to avoid “spot” measurements. 

Output: 4 - 20 mA current loop.”20 

The Turner pCO 2  Analyser 
21

  

Recently Turner (USA) released an in-situ pCO2 sensor whose different measurement ranges and 

applicable up to 600m.   

“C-sense™ probes are compact, lightweight sensors for measurement of the partial pressure of gas in 

liquids. Designed for applications involving immersion in water, oil, or water and oil mixtures, the 

sensors combine an oil-resistant interface with a compact, temperature-compensated non-dispersive 

                                                           
20

 http://www.oxyguard.dk/images/stories/pdf/g02%20oxyguard%20co2%20brochure%20gb%200912.pdf accessed on 23 July 2014 

21
 http://www.turnerdesigns.com/products/submersible-fluorometer/c-sense-in-situ-pco2-sensors accessed on 23 July 2014 

Figure 4.1.67. OxyGuard CO2 analyser 
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infrared (NDIR) detector. Designed for integration, C-sense™ enables pCO2 monitoring at a 

significantly lower price than traditional pCO2 sensors. 

 

Product Highlights: 

• Available in 3 measurement ranges: 

- 1000ppm 

- 2000ppm 

- 4000ppm 

• Accuracy 3% of full scale 

• Submersible to 600m 

• Easily integrated: 4-pin analog output 

• Small size: <2” x 8” and <1lb 

• Low power consumption: 80mA @ 6V 

DC 

• Water temperature: -2 to 35°C 

• Ambient Temperature -20 to 50°C 

• Weight: 430grams” 

4.1.14.4 Severinghaus electrode 

The Severinghaus electrode was invented by Dr. Severinghaus in 1953.  

This glass electrode is surrounded by a film of bicarbonate solution and covered by a thin plastic 

carbon dioxide permeable membrane. An equilibration of CO2 through the membrane between the 

bicarbonate solution and the water occurs. The changed CO2 concentration leads to a change in the 

pH of the bicarbonate solution (see below), which is measured and correlated to a certain pCO2 

value. 22 

 
 

The advantage of the Severinghaus electrode is the very small size and the relatively low price. 

Disadvantages are long response times, high calibration need (due to drifts) and limited detection 

boundaries (especially for low values).  

The Idronaut pCO 2  Electrode 
23

 

Idronaut supplies a pCO2 electrode. Based on the Severinghaus 

electrode  

The pCO2 electrode consists of a measuring half-cell and a reference 

half-cell both part of one common or combination electrode. The 

measuring half-cell with the pH sensitive glass at the tip is sealed 

within the glass electrode’s body. Inside the electrode, the constant pH 

buffer and Ag/AgCl electrode are located. The reference electrode 

(Ag/AgCl wire) is a band on the exterior of the electrode. The 

pCO2electrode inserts into the membrane cap containing pCO2 

electrolyte, allows the reference electrode to make electrical contact 

with the measuring electrode. The components of the electrode are 

described below. 

The outer silastic membrane 

                                                           
22

 http://www.chemie.de/lexikon/Severinghaus-Elektrode.html accessed on 23 July 2014 

23
 http://www.idronaut.it/cms/view/products/sensors/pcosub2sub/s333 accessed on 23 July 2014 

Figure 4.1.68. C-sense sensor by 

Turner 
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The gas permeable outer membrane of the Idronaut PCO2 electrode is a 150 μ silastic film. This 

membrane acts as a selective barrier in the sense that it is permeable to gas (CO2) but not to ions. 

Thus, ions of the sample do not diffuse across the membrane to contribute to the pH change of the 

pCO2 measuring system. The silastic membrane represents a break-through in the improvement of 

the response time of the pCO2 systems. 

The inner nylon spacer 

Since diffusion rates are slow relative to the desired response time, the measuring pH glass electrode 

system must be placed as close as is practical to the gas permeable membrane. However, the pCO2 

electrode requires a thin film of aqueous pCO2 electrolyte between the glass tip and the reference 

band of the electrode. A nylon mesh spacer covers the tip of the electrode and maintains a layer of 

electrolyte between the glass tip and the silastic membrane.” 

4.1.14.5 pCO2 estimation using sea surface temperature 

This method is an alternative to the punctual measurement of pCO2. Because of the high variability of 

the value in ocean water there are some difficulties to get an area-wide and continuous profile. 

Therefore Lafèvre and Taylor [LT02] used the strong correlation between pCO2 and sea surface 

temperature. The authors estimated the pCO2 value from the sea surface temperature at different 

locations of the South and North Atlantic gyres. Different regression lines were used and the 

algorithm includes although latitude, longitude and atmospheric pressure. The area wide data are 

collected using satellites.  

Advantage of this measurement is that the values covering a great area, the price for the data is 

relatively low in comparison for the amount of data and the collection takes place nearly 

maintenance free. The disadvantages are, good weather is needed for accurate measurements, only 

the surface value for pCO2 can be calculated, no profiling and the satellite might not be at the right 

position to the right time.  

Data from those satellites are made available to the public by different organizations, for example 

PMEL 24 

4.1.14.6 pCO2 References 
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 http://www.pmel.noaa.gov/co2/story/Surface+CO2+Flux+maps 

Figure 4.1.69. pCO2 electrode from 

Idronaut 
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4.1.15 Hydrocarbons 

4.1.15.1 Introduction 

Oil spill detection is crucial to fight against one of the most important source of marine pollution. The 

environmental damage associated to the hydrocarbons coming from oil spills is particularly evident 

in case of big oil spills either from tanker accidents (e.g., Prestige, Erika, Exxon Valdez, etc) or from 

the increase of deep and offshore oil and gas rigs. Additionally illegal actions related with cleaning 

tanks and the lack of regulations of gray waters from cruise ships is a latent source of hydrocarbons 

pollution at sea. 

Detection at sea has been focused basically on remote sensing from radars on board satellites (SAR) 

or from airborne mounted systems that can also use multispectral radiometers to classify substances 

released at sea. This is one of the routine tasks performed by coastal guards aircraft surveys to 

monitor oil spills. Recently attempts to detect and classify oil spills from MODIS satellite imagery 

[Ala11] and from ship borne LIF/LIDAR [Yar11] has been designed to detect and classify oil spills in 

marine water. In the case of radar systems the parameter is the surface roughness. It is known that 

oil spills modify the surface tension properties of sea waters and thus the Bragg backscattering 

resonance signal that is recovered by radars. Typically the detection of oil spills appears as a distinct 

backscatter area in a radar image (Fig. 1).  

 

Figure 4.1.71.  Spectral of fluorescence of different hydrocarbons (taken from [Yar11] 

Because sea surface roughness changes in response to wind, sometimes the backscatter signal 

cannot be uniquely associated to an oil spill often making it difficult to separate low wind areas from 

real oil spills. For example, the black regions at the southern coastal areas in Fig. 1 are due to a wind 

screening effect of the local orography not to the presence of oil. 

 

In-situ detection of oil spill is much more difficult. The monitoring systems are based on the 

fluorescence spectral signature of hydrocarbon molecules. Oils are excited in the ultraviolet 

wavelengths (300-400 nm) and their response (reflectance) at visible wavelengths from 400-600 nm 

whose signals are modified by additives and 

the refinement process (Kar05, Yar11) (Fig. 2).  

 

4.1.15.2 Instruments  

In-situ fluorometers have been manufactured 

in a similar way like the typical chlorophyll-a 

fluorometer but working on the oil spectral 

Figure 4.1.70. SAR image of the Prestige 

accident in 2002, NW of Spain. The oil spill is 

clearly seen revealing the path followed by the 

tanker up to the sinking point. 

Figure 4.1.72. Scheme of a drifter carrying an in 

situ fluorometer. 
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range. Natural waters are excited through a specific ultraviolet wavelength and a band pass emission 

filters allow the instrument to read a broad range of dissolved compounds [LC10].  

To our knowledge, there is only one manufacturer, Turner Designs, which provides this kind of 

instrument, CYCLOPS-7 (C-7), that can be easily integrated in several platforms of observation. In 

particular there is one suitable for drifting buoys (Fig. 4.1.72). These buoys, called Oil drifters, have 

been used during field experiments in the frame of the TOSCA project (Tracking Oil Spills and Coastal 

Awareness Network25). The scheme consisted of a C-7 sensor mounted in the hull of a surface drifter 

with ARGOS telemetry. The fluorometer was attached externally to the spherical buoy, slightly under 

the buoyancy line to keep it close to the surface. Inside the sphere, the electronics consisted of a 

single board with conditioning circuitry to manage data from the sensors, which facilitated the 

production and testing of the 

system. The core of this PCB 

was an 8-bit micro controller 

Microchip with a Harvard 

architecture and RISC 

instruction set. Such boards 

are known to be widely open 

for connections to facilitate 

any future expansion with 

capacity to manage external 

instruments with RS232 

output and converters up to 

24 bits for the data processing 

of self-developed sensors.  

The electronic control was 

made by a Microchip 16F876A 

microcontroller that managed data 

acquisition with a 10 bit A/D converter, 

with a compression algorithm, and sent 

the information to a SEIMAC X-CAT transmitter. A sequence of 8 voltage data was acquired every 10 

minutes. Each voltage value was stored in two bytes in a 18-byte transmitting packet. The remaining 

two bytes were informative about the humidity inside the buoy to inform on the working conditions 

of the circuitry. 

The system's primary power supply was formed by a compact pack of lithium thionyl chloride 

batteries which is able to provide the highest energy density among the currently available 

technologies. The power system also integrated "super capacitors" in order to supply the high current 

pulses (> 1 A) required by satellite transmitters without overloading the batteries thus ensuring a 2-

year minimum operation time of the system without maintenance.  

4.1.15.3 Results 

An Oil drifter manufactured as described was tested in a field experiment (Balearic Experiment), in 

the Mediterranean near the Baleric Islands (Figure 4.1.74). The unit was attached to a WOCE 

standard drifter, equipped with ARGOS telemetry, driven by a holey sock centered at 10 m depth. 

The main properties of the C-7 fluorometer used, according to the calibration solutions are shown in 

the table below  

 

                                                           
25

 http://www.tosca-med.eu 

Figure 4.1.73. Real prototype of Oil drifter used in a 

field experiment. The side view (top right) shows the 

configuration of the 5- m fluorometer. 
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Table 15. Properties of C-7 fluorometer 

TYPE Detection limit Dynamic Range Excitation Emission 

OIL-CRUDE 0.2 ppb
26

 0-2700 ppb  325/120 nm 410-600 nm 

OIL-FINE 10 ppb 
27

  

10 ppm
28

 

>10.000 ppb  

>100 ppm 

290 nm 350/55 nm 

 

Figure 4.1.74. Left: Deployment of the Oil drifter from a Research Vessel. Right: 4-day 

trajectory of the oil drifter during the Balearic Experiment. 

The drifter was recovered 4 days after its deployment. During that period the fluorometer was 

programmed to analyze 8 equal bands within the operating wavelength range. In Fig. 6 the time 

series of the signal transmitted (in volts) for each band during the experiment is represented along 

with the humidity inside the sphere (for control). Two different periods, separated in October 27th at 

5 am, can be clearly seen in Figure 4.1.75. During the first period, all the bands are following a base 

line, which corresponds to no signal detection, except for a short event, during October 26th where 

some real signal was detected. The second 

period, after October 27th the mean voltage fell 

to 0 V and immediately saturated to 3 V, which 

is a clear indication that the fluorometer was 

loosed and the connector was in direct contact 

with the sea water, probably due to the heavy 

sea conditions during such period. The system 

thus was able to monitor the presence of an oil 

spill but the Oil drifter was not durable enough 

to resist heavy weather situations. 

4.1.15.4 Conclusions 

Turner Designs’ CYCLOPS-7 is the most widely 

used for in-situ water monitoring for oil spills. It is a submersible fluorometer that can be deployed in 

any manned or unmanned platforms. Provided 

a robust fixation and adequate installation it 

can be working up to two years without 

maintenance on drifting buoys. This is 

especially relevant since such buoys can be 

released on an oil spill and track the evolution 

both in concentration, evolution and 

degradation. A new model C-3, also submersible and with the same optics as C-7, is now also 

available from the same manufacturer. This model incorporates a built-in depth sensor and can 

collect depth and position of every fluorometric reading. 

                                                           
26

  PTSA (1, 3, 6, 8-Pyrenetetrasulfonic Acid Tetrasodium Salt) 
27

  1, 5- Naphthalene Disulfonic Disodium Salt 
28

  BTEX (Benzene, Toluene, Ethyl benzene, Xylenes) 

Figure 4.1.75. Time series of the 8 bands (in 

different colored dots) during the drifter 

trajectory. Green thick crosses are the mean 

voltage of all the combined bands. Red crosses 

represent the internal humidity sensor 

properly scaled. 
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Although in-situ fluorometers offer a unique opportunity for monitoring the fate of oil spills, there 

are still some open problems inher

where oils tend to stay for a long time. In addition to the stress due to wind, waves and swell, there 

can be other problems such as interferences with the solar light or other buoyant substance

alternative, only suitable for oceanographic vessels, is the direct analysis of water collected.
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4.1.16 Microspectrometers 

The market drivers for microspectrometers are small, size and weight, low power consumption, with 

the possibility to be integrated into a portable device, and reduced maintenance costs. The main 

drawbacks of current microspectrometers are their limited wavelength range and limited sensitivity. 

The drivers are cost and time savings (on

rapidly decreasing costs of calculation power, enabling complex data analysis. 

various application fields for microspectrometers. Microspectrometers covering the VIS 

400 – 800(1100) nm, are manufactured by a number of companies: Avantes, Ocean Optics, BVtech, 

Bayspec, Hamamatsu, TRIOS etc. The price of an OEM spectrometer module is in the range 1000 to 

15000 € depending on the spectral resolution and signal

technology, there are mainly three types of microspectrometers: grating, Fourier Transform Infrared 

Spectrometer (FTIR) and Fabry

spectrometer, another microspectrometer technology co

resonators [Xia11], and a MEMS (Micro

where the miniature grating elements is a MEMS. An example of a fixed grating microspectrometer is 

the device developed by Hamamatsu [Ham14], whose dimensions are as small as 27.6 x 13 x 16.8 

mm and its weight only 9g. Such devices can measure light in the wavelength range from 350 nm to 

1040 nm with a spectral resolution of 14 nm and 20 nm, depending on the type of imag

chosen. 
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(1100) nm, are manufactured by a number of companies: Avantes, Ocean Optics, BVtech, 

Bayspec, Hamamatsu, TRIOS etc. The price of an OEM spectrometer module is in the range 1000 to 

€ depending on the spectral resolution and signal-to-noise ratio. 

technology, there are mainly three types of microspectrometers: grating, Fourier Transform Infrared 

Spectrometer (FTIR) and Fabry-Perot [TLJ99]. More recently, there are a resonator

spectrometer, another microspectrometer technology consisting of a 1-D array of small microdonut 

resonators [Xia11], and a MEMS (Micro-Electro-Mechanical System) grating spectrometer [Sch14], 

where the miniature grating elements is a MEMS. An example of a fixed grating microspectrometer is 

ed by Hamamatsu [Ham14], whose dimensions are as small as 27.6 x 13 x 16.8 

mm and its weight only 9g. Such devices can measure light in the wavelength range from 350 nm to 
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4.2 Novel Sensors 

4.2.1 Polymer pH Sensors 

We will refer to a comprehensive review on the application of polymers in various sensor devices  

and more specifically, review of various methods used for pH measurement [KAG07]. 

Namely, by introduction of functional groups, polymers can be designed to selectively swell and 

shrink, resulting in changing mass and elasticity, as a function of analyte concentration. The ion-

exchange properties of conducting polymers are of special interest for potentiometric- sensor 

development [KAG07]. Conducting polymers are ideally suited for sensor applications because they 

not only exhibit high conductivity and electroactivity but they could also be used as a general matrix 

and can be further modified with other compounds in order to change selectivity. Compared to 

conductive polymers, nonconductive polymers usually have a high selective response and a high 

impedance, which is important for eliminating interference by other electroactive species.  

4.2.1.1 Review on Existing pH Sensors based on Polymers  

a) Optical and Fluorescent pH-Sensors 

Optical methods can be used to measure the concentration or the activity of hydrogen ions. The 

basic concept of the optical methods of pH measurement relies on the fact that the incident beam of 

light is passed through a light guide to the active end of the sensor where it interacts with the 

chemical indicator, which alters the beam’s intensity, usually by absorption or by fluorescence 

[KAG07]. The modified optical signal is guided to the detector. Several fiber-optic pH sensors have 

been proposed, which base their working principle on the fluorescence or the absorption of an 

appropriate chromophore [Wol02]. Remote sensing can be achieved since the optical signal can be 

carried over long distances. Most of the reported fiber optic pH sensors exploit indicator dyes, which 

when immobilized on part of the optical fiber, cause pH sensitive changes in the absorption spectrum 

of the test solution. Interaction with the analyte leads to a change in the optical properties of the 

reagent phase, which is probed and detected through the fiber optic. A major issue with this 

approach is the sensitivity of the device, which is directly related to the thickness of the pH sensitive 

layer. 

Microspheres of polyacrylamide containing bound phenol red and smaller polystyrene microspheres 

for light scattering were packed in an envelope of cellulosic dialysis tubing at the end of a pair of 

plastic optical fibres [PGF80]. The probe measured pH over the physiological pH range of 7.0 to 7.4 

with 0.01 pH resolution and this flexible construction was about 0.4 mm in diameter. However, these 

methods are often more difficult to implement and may lead to loss of dye sensitivity or result in 

poor fluorescence properties. Non-covalent immobilization techniques for pH sensors have involved 

methods of entrapment behind semi-permeable membranes and adsorption within polymeric 

supports [PGF80]. As a drawback, coatings based upon non-covalent methods of dye immobilization 

suffer from leachability.  

Polyaniline (PANI), which belongs to the group of organic conducting polymers, has an excellent pH 

sensing properties.  The use of PANI receives attention due to its high conductivity, ease of synthesis, 
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and its stability under ambient conditions.  PANI based sensor can measured pH in the range from 

2.15 to 12.54 based of PANI film deposited onto ITO glass employing constant-potential (0.80 V) 

electropolymerization. pH-dependent spectral variations of PANI films were explained by their 

transformation from the protonated to the unprotonated form. 

A novel method for pH measurements between pH 7.5 and 10.4 with a precision of 0.2 pH unit was 

also reported [TWG03]. The method combines Raman spectroscopy and the automated sequential 

injection analysis system (SIA) and makes use of the acidbase properties of a commercially available 

water dispersion of PANI nanoparticles with a mean particle size of 46 nm. The pH measurements 

were conducted with the 633-nm laser excitation wavelength by calculating the difference between 

the Raman intensities of the primary and reference wavenumbers, where the pH-sensitive CH=CH 

stretching band at 1422 cm-1 and C-H in-plane bending band of the quinoid form at 1163 cm-1 were 

chosen as the primary wavenumbers [TWG03].  

The nano-pH sensor based on dual-fluorophore-doped nanoparticles that offers the advantages of 

adequate sensitivity, accuracy and rapid detection of pH was proposed by Gao et al [GTD07]. 

Additionally, this sensor showed excellent stability, high reproducibility and a fast response time. The 

development of a pH-sensitive fluorescence nano-sensor by co-doping the indicator dye and 

reference dye in silica nanoparticles is considered due to their biocompatibility. 

b) Electrodes modified with pH-sensitive polymers 

Characteristic pH chemical sensors based on polymer-film-coated electrodes include 

electropolymerization of monomers such as pyrrole, aniline, thiophene, or benzene derivatives. The 

measurements of pH using the mentioned conductive polymers had poor reliability due to defects 

and pinholes present in the films structure. For example, Platinum electrodes, modified by a coating 

of a thin L-PEI film, resulting from the anodic oxidation of pure ethylenediamine, exhibited a linear, 

reversible, and stable in time potential response sensitive to pH changes in aqueous media. The 

assembly of the electrode surface coated with electropolymerized ethylenediamine acted as a 

transducer of the electrode potential versus the pH value in aqueous solutions. A possible 

mechanism by which the linear polyethylenimine responds to pH changes could be due to the affinity 

of the numerous amino groups to the protons in solution [HLH01]. The reaction of H+ with amino 

groups creates local charge density excess at the electrode surface. The potentiometric response can 

be considered as behaviour controlled by a surface reaction, which takes place on the PEI film. 

Protonation and deprotonation of superficial amino groups of the PEI is symbolically described in Eq. 

(2) [KAG07]: 

PEI + H
+
  → PEIH

+
   (2) 

c) Potentiometric pH sensors 

The ion-selective electrodes (ISEs) used 

for potentiometric pH-sensors, as well as 

their optical counterparts, ion-selective 

bulk optodes, have the unique capability 

of sensing free ion activities instead of 

the total concentration. Bulk optodes 

belong to a newer class of sensors and 

are usually based on the competitive or 

cooperative extraction of the analyte ion 

with protons between the polymeric and aqueous phase. This two-phase sensing mechanism has 

advantages in reaching a lower detection limit dictated by the thermodynamics ion extraction, and 

may lead to the mass production of monodisperse ion sensing microbeads that can be flexibly 

coupled with analytical flow cytometry or optical-fiber based microsensor arrays. The unique ion-

sensing capabilities of ISEs and bulk optodes make them very useful for environmental monitoring. 

Various polymers have been considered suitable for potentimetric pH sensors [LHL05].  

Potentiometric pH sensors based on linear polyethylenimine (L-PEI) and linear polypropylenimine (L-

Figure 4.2.1. Schematic drawing of interdigitated 

microarray electrodes 
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PPI) (two synthetic enzymes and biocompatible polymers) films were prepared by 

electropolymerization of three different monomers: ethylenediamine (EDA), 1,3-diaminopropane 

(1,3-DAP) and diethylenetriamine (DETA). These polymers are considered good candidates for pH 

biosensors due to their strong bonding to the electrode surfaces during the electropolymerization 

step. 

Characteristic type of potentiometric pH miniaturized sensors based on electrosynthesized 

polypyrrole films is shown in Fig. 4.2.1. These pH sensors have two interdigitated microelectrodes, 

fabricated by photolithography. One electrode of the sensor is coated by a polypyrrole film, while the 

other one is coated by a silver film used as reference electrode, as shown schematically in Fig. 4.2.1. 

Four sensors with various film thicknesses were tested for pH response, where the samples have film 

thicknesses of: PPy1 – 150 nm, PPy3 – 400 nm, PPy10 – 1750 nm and PPy15 – 2400 nm. The 

potentiometric response of this sensor is linear to pH  changes for the pH range between 2 and 11. 

The long-term stability was assessed and during 30 days no deterioration in the sensor performance 

was registered.  

d) Miniaturized  pH sensors 

Advances in the semiconductor industry combined with novel recently developed polymer materials 

enable engineers to design various sensors with optimised performance parameters. Thong et al 

[TGS06] reported a novel design of silicon piezoresistive pH sensors, based on a pH sensitive hydrogel, 

namely poly(vinyl alcohol)–poly(acrylic acid). The general sensor principle is as follows: swelling due 

to pH value changes causes bending in a flexible plate. In the case of capacitive transducers, a change 

in capacitance will be detected. For resistance bridge sensors, due to membrane deflection, the 

corresponding membrane stress will change the bridge resistance and consequently the output 

voltage. 

Patterns of polypyrrole (PPy) have been fabricated on flexible poly(tetrafluoroethylene) (PTFE) films 

using a combination of micro-contact printing, electroless deposition of copper and 

electropolymerisation of pyrrole [PBP07]. A patterned elastomeric stamp was used to deliver a 

nitrogencontaining silane coupling agent to an argon plasma-pretreated PTFE surface. The surface 

was subsequently activated by PdCl2 and immersed in an electroless copper plating bath allowing 

selective metallisation. Electropolymerisation of pyrrole was performed on copper-patterned PTFE 

resulting in the formation of micrometer-scale PPy structures. Potentiometric measurements have 

demonstrated that PPy-patterned PTFE has potential application as a pH sensor.  

Miniaturized pH biosensors were developed using a 

photolithography process to promote commercial 

applications. This method allowed the patterning of the 

metal electrodes on an oxidized silicon surface. A 

sputtering technique was chosen to coat the patterned 

electrodes with platinum. Then, one electrode was 

coated with a polymeric film while the other one was 

coated with silver to be used as reference electrode. 

Interdigitated array electrodes were patterned in order 

to increase the exchange surface between the polymer 

coated electrode and the solution being analysed. The 

polymer films coated on the platinum electrodes showed 

linear potentiometric responses to pH changes from pH 3 

to pH 10. Resulting electrodes exhibited both reversibility 

and stability versus time.  

Among the group of conjugated polymers, poly(p-

phenylene-vinylene) (PPV) and derivatives are some of the most promising candidates for organic 

electronics applications. The delocalized π-electrons from the phenyl-rings and conjugated carbon 

chains are responsible for the semiconducting properties of PPV. It is generally believed that for 

Figure 4.2.2. Schematic drawing of 

the pH sensitive device showing the 

aluminium contacts (dark  grey) 

below a thin (30 nm) layer of PPV 

(white).  
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polymers the primary photoexcitation results in the creation of excitonic states, rather than in the 

direct creation of free charge carriers as is the case for inorganic semiconductors. Fig. 4.2.2 shows a 

schematic drawing of a pH-sensitive device that uses the photoconductive properties of a thin PPV 

layer reported by Pistor et al [PCP07]. No device passivation was necessary since the applied voltages 

were below the threshold for electrolysis. 
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4.2.2 Nitrate-Nitrite Sensors 

Potential technologies and chemical analysis systems which may be employed to achieve cost-

effective sensors for nitrate and nitrite measurement are discussed in this report. Furthermore, 

some systems which allow for the simultaneous monitoring and determination of nitrate, nitrite 

and other parameters are also investigated. Table 16 below summarizes the discussed 

technologies; the method of operation and the advantages and disadvantages associated with 

each technique are highlighted. 
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4.2.2.1 INTRODUCTION 

In aquatic environments, an excess of nitrates may lead to eutrophication of the ecosystem due 

to over enrichment with nutrients. Although the nitrate ion is a chemical species of the basic 

nitrogen cycle and is commonly found in a diversity of natural processes, nitrate contamination is 

most frequently associated with anthropogenic activities at the ground surface, such as the 

fertilisation of agricultural crops, animal wastes, chemical synthesis as precursors of a large 

variety of chemicals and in the food industry as preservatives [JZK11]. Nitrite (NO2
-) is both a 

nutrient and an excretion product of phytoplankton, and is important with respect to the global 

nitrogen and carbon cycles, with concomitant effects on climate [SFO10]. It should also be noted 

that NO2
- present in water systems is readily converted to nitrates by nitrifying bacteria, thus 

potentially contributing to eutrophication [KWW13]. 

In general, current commercially available systems to measure nitrate and nitrite concentrations 

have limited deployment capabilities and scenarios, mainly due to their large physical size, high 
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power consumption and excessive reagent usage. Thus it is not typically feasible or cost-effective 

to use these macro-scale systems for distributed sensor networks that continually monitor 

nutrient levels in aquatic environments [BSF11]. Microfluidic technology permits the 

miniaturization of chemical analytical methods which are traditionally undertaken using benchtop 

equipment in the laboratory environment. When applied to environmental monitoring, such as 

monitoring within aquatic environments, these ‘lab-on-chip’ (LOC) systems may allow for cost-

effective high performance chemical analysis methods to be performed in situ over distributed 

sensor networks with large numbers of measurement nodes [BCT12]. Portable monitoring 

systems which are electrochemical sensing-based also appear well suited to in situ analysis and 

complement standard analytical methods for a number of environmental monitoring applications 

[JZK11]. These types of portable systems could save tremendous amounts of time, reagent and 

sample, and may facilitate accurate assessments of marine water quality. 

4.2.2.2 LOC MEASUREMENT OF NITRATE AND NITRITE BASED ON COLORIMETRY 

 [BCT12] have developed a field-deployable platform for automated in situ colorimetric nitrite and 

nitrate analysis using the Griess assay (diazotization with sulphanilamide and subsequent coupling 

with N-(1-naphthyl) - ethylenediamine dihydrochloride (NED) to form an intensely colored azo 

dye). The system which was developed is highly configurable and has low power consumption (1.5 

W). The system without reagents and power supply is approximately 100 mm in diameter and 200 

mm in length. The use of on-chip sequential absorption cells that use tinted polymethyl 

methacrylate (PMMA) to exclude background light results in a high sensitivity system with a 

dynamic range (0.025 to 350 µM) suitable for deployment in a variety of natural waters including 

estuarine environments and waters of varying salinity. 

Fabrication 

The fluidic path diagram of the microfluidic platform developed is depicted in figure 4.2.3 below 

and figure 4.2.4 illustrates a CAD (computer-aided design) drawing of the microfluidic chip. 

 

Figure 4.2.3. Fluidic path diagram indicating syringes, valves and absorption cells [BCT12]. 
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The microfluidic platform is based on a circular 

block of PMMA with a diameter of 100 mm. The 

microchip is machined in 5.0 mm thick tinted 

PMMA by micro-milling. The chip incorporates a 

fluidic manifold that permits selection of one of 

four standards of nitrate or nitrite, the sample and 

a blank. 15 micro inert solenoid valves are 

mounted directly to the chip and these facilitate 

fluid control. A custom designed pumping 

architecture drives fluid through 2.78 mm internal 

diameter titanium syringes, syringe 1 for 

sample/standard, syringe 2 for the buffer solution 

and syringe 3 for the Griess reagent. The plungers 

are driven by a stepper motor based linear 

actuator and Hall-effect sensors are used for 

syringe pump feedback and control. Green 525 nm LEDs and photodiodes are fixed directly to the 

chip using optical adhesive [SFO10]. The chip contains three absorption cells: a 25 mm reference 

cell, a 25 mm measurement cell for concentrations below 30 µM, and a 2.5 mm measurement cell 

for concentrations above 30 µM. In terms of housing, the system was housed in a darkened 

water-tight acrylic tube terminated with acetal plastic end-caps and sealed with o-rings. 

Measurement Method 

For nitrite analysis, fluid is routed through a reference cell then mixed with Griess reagent before 

passing through a 0.25 m long serpentine mixing channel. Absorption is then determined in the 

two sequential measurement cells, which are separated by a milled groove to prevent crosstalk. 

For nitrate analysis, fluid is combined with imidazole buffer, passed through a 0.46 m serpentine 

mixer then through an off-chip cadmium tube to facilitate reduction before passing through the 

reference cell and mixing with the Griess reagent, absorption is then determined within the 

measurement cells. It can be noted that the cadmium tube can be conditioned periodically to 

recover reduction efficiency by passing 5 mM copper sulfate solution, 6% HCl, and then copper 

sulfate solution again. 

System Performance 

The system can detect nitrate and nitrite up to 350 µM or 21.7 ppm as NO3
-. The system also 

expressed a limit of detection (LOD) of 0.025 µM (0.0016 ppm) for nitrate and 0.02 µM (0.00092 

ppm) for nitrite. The LOD which is observed is superior to other in situ nitrate systems, for 

example, superior to those based on UV absorption. The small size and lower power consumption 

make this system suitable for integration into a range of oceanographic platforms including 

autonomous underwater vehicles (AUVs) and buoy systems. The device was deployed in an 

estuarine system and was able to track changes in the nitrate - salinity relationship of estuarine 

water due to increased river flow after a period of high rainfall. This system demonstrates the 

potential of LOC nutrient analysis for inclusion in large-scale networks for ocean observation and 

monitoring of other natural water systems [BCT12]. 

4.2.2.3 NITRATE DETERMINATION USING GRIESS METHOD UTILIZING ZINC REDUCTION 

 [EHG11] successfully developed a sensitive reagent-injection flow analysis method for the 

spectrophotometric determination of nitrate in marine, estuarine and fresh water samples. The 

method is based on the reduction of nitrate in a micro column containing zinc granules at pH 6.5. 

The nitrite formed is reacted with Griess reagent, and the resulting azo compound is quantified 

spectrophotometrically at 520 nm. Typically, nitrate determination is achieved by the reduction of 

nitrate to nitrite using a column of copperized cadmium granules or a Cd tubular reductor. The 

use of cadmium may be seen as undesirable due to the potential occupational health issues and 

Figure 4.2.4. CAD drawing of the 

microfluidic chip with fluidic 

connections labelled [BCT12]. 
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the production of toxic waste [GFM04]. Therefore, the use of an environmentally friendly 

reductant is highly desirable. Historically, copperized zinc columns have successfully been 

employed within flow injection methods for the determination of nitrate in water samples [CP91], 

using similar reduction conditions to that employed in the Cd reduction method. 

The method employed by [EHG11] for online nitrate determination using the Griess method, in 

which reduction is achieved through the use of zinc, was successfully deployed in extended field 

trials aboard a catamaran. The reliability of the method was assessed through the analyses of 

certified reference materials and recovery experiments, and a satisfactory reliability was 

demonstrated. 

This successful application of zinc as the reduction agent suggests that zinc may potentially be 

employed within lab on chip measurement systems for nitrate determination. This could 

potentially eliminate the use of cadmium and in turn the associated toxic waste, and lead to a 

reduced environmental impact.     

4.2.2.4 MICROFLUIDIC PLATFORM MONITORING NITRITE USING PHOTORESPONSIVE 

MICROVALVE 

A wireless, portable, fully integrated microfluidic analytical platform for the monitoring and 

determination of nitrite anions in water has been developed by [CFO13]. The research group 

reports the design, fabrication and testing of a wireless portable, integrated microfluidic analytical 

platform for point-of-care monitoring and quantitative determination of nitrite in freshwater, but 

the system may find application in a marine setting. The Greiss assay is implemented for 

determining nitrite within a PMMA microfluidic device. The platform integrates optical fluid 

processing and detection, enabling monitoring of the kinetics of the Griess reaction and the 

detection of nutrient levels.  

It can be noted that liquid handling and manipulation are key factors inhibiting network 

deployments for applications involving liquid-phase measurements such as water quality 

monitoring, due to the cost and power demand of conventional valves. Stimuli responsive 

materials, actuated by light irradiation, can significantly facilitate liquid movement within 

microfluidic devices and this has been demonstrated by a number of research groups who have 

reported the use of flow valves based on thermoresponsive poly (N-isopropylacrylamide) or 

pNIPAAm polymer gels [STM06].  

For fluid control within the system developed by 

[CFO13], the microfluidic device contains a 

biomimetic photo-switchable microvalve based on a 

phosphonium ionogel functionalized with 

spiropyran. The microvalve is simply actuated by 

illumination with a light emitting diode, allowing for 

lower energy consumption compared to other 

microvalve systems. In addition, the nitrite 

concentration is determined by a highly sensitive, 

low cost wireless paired emitter-detector diode 

(PEDD), ensuring cost-effective fabrication and 

functioning of the platform. The basic 

principle of this detection mode lies in the 

employment of two linear light emitting 

diodes, one operating in normal mode as a light 

source and the other in reverse bias which 

serves as a light detector [OBS09]. 

Figure 4.2.5. Schematic of the 

microfluidic device fabrication 

procedure [CFO13] 



COMMON SENSE Deliverable number 2.1  

  

 

 
The COMMON SENSE project has received funding from the European Union’s Seventh Framework 

Program (Ocean 2013-2) under the grant agreement no 614155. 
 

97 

Fabrication 

The microfluidic device consists of a multi-layer structure made of PMMA and pressure-sensitive 

adhesive sheets. Using laser ablation, reservoirs and microchannels were machined into the 

PMMA along with 50 µM and 80 µM thick double-sided, pressure-sensitive adhesive (PSA) layers. 

Once the appropriate pieces were machined, they were aligned and bonded using a thermal roller 

laminator. The ionogel valves were photopolymerized in-situ in a circular reservoir for 25 min 

using a UV irradiation source (λ = 365 nm). Following polymerization, the resulting ionogels were 

rinsed with deionised water to remove any unpolymerized monomer and excess ionic liquid. 

Finally, the top PMMA layer was then bonded. The procedure associated with the fabrication of 

the microfluidic device is illustrated in figure 4.2.5.  

After assembly, the upper part of the microchannel (y-branches) was filled with 1mM HCl 

aqueous solution and kept for two hours to bring about swelling of the pNIPAAm gels 

functionalized by spirobenzopyran chromophores (pSPNIPAAm) or the pSPNIPAAm ionogels, thus 

closing the microvalve. Upon illumination of the ionogel with white light from an LED source the 

microvalve opens due to shrinking. This process is demonstrated in figure 4.2.6. 

 

Figure 4.2.6. Photoresponsive microvalves in closed (left) and opened (right) state [CFO13] 

The microfluidic device which was constructed consisted of a small 

structure of 20 x 30 mm2 dimension. Round inlets were placed at 

the top of the Y-shaped channel for the water sample (radius 2.25 

mm) and for the Griess reagent (radius 250 µm). The junction of 

the collecting channels, where the integrated microfluidic 

microvalve was located, was followed by the mixing part of the 

channel. The detection chamber, of radius 2.4 mm, was followed 

by a 1 mm width channel leading to waste, which was connected 

to a back pressure system. Figure 4.2.7 depicts the microfluidic 

device. 

Measurement Method 

The sample to reagent ratio which was adopted was 15:1 v/v. Measurements were obtained by 

introducing 34.5 µL nitrite sample and 2.3 µL Griess reagent into their respective storage 

reservoirs as demonstrated in figure 4.2.7. Using 25 mbar back pressure from a vacuum pipe 

connected to the microfluidic device via the outlet, the liquids were moved from the storage 

reservoirs and allowed to mix through the serpentine microchannel as they travelled towards the 

detection chamber where concentration measurement occurs. Following the filling of the 

detection chamber, the intensity of the coloured 

solution was determined using the PEDD detector. 

The PEDD detector achieves colorimetric detection 

through the use of LEDs, a green LED (540 nm) which is 

Figure 4.2.7. Fabricated microfluidic 

device by CO2 laser ablation [CFO13] 

Figure 4.2.8. Microfluidic device with 

the white LED for microvalve 

actuation and the PEDD detector 

LEDs (green-emitter and red-

detector) positioning [CFO13] 
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the emitter and a red LED (660 nm) which is the detector, arranged in absorbance/transmission 

mode. This arrangement is portrayed in figure 4.2.8. Light generated by the emitter LED is partly 

absorbed by the Griess-nitrite complex, which absorbs strongly around 540 nm (λmax = 547 nm) 

as demonstrated by [OSL07]. Hence the photon flux reaching the reverse biased detector LED 

depends upon the concentration of nitrite within the sample. This in turn generates a 

photocurrent from the reversed biased detector diode, which discharges a pre-set capacitance. 

The time taken to discharge the capacitance depends upon the photocurrent generated by the 

detector LED, thus is dependent on the nitrite concentration in the sample.  

Cost and Energy Consumption 

Reagent Consumption - Typical flow injection analysis systems employing the Griess method for 

nitrite detection consume relatively large amounts of reagent, approximately 5-20 mL per sample 

[SFO10], making the technique quite difficult to scale up. In contrast, this particular prototype 

platform which was developed only requires approximately 2.3 µL of Griess reagent per assay, 

resulting in reduction in costs associated with reagents, servicing visits, platform size, power 

consumption and waste disposal. 

Microvalve Actuation - The photo-switchable ionogel microvalve used is very low cost to produce 

in terms of materials, and its fabrication via in situ photopolymerisation opens the possibility of 

creating complex microfluidic structures incorporating large numbers of valves. In addition, as it is 

actuated by light, no physical contact is required with the actuating stimulus, and thus the 

microfluidic system can be sealed from the electronics, and the valve structures subsequently 

introduced. In terms of energy, the white light intensity used to control the pSPNIPAAm ionogel 

microvalve in the current arrangement is ~1 mW cm-2, whereas the power consumption of typical 

miniature conventional solenoid valves is up to 500 mW. Moreover, the white LED used is a 

standard off-the-shelf component resulting in low cost actuation. 

Communications 

Many microcontroller devices using wireless modules elect for the 2.4 GHz ISM band, however for 

platforms associated with environmental applications, the 900 MHz radio band offers advantages 

over the 2.4 GHz band. The 900 MHz radio band, which was used for this platform, is capable of 

communicating around objects such as trees, the landscape etc., all of which can be attenuated at 

2.4 GHz [TV05]. 

System Performance 

The LOD, calculated as the concentration of nitrite which produced an analytical signal three 

times the standard deviation of the blank, was determined as 34.0 ± 0.1 µg L-1 nitrite. The 

platform which was developed was successfully deployed to determine traces of nitrite in 

freshwater and exhibited a very good correlation with bench top instrumentation. The technology 

could potentially be deployed within a marine environment, and although nitrite was selected as 

the target analyte, the platform could easily be extended to include monitoring of nitrate and the 

wide range of other important analytes for which effective colorimetric methods exist [CFO13]. 

4.2.2.5 SIMULTANEOUS DETERMINATION OF NUTRIENTS USING LAB-ON-A-DISC TECHNOLOGY 

 [HKC13] have developed a novel platform based on centrifugal microfluidics for the simultaneous 

determination of nitrite, nitrate and nitrite, ammonium, orthophosphate and silicate in water 

samples. All processes from sample measuring to detection were integrated and automatically 

performed on a rotating disc device. The transfer of liquid was controlled by laser irradiation on 

ferrowax-based microvalves. Liquid samples and reagents were pumped by centrifugal force in the 

rotating disc, and their positions and movements were manipulated via a programmable light 

from a laser diode. The novel platform which was developed requires only 100 µL of liquid sample 

for each nutrient, and 10-30 µL of reagents for colorimetric detection. In addition, the automated 

parallel processes and efficient mixing in the rotating disc allows for a significant reduction in total 
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analysis time and increased accuracy. Using a seawater certified reference material, validation 

was performed and it was determined that the platform accurately measured nutrient 

concentrations within water samples. Furthermore, seawater samples were collected from 

Chunsu Bay in Korea, and were measured by the lab-on-a-disc and by a commercialised 

autoanalyser, and it was demonstrated that the results were comparable. 

In centrifugal microfluidic devices, centrifugal force that occurs through the rotation of a device 

acts as a driving force for transporting fluids through microchannels. Through the development of 

sacrificial active valves, such as laser-irradiated ferrowax microvalves (LIFMs), the development of 

integrated centrifugal microfluidic platforms, referred to as lab-on-a-disc, has been accelerated. 

As an example, [XTS10] have developed a centrifugal microfluidic platform for rapid sequential 

determination of nitrate and nitrite which is well suited for field use, where a disc with 24 

identical reaction chambers facilitate the simultaneous mixing of injected water samples and 

powdered reagents.  

Measurement Method 

The reaction mechanisms associated with the determination of each of the nutrients are as 

follows: 

Nitrite - NO2
- is reacted with sulfanilic acid to form an intermediate diazonium salt, which coupled 

with chromotropic acid produces a pink complex directly proportional to the amount of nitrite 

present in a simple one-step reaction. 

Nitrate and Nitrite - For NO3
- and NO2

- , bromine water was added to the sample to oxidise nitrite. 

In a second step, a cadmium reduction method based on NitriVer6 was applied to the sample to 

reduce nitrate to nitrite, and the same reaction mechanism was applied to detect the amount of 

nitrite corresponding with that of the total nitrite and nitrate. By subtracting the amount of nitrite 

from the measured concentration of nitrate and nitrite, the concentration of nitrate in the sample 

can be estimated. 

Ammonium - Ammonium compounds are combined with chlorine to form monochloramine, 

which reacts with salicylate to form 5-aminosalicylate. The 5-aminosaliicylate is then oxidised by a 

sodium nitroprusside catalyst to form a blue-coloured compound which morphs to green due to 

the yellow of the excess reagent. 

Orthophosphate - The orthophosphate is reacted with molybdate in an acid medium to produce a 

mixed phosphate/molybdate complex. Ascorbic acid is then used to reduce the complex, giving an 

intense molybdate blue colour. 

Silicate - Silicate and phosphate in the sample react with molybdate ions under acidic conditions 

to form yellow silico/phosphomolybdic acid complexes. The phosphate complexes are destroyed 

with citric acid, and the amount of silicate can then be determined by measuring the remaining 

yellow colour. 

Following the completion of the reactions on the disc, the absorbance of the solution at 

wavelengths 507, 655, 880, and 452 nm were measured in order to detect the levels of nitrite and 

nitrate and nitrite, ammonium, orthophosphate, and silicate respectively, using an optical fibre-

coupled spectrophotometer in the stop position. 

Fabrication    

In terms of the fabrication of the centrifugal microfluidic device, the processes involved have been 

described in detail by [LLK11]. Microchannels and chambers were cut into a polycarbonate plate in 

the middle layer of the device using a CNC milling machine. Detection chambers were created by 

making holes across the middle layer. The depth of the detection chambers was 5 mm, as depth 

was dictated by the thickness of the middle layer, which determined the optical path length for 

colorimetric absorbance measurements. The middle layer was sandwiched between two 1 mm 



COMMON SENSE Deliverable number 2.1  

  

 

 
The COMMON SENSE project has received funding from the European Union’s Seventh Framework 

Program (Ocean 2013-2) under the grant agreement no 614155. 
 

100 

thick polycarbonate plates, and holes were drilled into the top plate for ventilation and sample 

injection. All layers were bonded together with double-sided adhesive tape. 

 
Figure 4.2.9. Schematic representation of lab-on-a-disc device [HKC13] 

Table 17. Reagents utilized within centrifugal microfluidic device for determination of nitrite, 

nitrate, ammonium, orthophosphate and silicate [HKC13] 

Target Chamber Reagent Major Ingredient 

Nitrate and 

Nitrite 

A1 
Bromine 

Solution 
Bromine 

A2 Phenol Solution Phenol 

A3 NitriVer6 Cadmium 

A4 NitriVer3 Sulfanilic acid Chromotropic acid 

Nitrite B1 NitriVer3 Sulfanilic acid Chromotropic acid 

Silicate 

C1 
Molybdate 

Reagent 
Sodium Molybdate 

C2 Acid Reagent Sulfamic acid 

C3 
Citric Acid 

Reagent 
Citric acid 

Orthophosphate D1 PhosVer3 Sodium Molybdate Ascorbic acid 

Ammonium 

E1 
Cyanurate 

Reagent 
Sodium Dichloroisocyanurate 

E2 
Salicylate 

Reagent 

Sodium Salicylate Sodium 

Nitroferricyanide 

 

One disc, with 12 cm diameter, includes four compartments with chambers for loading and 

centrifugal filtering of particulates within water samples. During sample filtering, particulates 

settle to the bottom was due to centrifugal force, and due to the presence of sawtoothed 

obstacles at the bottom wall of the chamber, overflow is prevented. The filtered sample is then 

aliquoted into five 100 µL metering chambers, designated A-E. Additional chambers for reaction 

and detection were located along the radial direction from each metering chamber. The 

microchannels and chambers present within the lab-on-a-disc device are depicted in figure 4.2.9 

below. In addition, the reagents contained in each chamber are listed in table 17 above. 

Laser-irradiated ferrowax microvalves were present between each chamber in order to isolate and 

store reagents and samples without cross-contamination and evaporation. LIFMs were closed with 
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ferrowax, which is a mixture of paraffin wax and iron oxide nanoparticles which act as 

nanoheaters and are designed to instantaneously melt with laser irradiation directed on the 

microvalves. 

Only one chamber for both reaction and detection was required for the colorimetric reactions 

associated with nitrite (chamber B1) and phosphate (D1). When the microvalves are opened, 

samples in chambers B and D are transferred into chambers B1 and D1 and are mixed with the 

necessary reagents. For ammonium determination, the sample in chamber E is transferred into 

chamber E1 along with the Cyanurate reagent and monochloramine is formed. The sample is then 

transferred into chamber E2 for reaction with the salicylate reagent and colorimetric detection. 

For silicate, the sample in chamber C is transferred in C1 and C2 chambers in succession where it 

reacts with molybdate reagent and the acid reagent, respectively, to form a yellow silico-

/phosphomolybdic acid complexes. The sample is then transferred into chamber C3 with the citric 

acid reagent where phosphate complexes are destroyed in order to isolate silicate complexes. 

Finally for the nitrite and nitrate, the sample is pretreated with highly concentrated bromine 

water for oxidising all nitrite species to nitrate, as even small amounts of nitrite can interfere with 

nitrate detection due to similarities in reactions mechanisms [Hac11]. The sample is transferred 

through three intermediate reaction chambers (A1-A3), which contain bromine, water, phenol 

solution and NitriVer6 respectively. The sample is then transferred to the A4 chamber for reaction 

with NitriVer3 to achieve nitrite detection (as occurred in chamber B1) and to facilitate 

subsequent nitrate calculations. 

Due to the fact that bromine water is used 

within the lab-on-a-disc, and bromine water is 

highly reactive with plastics, [HKC13] also 

developed a new storage method for highly 

reactive chemicals. The bromine water was 

encapsulated in a Teflon or glass tube with 

thermosensitive doors and ferrowax. The 

release of the bromine water could then be 

remotely controlled using laser irradiation. 

The chemical container is forced to the 

bottom wall of the device and fixed via 

centrifugal force during rotation, and the 

laser source is aligned to melt the wax at 

preprogrammed positions.  

 

Figure 4.2.11. Design of the lab-on-a-disc device for simultaneous determination of five nutrients 

[HKC13] 

When the wax doors are heated, the ferrowax door melts, and an opening forms through which 

the bromine water (or potentially another reactive chemical) can diffuse out from the capsule. 

Figure 4.2.10. Container and melting of ferrowax 

doors resulting in diffusion of chemical [HKC13] 
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Chemical release can then be stopped due to the resolidification of the wax doors. This novel 

chemical container which can be used for the storage of highly reactive chemicals and its 

operation is depicted in figure 4.2.10. The full experimental configuration of the lab-on-a-disc is 

demonstrated in figure 4.2.11. The centrifugal microfluidic device was located on a programmable 

spinning motor. The closed wax valves could be selectively melted and opened through the use of 

a high power laser diode, and fluid movement was recorded using a charge-coupled device 

camera with a strobe light. 

System Performance 

The total analysis time for the simultaneous evaluation of the five nutrients was 7.5 min, which is 

10 times faster in comparison to conventional methods using the same reagents [Hac11]. This 

faster rate of analysis is due to the fact that nutrients could be analysed simultaneously and 

because the lab-on-a-chip device allowed for more efficient mixing of fluids on a shaking disc. In 

addition to this, the lab-on-a-disc device required only 100 µL sample volumes for each nutrient, 

which is 100 times smaller in comparison to conventional method requiring 10 mL sample 

volumes. Calibration curves showed exceptional linearity with R2 values higher than 0.998 for all 

nutrients tested. Furthermore, lower coefficient of variation values were obtained for all nutrients 

by using the lab-on-a-disc platform compared to the results obtained through manual handling of 

the same samples and reagents. The analysis results and performance of the system are 

summarized in table 18.   

Table 18. Performance characteristics for simultaneous determination of nutrients using the lab-

on-a-disc system [HKC13] 

Nutrient Nitrite 
Nitrate and 

Nitrite 
Ammonium Orthophosphate Silicate 

Analyte Analysis 

Time 
2 min 5 min 40 s 7 min 2 min 5 min 5 s 

Sample Volume 100 µL 100 µL 100 µL 100 µL 100 µL 

Reagent Volume 10 µL 20 µL 20 µL 10 µL 30 µL 

LOD 
0.008 mg of 

NO2
- -N/L 

0.05 mg of 

NO3
- -N/L 

0.01 mg of 

NH4
+  -N/L 

0.008 mg of PO4
2-  -

P/L 

0.19 mg of 

Si/L 

Linear Dynamic 

Range 

0.027 - 10 

mg of NO2
-  -

N/L 

0.07 - 10 mg 

of NO3
-  -N/L 

0.05 - 10 mg of 

NH4
+  - N/L 

0.024 - 1 mg of 

PO4
2-  -P/L 

0.79 - 100 

mg of Si/L 

In terms of validation, the validation exercise demonstrated that nutrient concentrations 

measured on the lab-on-a-disc system were comparable with the certified concentrations in the 

CRM sample. In addition, the concentrations within the field seawater from the Chunsu Bay 

measured by the lab-on-a-disc were comparable to those measured by conventional benchtop 

methods. When considering design limitations, as a trade-off to the compact design and easy 

portability of the lab-on-a-disc, the number of samples that can be processed simultaneously on 

one disc is limited to the area of the disc. In the future, an autosampler or an autodisc exchanger 

could potentially be integrated into the lab-on-a-disc system in order to improve process volume.  

This centrifugal microfluidic device for the simultaneous determination of nitrite, nitrate and 

nitrite, ammonium, orthophosphate and silicate in water samples provides new opportunities for 

on-site monitoring of water bodies. The lab-on-a-disc platform allows for smaller sample volume, 

shorter analysis time, lower cost, less opportunity for human error and portability. On-site analysis 

of rivers or seawater would be possible by applying this lab-on-a-disc device into commercialized 

portable instrumentation associated with blood analysis (e.g. Samsung IVD-A10A Compact Blood 

Tester) [Sam09]. For diverse fluidic operations in complex multistep processes, this lab-on-a-disc 
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system uses simpler and more stable configuration than those required for pump-based 

microfluidic chips. Such configurations would allow for the on-site analysis of river or seawater 

using portable instrumentation and may deliver to the needs of environmental researchers and 

monitoring, that is, better, cheaper, faster and lighter technology [HKC13]. 

4.2.2.6 ION-SELECTIVE NITRATE LOC SENSOR 

A novel approach, in which [JZK11] are working on, is the development of the ‘smart’ membrane, 

which may be seen as one of the most difficult tasks in the development of ion-selective 

microelectrodes [JGD08]. [JZK11] are aiming to produce a nitrate LOC sensor. For the 

development of a potentiometric nitrate LOC sensor, a nanobead packing technique is applied to 

fabricate self-assembled nanobead hetro (nBH) columns in a polymer chip cartridge. 

When making planar nitrate microelectrodes and Ag/AgCl reference microelectrodes using MEMS 

fabrication technologies, the main issues are how to hold the liquid ion exchange (LIX) membrane 

to permit ion selectivity and how to contain the internal KCl solution to make a reliable miniature 

reference electrode. Typical planar miniature solid-state reference electrodes coated by 

electrodeposition or screen-printing techniques are constructed without any internal electrolyte. 

Such planar solid-state microelectrodes have resulted in only short-term stability, poor 

reproducibility, and poor lifetime as demonstrated by [VAG05]. Based on several methods 

described within literature (e.g. [VAG05]), to overcome potential drift problems, the next most 

promising method of construction of miniature ion-selective and reference microelectrodes 

would be a liquid-junction electrode containing LIX and saturated KCl solutions. One way to 

achieve this liquid-junction electrode is to manufacture a self-assembled nBH column to hold LIX 

or electrolyte. 

Fabrication 

For fabrication of the nBH column on a chip, cyclic olefin copolymer (COC) was used. It can be 

noted that COC may be seen as a favourable substrate material for environmental lab chip 

applications due to the COC’s relatively high solvent resistance [ACB04]. The COC chip which was 

developed by Jang et al. is pretreated with O2 plasma for 2 min to produce hydrophilicity on the 

surface of the microchannel. Pretreated open microchannels showed high enough hydrophilicity 

to drive the silica colloidal suspension to the end of the channel by capillary force.  

Once the colloidal silica particles reach the end of the capillary channel, spontaneous three-

dimensional packing of the silica beads starts from the end of the microchannel due to the slow 

evaporation of water. It takes less than 2 min for the bead packaging process to be completed in a 

micro-volume channel of 0.0125 mm3. 

As illustrated in figure 4.2.12, the hydrophilic and hydrophobic nanobeads were packed in a 

designated region by capillary electrophoresis. As a result, the developed nBH column was 

composed of a hydrophilic silica bead packed area for electrolyte loading and a hydrophobic 

polystyrene bead packed area for a LIX membrane which is permeable for target ions but 

impermeable for interfering species. Analyte detection is then achieved through potentiometry. 
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Figure 4.2.12. Photograph of the dual ion-selective lab chip and the scanning electron microscope 

images of the heterogeneous nanobead packed column [JZK11]  

System Performance         

To assess the electrochemical detection performance of the ion-selective sensor chip for nitrate, 

potentiometric responses were measured. The potentiometric response of the nitrate ion-

selective sensor chip was linear within the NO3
- concentration range of 10-5 to 10-1. The response 

time of the nitrate sensor was less than 7s. This range is quite low, however, through further 

developments and improvements, such as improving the control of pore size and structure of the 

self-assembled nanobead packed column, a greater range may be achieved. Nonetheless, the nBH 

column on a lab chip, developed by this research group, provides a new electrochemical sensing 

platform with high sensitivity and excellent ion selectivity for environmental monitoring and 

through further research may find use in portable water monitoring [JZK11]. 

4.2.2.7 MICROFLUIDIC NITRATE SELECTIVE SENSOR BASED ON DOPED-POLYPYRROLE 

NANOWIRES 

 [AB08] have developed a nitrate-selective electrochemical sensor using doped-polypyrrole (PPy) 

nanowires on a microfluidic platform for the analysis of seawater. Typically commercial ion-

selective electrodes (ISEs) possess no anion recognition functionalities and respond based on the 

anions lipophilicity [PBW88]. ISEs typically respond to ions according to the Hofmeister series, 

which implies that nitrate ion-selective electrodes are more selective to perchlorates and iodides 

than nitrates. Thus selective interactions must be incorporated between ionophores and nitrate 

using chemical recognition principles. This would allow for true selective nitrate sensor 

development, which is not limited by the Hofmeister series. 

[AB08] achieved selective chemical recognition towards nitrate by electrochemical nitrate doping 

of polypyrrole. Lower detection limit and improved sensitivity is achieved by utilizing polypyrrole 

nanowires, as opposed to conventional polypyrrole films. Nanowires, being one-dimensional 

structures have a large surface-to-volume ratio and lower diffusion resistance and therefore 

enhance the capture cross-section. Polypyrrole is a widely studied conducting polymer, due to its 

high conductivity, ease of preparation, flexibility and stability as an ISE [Mar94]. Moreover, 

polypyrrole-doped nanowires demonstrate high selectivity and rapid reactivity towards the 

dopant ion [BKH05]. 

In its oxidised state, polypyrrole exists as a polyradical cation and at the oxidation stage; nitrate 

anions are attracted electrostatically into the polypyrrole matrix as dopants or counter ions. This 

is depicted in figure 4.2.13 below. 
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Figure 4.2.13. Nitrate anions attracted electrostatically into PPy [AB08] 

In the research carried out by Aravamudhan and Bhansali, the selective chemical recognition for 

nitrate is achieved by electrochemical polymerization (i.e. doping) of a suitable monomer, in this 

case pyrrole, under controlled conditions to facilitate generation of selective recognition sites in 

the PPy layers. By polymerizing PPy layers in the presence of sodium nitrate (NaNO3), pores which 

are complementary to the size of target nitrate ions are produced. The pore size and charge 

distribution within the doped-polypyrrole form a host cavity for nitrate, thus achieving greater 

selectivity over conventional nitrate-selective ISEs [AB08]. 

Synthesis and Fabrication  

Polypyrrole nanowires (PPy-NWs) synthesis - The PPy-NWs were synthesized in a two-

compartment cell, as demonstrated by [CZW05]. A nanoporous alumina template was placed 

between the two compartments, with 0.2 M of pyrrole monomer and 0.2 M of FeCl3 oxidant on 

each side. At first, only pyrrole monomer was allowed diffuse through the template. Then the 

FeCl3 oxidant was added in the second compartment. The monomer and oxidant diffuse towards 

each other through the pores of the template, resulting in polymerization of polypyrrole 

nanowires. Next, the PPy-NWs were released from the template by dissolving the template in 

warm 45% KOH with periodic agitation and centrifugation at 7000 rpm. The supernatant was then 

decanted, replaced with clean methanol and ultra sonicated for about 1 min. This procedure of 

nanowires collection, solvent addition and ultra-sonication was repeated three times to ensure 

clean PPy-NWs. 

Fabrication of electrochemical sensor chip - The fabrication of 

the electrochemical sensor and nanowires assembly were 

performed in a similar manner to the method employed by 

[ARB07]. The polypyrrole nanowires were assembled onto Pt 

lines using dielectrophoresis. This technique uses a non-

uniform electric field to achieve selective assembly of neutral 

particles in a liquid dielectric medium [BE05]. Interdigitated 

assembly lines and counter electrode were fabricated in Pt, 

with Ti as an adhesion layer on 7740 Pyrex substrate (2.5 mm 

x 2.5 mm). The microfluidic flow paths and reagent chamber 

were then patterned using 100 µm thick SU-8 epoxy film. The 

film was then hard baked at 180°C to prevent out-gassing or 

contamination. The Interdigitated Pt lines which were 

fabricated had a width of 50 µm and 10 µm spacing. Dilute suspensions of the PPy-NWs in 

methanol were dispensed on the Interdigitated Pt lines. An alternating electrode voltage of 10-20 

Vrms at a frequency of 20 kHz was applied to the left Pt lines (represented as 1 in figure 4.2.14) 

relative to the right grounded Pt lines (represented as 2 in figure 4.2.14) for about 60 s. 

The assembly was then monitored by studying the series current and later verified by microscopy. 

The PPy-NWs on the Interdigitated Pt lines then act as the working electrode in electrochemical 

measurements. As a final step, the PPy-NWs and electrochemical sensor chip is then cleaned to 

remove any excess nanowires. Figure 4.2.15 below illustrates the electrochemical sensor chip. 

Figure 4.2.14. Picture of cell with 

Pt assembly lines and counter 

electrode [AB08] 
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Figure 4.2.15. (A) Illustration of the electrochemical sensor chip; (B) Depiction of the electrochemical 

cell [AB08] 

Electropolymerization of PPy-NWs - The polymerization of polypyrrole-doped with nitrate was 

performed galvanostatistically.  The electropolymerization solution was composed of 0.5 M 

pyrrole and 0.5 M NaNO3, which were deoxygenated before use by purging with N2. A galvanostat 

was used to supply a constant current at 2 mA cm-2 for 10-20 min. Silver wire and on-chip 

deposited platinum electrodes were used as reference and counter electrodes, respectively. After 

the polymerization reaction, the doped PPy-NW electrode was conditioned in 0.1 M NaNO3. 

System Performance 

After successful calibration testing of the PPy-NW electrodes under standard conditions, the 

electrodes were firstly used to analyse IAPSO standard seawater only to give baseline stability. It 

was demonstrated that for successive nitrate increments, the peak current also increased linearly, 

maintaining a stable current response. In the second set of experimentation, the baseline effluent 

analysed contained IAPSO standard seawater and 50 µM nitrate ions with intermittent nitrate 

spikes injected into the system at certain intervals. After every sudden nitrate spike, the baseline 

carrier effluent was flown through the sensor. It was noted that even though the sensor 

responded well to nitrate spikes, the initial baseline current was not obtained. This could be a 

result of residual nitrate ions present in the system. To resolve this, sensor regeneration by 

further optimizing the electropolymerization parameters could be performed, and control valves 

could be integrated into the system. 

The selectiveness of the doped PPy-NW electrodes and effect of interfering ions on current 

response for various anions were also investigated. It was found that for up to 0.2 mM of chloride, 

sulphate, phosphate and perchlorate ions in the baseline seawater solution, no significant effect 

was found in the current response. However, at higher levels of interfering ions the peak current 

response decreased by about 15-20%. To further improve the selectivity of the doped PPy-NW 

electrodes, techniques such as deposition of solvent polymeric membranes and selective 

coordination interaction could be investigated [AB08]. 

By using this electrochemical-doping approach on polypyrrole nanowires, a highly sensitive and 

selective nitrate sensor was developed, and was demonstrated on a microfluidic platform. The 

PPy-NW electrodes exhibited a 4.5 ± 1 µM detection limit within standard seawater samples and 

rapid response to changing nitrate concentrations in a flow-through system. The developed sensor 

further showed a linear response within the nitrate range of 0.14 ppm to 14 ppm nitrate with a 

sensitivity of 1.17 - 1.65 nA/µM. The sensor exhibited good selectivity to the nitrate ion, with only 

15-20% decrease in current due to interfering ions, and through further investigation may find 

application within a marine environment. Future investigation and development may be directed 

towards the effect of electropolymerization parameters on sensor characteristics and control 

valves and micro-pump assembly to achieve a truely field-deployable sensor. 
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4.2.3 New Generation Phosphate Sensors 

Chemical analysis systems and techniques which may be utilised to achieve cost-effective sensors 

for the determination of phosphate are summarised in table 19 below. The associated advantages 

and disadvantages of each technique are highlighted in the table also. 

Table 19. Summarization of novel analysis systems for phosphate determination 
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4.2.3.1 INTRODUCTION 

Phosphorus is an essential nutrient for all living organisms, it plays a key role in biological 

metabolism and compared to other macronutrients required by biota, phosphorus is the least 

abundant and typically the first nutrient to limit biological productivity. Phosphorus in aquatic 

systems occurs in three forms: inorganic phosphorus, particulate organic phosphorus and 

dissolved organic phosphorus. Aquatic biota require inorganic phosphate, typically in the form of 

orthophosphate ions (PO4
3-), for nutrition. This is the most significant form of inorganic phosphate 

and may be referred to as soluble reactive phosphorus (SRP) [Wet01]. Phosphorus occurs 

naturally in rocks, soil, animal waste and plant material. However in recent times, anthropogenic 

sources of phosphorus have become a large fraction of the phosphorus delivered to the aquatic 

environment. Human activities such as agriculture, industrial and municipal waste discharge and 

water runoff from residential and urban areas result in phosphorus entering aquatic systems. 

High levels of phosphorus within an aquatic system can lead to excessive phytoplankton growth 

which can cause undesirable effects such as: a decrease in biodiversity; a decline in ecologically 

sensitive species; an increase in plant and animal biomass; an increase in turbidity; and anoxic 

conditions [CCM04]. Consequently, limits for phosphate concentrations in natural waters are 

being reduced by regulatory organisations. This evolution of water quality policy in Europe and 

internationally is increasing the need for the accurate determination of phosphate through the 
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use of sensitive automated analytical systems [LSW13]. This report highlights and evaluates a 

number of chemical analysis systems and potential techniques which may be utilised to achieve 

cost-effective sensors for the determination of phosphate in marine environments. 

4.2.3.2 MICROFLUIDIC PHOSPHATE ANALYSER IN MARINE WATER USING 

VANADOMOLYBDATE METHOD 

[LSW13] have developed a high performance autonomous analytical system based on the 

vanadomolybdate method for the determination of SRP or orthophosphate in seawater. The 

system combines a microfluidic chip manufactured from tinted polymethyl methacrylate (PMMA), 

a custom syringe pump, embedded electronics and on-board calibration standards. This lab-on-a-

chip system was successfully deployed in coastal waters in South West England, and open ocean 

waters in the North Atlantic. The miniaturized system compared well with a reference bench-

operated phosphate auto-analyser and showed no significant differences in terms of analytical 

results (t-test at 95% confidence level). The optical technology utilised, comprising of tinted 

PMMA and polished fluidic channels, facilitated an improvement of two orders of magnitude of 

the limit of detection (LOD) compared to currently available portable systems. The system 

allowed for high resolution measurements of soluble reactive phosphorus in seawater. It can be 

noted that the vanadomolybdate method or yellow vanadomolybdophosphoric acid method 

offers the greatest potential in terms of achieving deployable microfluidic systems for phosphate 

determination in aquatic environments, examples of successful deployments include [CSM08] and 

[SCL10].  

Fabrication 

High power UV-LEDs were used as the light source and photodiodes for the absorbance detection. 

Both the LEDs and photodiodes were directly glued onto the microfluidic device with an optical 

adhesive. The microfluidic device was produced by micro-milling of 5.0 mm thick tinted PMMA. 

Through the use of tinted PMMA the amount of light reaching the detector coming from ambient 

sources is reduced, and also stray light from the LEDs do not pass through the analyte. A solvent 

vapour bonding procedure was used to bond the microfluidic manifold and the lid. This technique 

produces smooth channel surfaces and allows for longer optical cells. The fluidic manifold of the 

chip included two absorbance cells of 25 mm length, i.e. a reference and a measurement cell. This 

is illustrated in figure 4.2.16A. Fluid handling was performed using seven micro-inert valves which 

allowed for switching from the sample inlet to blank or on-board standards stored in 500 mL fluid 

bags. A stepper motor was used to drive two 200 µL liquid delivery syringes, which were 

manipulated by two Hall-effect sensors.  

 
Figure 4.2.16. (A) Schematic of microfluidic chip. (B) Micro-analyser including custom syringe 

pump, valves, microfluidic chip and electronics [LSW13] 

The dead volume of the device was 500 µL. This was minimized as all fluidic connectors, optical 

alignment grooves, valve mounts and syringe pump mounts were directly milled into the microfluidic 

device. Seawater was filtered at the inlet using a 0.45 µm pore size polyethersulfone filter unit. The 
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outputs of the photodiodes and the final data were stored on a 2 GB flash memory card. The entire 

system was housed in a water-tight acrylic tube and is portrayed in figure 4.2.16B above. 

Measurement Method 

The determination of orthophosphate here is based on the rapid direct reaction of 

orthophosphate with an acidified vanadomolybdate reagent which results in a yellow coloured 

complex. The ‘‘yellow method’’ offers excellent stability of the reagent mixture over time, 

reported to be over one year, compared with four to six weeks for the classical ‘‘blue method’’ 

[BD03). The inorganic phosphorus species in seawater include orthophosphoric acid, dihydrogen 

phosphate, and hydrogen phosphate and their abundance at equilibrium depends on the pH. 

Under acidic conditions, orthophosphoric acid is dominant and reacts with molybdate ions to 

form molybdophosphoric acid, as shown in the reaction below. In the presence of vanadate ions, 

this complex will form vanadomolybdophosphoric acid with a molar absorptivity of 3.6 x 103 mol-1 

cm-1 at 385 nm [ML05]. 

H3PO4 + 12MoO3 � H3PMo12O40 

The analytical protocol involved a series of four main steps: (1) withdrawal of water sample from 

the environment; (2) injection of the sample, mixing of the sample and reagent into the on-chip 

mixer; (3) colour formation and (4) absorbance measurement. Absorbance of the sample blank or 

standard was determined within the reference optical cell prior to the addition of the reagent. 

This step is carried out in order to correct for any background absorbance. Mixing is accomplished 

on the chip by passing blank, standard or sample together with reagent through a 250 mm long 

serpentine mixer. The reagent and sample were pumped through the chip at a flow rate of 200 µL 

min-1, at a ratio of 1:1. The flow was stopped to facilitate colour formation and the associated 

absorbance was measured in the second optical cell. The reaction time was between 180 and 

300s, to allow sufficient time for the reaction to develop colour. In addition, to minimise any 

potential contamination or carry-over between samples, an extra 320 µL sample volume was 

flushed through channels between samples. 

System Performance 

This novel automated lab-on-a-chip colorimetric analyser for SRP was successfully deployed in 

coastal and open ocean environments. The system exhibited an LOD of 52 nM and can analyse up 

to 10 samples per hour. The measurements undertaken by the novel miniature analyser agreed 

with those made by a conventional bench-top SRP analyser. The fabrication of the microfluidic 

device facilitates and permits an extension of the path length of the optical cell which improves 

the LOD according to the Beer-Lambert law, and allows for the use of the system in low nutrient 

oligotrophic waters. The reagent volume (340 µL per sample) and power consumption (756 J per 

sample) of the microfluidic system were orders of magnitude lower than for conventional systems 

and due to the enhanced stability of the reagent of the ‘‘yellow method’’ allows for long term 

monitoring of SRP in marine waters [LSW13]. This successfully deployed system highlights the 

excellent potential the vanadomolybdate method offers in terms of microfluidic platforms.  

4.2.3.3 PHOSPHATE LOC SENSOR 

Due to their instrumental simplicity, moderate cost and portability, a lot of analytical method 

development has concentrated on electrochemical sensors. Although in the last decade there has 

been growing interest in the use of electrochemical sensors in environmental pollution 

monitoring, their configuration with an internal filling solution is not well suited for 

miniaturization. Alternatively, the replacement of the liquid internal solution with a solid-state 

membrane is promising. The use of solid-state membranes has a number of advantages over 

other conventional methods, including simple structure, high sensing performance and ease of 

compatibility with other advanced technologies such as MEMS techniques. 
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Jang et al. (2011) have developed a miniaturized phosphate sensor with an on-chip planar cobalt 

microelectrode and integrated microfluidic channels, which is depicted in figure 4.2.17, using 

standard MEMS fabrication technology [JZK11]. The proposed sensor is produced very cheaply 

and is potentially suited for large-scale mass production and disposable usage without cross 

contamination. Further benefits of the proposed sensor include low volume of analyte 

consumption and waste generation and rapid sensing time. Eventually, the sensor may be utilised 

for large-scale field deployment for environmental applications such as marine monitoring. 

Furthermore, the sensor could be easily integrated into lab-on-a-chip devices, coupled with 

sample preparation and additional analyses. 

 

Figure 4.2.17. Illustration and working principle of the on-chip phosphate sensor with planar 

cobalt electrodes on polymer substrates [JZK11] 

Measurement Method 

The interaction of the cobalt surface with oxygen is suggested in order to explain the sensing 

mechanism of the cobalt toward the phosphate ions by a number of authors [DPC98] and [XYL95]. 

It has been noted that in both acidic and basic medium there is an oxidation reduction on the 

surface of the cobalt electrode by following a pretreatment procedure:  

 

In this way, it is postulated that the CoO layer formed at the electrode surface serves as the 

sensitive membrane responding towards the phosphate ions according to the host-guest 

mechanism. Specifically, in the presence of phosphate in the solution, cobalt phosphate is 

produced on the surface of cobalt by the following three reactions, depending on pH value of the 

solution. At pH 4 in 25 mM potassium hydrogen phthalate buffer: 

 
At pH 8 in N-2-hydroxyethylpiperazine-N’-3-propanesulfonic acid (HEPPS) buffer: 

 

At pH 11 in 10 mM 3-(cyclohexylamino)-1-propanesulphonic acid (CAPS) buffer: 

 

Thus, through the application of the Nernst equation, the corresponding electrode potential 

response versus the logarithm of the phosphate concentration can be directly determined. 

Fabrication of Phosphate Sensor and Microfluidic Chip on Polymer Substrate 

A gold layer of 100 nm and a Co layer of 300 nm were deposited on a 3 inch blank cyclic olefin 

copolymer (COC) wafer using an e-beam metal evaporator. Au and Co electrodes were patterned 

by photolithography and etched by Co (0.5% HNO3) and Au (TFA) etchants. The Ag/AgCl layer was 

deposited on the reference electrode using electroplating on the Au seed layer. The sensing time 

of the proposed sensor can be significantly reduced by using the integrated polymer microfluidic 
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chip. After drilling holes for fluidic interconnection at inlet and outlet, the microfluidic chip was 

bonded with the sensor chip using a UV adhesive bonding technique at room temperature 

[ZHJ07], to achieve the final device. The details of the Co working electrode and the Ag/AgCl 

reference electrode are depicted in figure 4.2.18. Both electrodes have lengths of 1.5 mm, widths 

of 200 µm, and a spacing of 200 µm. 
 

 

Figure 4.2.18. Fabricated device and microscopic image of on-chip phosphate sensor composed of 

Co working electrodes and Ag/AgCl reference electrodes [JZK11] 

Performance 

The feasibility of this electrochemical sensor to monitor inorganic phosphate compounds has 

been fully demonstrated. By incorporating mass-production microfabrication techniques and high 

throughput plastic micromachining, the proposed on-chip phosphate sensor with the integrated 

microfluidic chip could be fabricated at very low cost while maintaining excellent performance. 

The miniaturized sensing system is suitable for large-scale field deployment and the proposed on-

chip microsensor is fully integrated with the polymer microfluidic system and could be developed 

as multi-analyte polymer lab-on-chips. These Co-wire electrodes show a very good response to 

inorganic phosphate in a dynamic range from 5 x 10-5 to 5 x 10-2 M with a detection limit less than 

10-5 M. Furthermore, it can also be noted that this proposed electrode exhibited a high selectivity 

for phosphate ions with respect to most other anions [JZK11]. 

4.2.3.4 REAGENTLESS ELECTROCHEMICAL PHOSPHATE DETERMINATION IN SEAWATER 

An initial electrochemical method for the determination of phosphate in seawater was developed 

by [JLT11]. The method was based on the oxidation of molybdenum in order to form molybdates 

and protons, subsequently creating the phosphomolybdic complex electrochemically detectable 

by means of amperometry at a rotating gold disk electrode. To avoid silicate interferences, the 

method required an appropriate ratio of protons over molybdates equal to 70. Since the ratio of 

protons over molybdates created during molybdenum oxidation is only 8, the method still needed 

addition of sulphuric acid and thus was not free of additional liquid reagents. In the present, most 

recent work carried out by [JGB13]; this aspect is solved by modification of the electrochemical 

cell construction. The method is now totally free from addition of any liquid reagents and gives a 

possibility to determine phosphate by amperometry in the concentrations range found in the 

open ocean with a detection limit of 0.11 µM. However this method would not be particularly 

suitable for miniaturisation. Having energy savings and miniaturisation in mind for in situ sensor 

development, differential pulse voltammetry at a static gold electrode was also investigated and 

was successfully applied as phosphate could be determined with a detection limit of 0.19 µM 

using this method. This proposed method is suited to miniaturization and by minimising the 

system could find application as an in situ sensor for marine monitoring. 

Measurement Method and Fabrication   

Electrochemical measurements are carried out with a potentiostat µ-Autolab III, and the 

reference electrode is an Ag/AgCl/KCl 3 M electrode. Measurements at the stationary electrode 

are recorded in a three electrode cell with a platinum counter electrode and gold working 
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electrode. The working electrode is polished with lapping film sheet and electrochemically 

cleaned in 0.5 mol/L sulphuric acid solution before each measurement. The molybdenum 

electrode has a surface of around 100 mm2. Molybdate is produced by molybdenum anodic 

oxidation performed at a constant electrolysis current of 50 mA or at constant potential of 2 V.  

The simultaneous production of molybdate and protons with the appropriate ratio is based on the 

use of a cell divided in three parts. In the first one (1 mL) a primary molybdenum electrode is 

oxidised and thanks to a thin 30 µm proton exchange membrane only protons can pass through to 

the second compartment and thus acidify the medium to pH 1, to avoid interference from silicate. 

In the second compartment (5 mL), a secondary molybdenum electrode is oxidised during a short 

time and thus achieving a ratio of protons over molybdates of 70. To avoid the reduction of 

protons formed during the two previous oxidations of molybdenum, the platinum electrode is 

placed in the third compartment which is in contact with the former two part of the cell by a non-

proton exchange membrane with thickness of 180 µm. During molybdenum oxidation, the 

platinum electrode acts as a cathode, while during phosphate determination it acts as a counter 

electrode. Figure 4.2.19 illustrates a schematic of the cell.   

 

Figure 4.2.19. Depiction of electrochemical cell with application of membrane technology 

(Ag/AgCl/Cl
-
 - reference electrode, Au working electrode, Pt counter electrode, Mo1-first 

molybdenum electrode, Mo2-second molybdenum electrode, 1
st 

part-first compartment of cell with 

proton exchange membrane, 2
nd

 part-second compartment of cell with non proton exchange 

membrane) 

The phosphomolybdate complex was detected by differential pulse voltammetry at the stationary 

gold electrode using optimised pulse amplitude. The detection limit obtained was 0.19 µM. 

Reproducibility tests also exhibited suitable precision. 

Summary of Electrochemical Cell 

Through this novel construction of the electrochemical cell and utilization of membrane 

technology coupled with molybdenum oxidation, electrochemical detection of phosphate within 

seawater is accomplished. The method is free from addition of any liquid reagents and free from 

silicate interferences. During molybdenum oxidation in a sample containing phosphate, the 

phosphomolybdic complex is formed. The complex is then detected by differential pulse 

voltammetry on a gold electrode. The method allows for the detection of phosphate in the 

concentration range found in the ocean with a suitable detection limit, reproducibility and 

accuracy. The electrochemical cell is suitable for miniaturisation and through further 

developments both in terms of minimising the system and adaptations to protect against 

corrosion, biofouling etc. the cell may be used as an in situ sensor for the determination of 

phosphate in seawater [JGB13]. 
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4.2.3.5 COMPACT FLOW ANALYSIS SYSTEM FOR DETERMINATION OF TOTAL PHOSPHORUS 

 [GEF10] developed a portable flow analysis system for the in situ determination of total 

phosphorus. The system employed an ultra-violet photo-reactor and thermal heating for 

peroxodisulfate digestion of total phosphorus to orthophosphate, followed by 

spectrophotometric detection with a multi-reflective flow cell and low-power light emitting diode 

using the molybdenum blue method. Reagents were stored under gas pressure and delivered 

using software controlled miniature solenoid valves. As mentioned the instrument comprised of a 

UV photo-reactor, constructed from Teflon tubing wound around a medium pressure mercury 

lamp, as well as a heating unit consisting of an electrically heated Teflon tubing coil. Sample is 

merged with an acidic peroxodisulfate solution prior to passing through the photo-reactor and 

heater. Digested sample is filtered through a 0.22 µm in-line hollow-fibre filter before being 

pumped into a FIA system for the detection of orthophosphate by the molybdenum blue method. 

Phosphomolybdenum blue is then detected spectrophotometrically. The flow analysis system was 

successfully deployed aboard the SV Pelican 1 catamaran during a 2 week study of Port Phillip and 

Western Port Bays in Victoria, Australia. 

Instrumentation 

A sampler and digestion module was used to perform all sample treatment operations, including 

digestion, debubbling and filtration. Sample was collected with a peristaltic feed pump. A 

miniature peristaltic pump was used to pump sample from the feed pump at 2 mL min-1 which 

merged with 2 mL min-1 of acidic peroxodisulfate digestion reagent. The sample-digestion reagent 

stream passed through a UV photo-reactor consisting of a UV lamp (λmax = 254 nm) wound with 

2000 mm of 0.2 mm i.d. Teflon tubing, and then to a 600 mm length of 0.5 mm i.d. Teflon tubing 

maintained at 80°C by a 10 W heater. The digested sample was filtered using a hollow fibre cross 

flow filter constructed of a single 100 mm length of micro-porous polypropylene tubing supported 

internally by a perforated piece of 0.5 mm i.d. Teflon tubing. The hollow fibre was housed in a 

perspex block (20 mm x 20 mm x 105 mm) inside a chamber with a 2.5 mm i.d. bore, with both 

ends being sealed by glue. The digested sample was introduced through a port in one end of the 

block. A length of 0.3 mm i.d. tubing connected to an exit port was used to increase the trans-

membrane pressure differential to enhance the flow rate through the membrane. The harsh 

acidic oxidising conditions of the digested stream effectively prevent any particulate build-up on 

the surface of the polypropylene tubing. However, the polypropylene tubular membrane only had 

an operating lifetime of approximately 1 week. 

The reagent injection flow analysis system was used for the analysis of the orthophosphate 

produced by on-line digestion. The sample stream was driven by a peristaltic pump at 1.8 mL min-

1 and two solenoid valves were utilised for the introduction of the acidic molybdate chromophoric 

reagent (R1) and the acidic tin (II) chloride-hydrazine reductant (R2) which was held in a reagent 

storage chamber. 

 

Figure 4.2.20. Illustration of flow analysis system [GEF10] 
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used in the molybdenum blue method, the use of a 10 W heater and the use of a mercury lamp to 
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and is collected by a photodiode. Dissolved reactive phosphate is successfully detected using the 

developed system. The determination of the phosphate concentration is based on the reaction of 
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Figure 4.2.21 Fluorescence detector 

with optical components [KLW14]
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for coastal, marine and highly pristine fresh waters. A RSD of 4.6 % was obtained when measuring 

phytic acid standard, which indicates that the conversion of phytic acid to 

orthophosphate is reasonably precise. However, a number of disadvantages are associated with 

the system when considering long term deployment. For example, the instability of the reagents 

used in the molybdenum blue method, the use of a 10 W heater and the use of a mercury lamp to 

facilitate mineralisation of organic phosphorus compounds. Nevertheless, by perhaps altering the 

materials and reagents used, and through further improvements the system may be utilised to 

achieve long term deployment in aquatic environments. 

FLUORESCENCE DETECTION FOR PHOSPHATE USING REVERSE INJECTION ANALYSIS

[KLW14] have developed a compact flow-through fluorescence detector for analyses applications 

and prove its functionality through experimentation. The detector operates by detecting the 

diffusely emitted fluorescence in a glass capillary, which is a measure for the concentration of the 

analyte to be detected. The fluorescence is excited via an axially coupled fibre providing LED light 

and is collected by a photodiode. Dissolved reactive phosphate is successfully detected using the 

system. The determination of the phosphate concentration is based on the reaction of 

molybdate to phosphomolybdate, which quenches the fluorescence of Rhodamine 6G. The 

miniaturised fluorescence detector is compact and is designed for flow analysis. The m

features of the device are the large collection of isotropically emitted light, strong suppression of 
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Optical detector for fluorescence measurements and FIA arrangement 

ectors for online applications in water must fulfil specific requirements, these 

include: small spatial footprint, small sample volume, adaption to the fluidic system, high 
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functional principle of the developed fluorescence detector relies on the phosphate induced 
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the capillary is excited via a multimode fibre which is stuck into the capillary with its end being 

precisely positioned close to the location of the detector unit. The multimode fibre is connected 

to the blue LED. Strong light transfer from LED into glass capillary is ensured by using a 550 µm 

thick multimode fibre with a numerical aperture of 0.22. The fibre ends outside the detection 

channel of the capillary holder. The fluorescence light is collected by a photodiode using a high-

aperture converging lens. Undesired excitation light is suppressed via an edge filter positioned in 

front of the photo detector. The developed fluorescence detector and the associated optical 

components are illustrated in figure 4.2.21; in the upper right corner of the figure is a 3D model of 

the fluorescence detector. 
 

In terms of the flow injection analysis (FIA) arrangement, reversed FIA is based on injecting the 

reagents into a sample stream used as carriers. This method is applied when sample material is 

abundant and is characterized by low reagent consumption and high sample throughput. The 

developed reversed FIA setup is composed of two main parts: sample acquisition and sample 

analyzing. The arrangement of the analytical setup consists of a reagent container, a mixing coil 

and the developed fluorescence detector. Figure 4.2.22 below shows the reversed FIA set up. 

 

Figure 4.2.22 Constructed R-FIA system with acquisition unit and analysis unit 

Measurement method and reagents 

The employed method is based on the reaction of orthophosphate with molybdates under acidic 

conditions producing molybdophosphate, a chemical forming a non-fluorescent complex with 

Rhodamine 6G [KLW14]. In the developed system this reaction leads to a decrease in the 

fluorescence intensity by static fluorescence quenching. This quenching concentration 

dependency is described by the Stern-Volmer relationship 

 

IO/I   =   1 + Ks Q 

 
IO and I being the intensities of fluorescence without and with a quencher, respectively, KS the 

Stern-Volmer quenching constant, and Q the quencher concentration. Reagent solution 1 (RS1) 

consists of Rhodamine 6G (1.5 mg L-1) and the emulsifier p-octylphenoxypolyethoxyethanol (500 

mg L-1). Reagent solution 2 (RS2) is made up of molybdates (58 mmol L-1), hydrochloric acid (1 mol 

L-1), and also p-octylphenoxypolyethoxyethanol. All solutions were filtered, degassed and stored 

in plastic bottles. 

System performance 

By combining the optics and the fluidic setup a measuring range of 0-40 µg L-1 PO4
- P with 

detection limit of 0.22 µg L-1 PO4
- P for water and detection limit of 0.45 µg L-1 PO4

- P for seawater 

were obtained. The novel system can achieve a sampling frequency of up to 300 samples per hour 
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and demonstrated adequate repeatability. [KLW14] have presented a miniaturised, robust and 

low-cost fluorescence detector for FIA applications. It displays and excellent sensitivity and is 

highly selective to the chosen analyte. Compared to other published concepts the developed 

fluorometric sensor and the R-FIA system together have an equal or greater performance in terms 

of sensitivity, detection limits and sampling rate, and show great potential in terms of in situ 

analysis.    
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4.2.4 Next Generation Ammonia Sensors 

Numerous analysis systems and techniques which may be employed to achieve cost-effective 

sensors for ammonium determination in the marine environment are summarised in table 20 

below. The advantages and disadvantages associated with each technology are also highlighted. 
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Table 20. Summarization of analysis systems for ammonium determination in marine water 
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4.2.4.1 INTRODUCTION 

Ammonia is an important component of the nitrogen cycle and as it is oxidised in the 

environment by microorganisms (i.e. nitrification), it is a large source of available nitrogen in the 

environment. The complexity of the nitrogen cycle, various rate determining environmental 

conditions for nitrification (e.g. pH, temperature), and the physical behaviour of ammonia (e.g. 

volatilization, adsorption) make determining the fate of ammonia in the environment extremely 

complex. Ammonia is highly soluble in water and its speciation is affected by a wide variety of 

environmental parameters including pH, temperature and ionic strength. In aqueous solutions, 

equilibrium exists between un-ionized (NH3) and ionized (NH4
+) ammonia species. Unionized 

ammonia refers to all forms of ammonia in water with the exception of the ammonium ion (NH4
+), 

whereas ionized ammonia refers to the ammonium ion. Ammonia is used in a number of 

applications in the refrigeration, pulp and paper, mining, food processing and animal husbandry 

sectors [EC97]. However the principle use of ammonia is the production of nitrogenous fertilisers. 

Ammonia commonly enters the environment as a result of municipal, industrial, agricultural and 

natural processes. Natural sources of ammonia include the decomposition or breakdown of 

organic waste matter, animal waste, the discharge of ammonia by biota, and nitrogen fixation 

processes [CCM10]. 

At the pH in seawater, ammonia occurs predominantly in the ammonium form [WCL13]. It can be 

noted that episodic increases of ammonium in the water column have been directly related to 

zooplankton or ichthyoplankton excretion. Ammonium released by zooplankton within the mixed 

layer where exogenous nitrogen is often in short supply, can be a significant recycled nitrogen 

source supporting phytoplankton production. In polluted waters, high concentrations of 

ammonium can be toxic to organisms such as fish, crab, shrimp, and sea urchin, especially larvae 

or juveniles of these species [AZO13]. In fact, ammonium is the nitrogen compound most rapidly 

cycled in coastal and marine waters with a typical residence time of hours or less [CRJ08]. 

Measured concentrations from water samples in oligotrophic waters typically average less than 1 

µM but there may be considerable temporal and spatial variability, especially since the proximal 

sources of ammonium are predominantly biological [JLB08]. Given the degree of variability 

accurate measurement of ammonium in natural marine waters requires in situ instrumentation. 

For long-term deployment such a system should be simple, robust and compact. Although 

commercial ammonium electrodes are compact they are at present neither stable nor sensitive 

enough for the measurement of ammonium in marine environments. This report highlights and 

evaluates numerous analysis systems and potential techniques which may be employed to obtain 

cost-effective in situ sensors for the determination of ammonium in marine environments.    

4.2.4.2 MINIATURE MULTI-PUMPING FLOW ANALYSER FOR AMMONIUM MONITORING IN 

SEAWATER 

Spectrometric determination by the ‘‘Berthelot’’ or ‘‘Indophenol-blue’’ reaction is the classic and 

widely applied analytical method for the quantification of ammonium in seawater. It is based on 

the reaction of ammonium with hypochlorite and further with a phenol compound to form the 

corresponding blue-green indophenol. However the affection of the sample salinity, the required 

high reaction pH and hypochlorite degradation present important drawbacks. In addition, the 

insufficient sensitivity for oligotrophic waters unless using long-path detection cells is another 

drawback worth mentioning [LZM05]. During the last two decades, quantification of ammonium 

by fluorescence spectrometry after its reaction with o-phthaldialdehyde (OPA) and reduction with 

sulfite has become commonly accepted. The reaction product isoindol-1-sulfonat shows an 

intense fluorescence at 425 nm using an excitation wavelength of 365 nm. This method shows 

negligible dependency on sample salinity and high sensitivity can be achieved. The method is 

further well-suited for trace analysis in seawater and estuarine waters [MMM06].  
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[HDC11] have developed a simple, cost-effective miniature flow analyser for ammonium in 

seawater using solenoid micropumps and fluorescence detection. The work carried out by the 

group was aimed at the development of a transportable analyser system for ship-board 

monitoring. The OPA method was adopted on a solenoid micropump system applying a reverse 

FIA concept, i.e. the reagent was injected into the sample flow which was consequently also used 

as a carrier. The influence of sample salinity on the method was studied and it was determined 

that the method was reliable for quantification of ammonium in open ocean seawater. The 

influence of the samples pH was also studied over a range of 7.3 to 8.4. Between pH 7.6 and 8.3, 

no significant influence on the methods sensitivity was found. In general, the method showed to 

be reliable and robust in respect to pH, salinity, temperature and gas content of the sample. This 

application of the OPA method demonstrates the potential of the method in terms of obtaining 

portable miniature systems capable of performing ammonium analysis in marine environments. 

4.2.4.3 PORTABLE FLUOROMETRIC ANALYSER FOR AMMONIUM DETERMINATION IN MARINE 

WATER 

As mentioned, the spectrophotometric indophenol blue method, which relies upon the Berthelot 

reaction, is a typical method used to measure ammonium in seawater. However, the traditional 

method does suffer from drawbacks [AKK97]. It has been demonstrated that a fluorescent 

method, in which o-phthaldialdehyde (OPA) and sulfite react with ammonium provides high 

sensitivity and has been successfully used for the determination of ammonium in seawater 

[WBC05]. In 2008, Amornthammarong et al. successfully developed a continuous flow shipboard 

analyser for underwater measurement of ammonium in seawater which was highly sensitive and 

had no refractive index interference [AZ08]. 

In more recent work carried out by the group, a new system called an autonomous batch analyser 

(ABA) was developed, which was simple, robust and inexpensive [AZO11]. The ABA achieved 

complete mixing of sample with reagents using a syringe and a sample mixing chamber. The ABA 

could also autonomously produce a calibration curve by auto-diluting a single stock standard 

solution and achieved the same accuracy as traditional manual calibration methods. 

Most recently, Amornthammarong et al. have developed a new, improved portable system for 

the analysis of ammonium based on the ABA. An improved LED photodiode-based fluorescence 

detector was designed and constructed to be used in the ABA [AZO13]. This resulted in the 

system being smaller and provides a higher sensitivity than the previous design. In addition it 

incorporates pre-filtration to facilitate suspended sediment-laden field samples. The portable 

analyser was deployed and successfully documented diurnal cycles and the potential transport of 

ammonium into the coastal ocean. The system produced is compact, has low power demands and 

is suitable for in situ ammonium measurement. 

Measurement Method and Fabrication     

In terms of reagents, reagent 1 (R1) is o-phthaldialdehyde at a concentration of 15 mM. Reagent 2 

(R2) is 10 mM sulfite in 5 mM HCHO. A 0.1 M NH4Cl stock solution was also prepared. Acidic traps 

made of acid-washed silica were used to protect reagents and standard solutions from possible 

atmospheric ammonia contamination. All components of the instrument were housed in a metal 

case (12.7 cm x 22.9 cm x 43.2 cm) as depicted in figure 4.2.23A. The power consumption is 40 W. 

The fluidic system is illustrated in figure 4.2.23B.  
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Figure 4.2.23. (A) Components of the portable analyser. (B) Illustration of the portable ammonium 

analyser and fluidic system [AZO13] 

The system consists of one syringe pump equipped with an eight-way distribution valve. The 

syringe pump is equipped with a 5 mL capacity zero dead volume syringe. In order to completely 

and rapidly mix the solutions, the syringe itself acts as the primary mixing chamber, and a 5 mL 

pipette tip as the secondary mixing chamber. Mixing is accomplished in 5 cycles. The mixed 

solution is held in the syringe for 3 more minutes allowing for 1-sulfonateoisoindole to be formed. 

The syringe pump then pushes the solution into the LED photodiode-based fluorescence detector 

to obtain a response signal. Finally the system is cleaned using deionised water, which is pumped 

through the syringe, the pipette tip and the detector several times before the system is ready to 

take another measurement. The LED photodiode-based fluorescence detector is depicted in 

figure 4.2.24. 

 

Figure 4.2.24. Depiction of the fluorescence detector [AZO13] 

System Performance 

A working range of 0.03 - 10 µM and a limit of detection of 10 nM was obtained. The system and 

reagents exhibited suitable stability at an ammonium level of 5 µM. The system was tested in 

Biscayne Bay, Florida on the dock of the RSMAS campus, University of Miami over the period of a 

month, where it was configured with a 15 minute sampling frequency. Seawater samples were 

also collected at the same site hourly during weekdays and were analysed in the lab by an 

ammonium analyser. The two methods demonstrated good agreement. The portable analyser 

was deployed in the waterway south of Lake Mabel and the Port Everglades inlet, Florida and 

successfully measured ammonium in the surface waters. 

The portable analyser which Amornthammarong et al. developed for ammonium determination in 

seawater was successfully tested in autonomous operation [AZ13]. The system is inexpensive and 

proved to be robust and reliable. An LED photodiode-based fluorescence detector was 

constructed and achieved higher sensitivity than previous designs. The compact, inexpensive 

detector instead of the expensive and bulky commercial fluorescence detector enabled the 

analyser to be portable and suitable for field deployment in marine environments. 
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4.2.4.4 COLORIMETRIC DETERMINATION OF AMMONIUM USING VARIATION OF BERTHELOT 

METHOD 

 [CCP13] have successfully employed a colorimetric method for the determination of ammonium 

based on a variation of the Berthelot method which utilises salicylic acid instead of phenol, 

thereby eliminating a toxic and unstable reagent component. Salicylic acid has been shown to be 

stable for at least 12 months. The intense colour which is generated in the presence of 

ammonium is easily detected at a wavelength of 630 nm. The method which was developed was 

tested using solutions from 0-15 mg/L ammonium and the calibration curve which was obtained 

demonstrated a R2 value of 0.998, this agreeable calibration curve highlights the potential 

suitability of this method for integration into field deployable microfluidic sensing platforms and 

the research group have begun construction of a generation 1 prototype system based on this 

method [CCP13]. This variation on the Berthelot method may find application on a microfluidic 

platform which could be utilised for ammonia monitoring within marine environments. 

4.2.4.5 INTEGRATED MICROCHIP WITH LED-INDUCED FLUORESCENCE DETECTION 

 [XUL12] developed a microfluidic device integrated with a fluorescence detection system for on-

line determination of ammonium in aqueous samples. A 365 nm LED was used as an excitation 

source along with a minor band pass filter and were mounted into a polydimethylsiloxane (PDMS) 

based microchip for the purpose of miniaturization of the entire analytical system. The sample 

containing ammonium is reacted with o-phthaldialdehyde on-chip with sodium sulfite as the 

reducing agent to produce the fluorescent isoindole derivative, which emits fluorescence signal at 

425 nm when excited at 365 nm. The system which was developed was applied to determine the 

ammonium concentration in rain and river waters but could also be used for the selective 

measurement of ammonium in coastal, estuarine or even wastewater [XUL12]. The developed 

technique has a number of associated benefits such as simplicity, speed, low cost, high sensitivity 

and selectivity. 

Fabrication 

The PDMS chip used was fabricated based on the 

standard soft photolithographic and wet etching 

techniques as detailed in previous work [GWG10]. 

The microfluidic chip was designed with a Y-

intersection channel for solution injection, mixing and 

chemical action on-chip. The channel consisted of a 

45 mm straight channel designed with ‘‘V’’ grooves 

for efficient mixing and chemical reaction. The 

dimension of the Y-intersection channel on-chip was 

60 mm in length, 0.6 mm wide and 0.08 mm in depth. 

The microfluidic chip with the Y-intersection channel 

for on-chip mixing is depicted in figure 4.2.25, the ‘‘V’’ 

grooves are also shown.     

A 365 nm LED together with an optical band pass filter was firstly fixed in an aluminum tube. It 

was then perpendicularly put onto the detection cell of the PDMS slide. In order for the LED and 

filter to be firmly fastened onto the PDMS slide, they were inserted into the PDMS before it was 

fully cured. After the PDMS cured, the PDMS slide together with the LED and the filter was peeled 

off from the silicon mold, then treated with oxygen plasma and irreversibly bonded with glass 

substrate. To reduce the scattering light from the channel, a sheet with a 0.8 mm aperture was 

used to restrict the beam size under the detection cell. An interference filter is used to eliminate 

the excitation light as much as possible, which may overlap the emission spectrum of the 

ammonium complex. The integrated instrumental set-up is illustrated in figure 4.2.26. Light from 

Figure 4.2.25. Schematic of 

microfluidic chip with Y-intersection 

channel and ‘‘V’’ grooves [XUL12] 



COMMON SENSE Deliverable number 2.1  

  

 

 
The COMMON SENSE project has received funding from the European Union’s Seventh Framework 

Program (Ocean 2013-2) under the grant agreement no 614155. 
 

124 

the LED was firstly filtered by the optical band-pass filter to block stray light of the LED, and then 

reaches the solution. Under the detection cell, a sheet of silver paper with a 0.8 x 0.8 mm 

aperture was used to cut off the redundant stray light from the LED and allows fluorescence to go 

through. The fluorescence emitting from the solution is collected at a photomultiplier tube which 

is equipped with an emission filter to allow 425 nm fluorescence pass through. 

 

Figure 4.2.26. Schematic of set-up used for ammonium fluorescence determination [XUL12] 

Measurement Method 

To achieve ammonium determination, the microchip integrated with a LED was put into a dark 

booth in which the detection window of the photomultiplier tube (PMT) was shielded by a black 

sheet with a hole aligned with the detection cell of the chip. The sheet acted as a shutter to allow 

fluorescence of the solution to pass through and block the superfluous light of the LED. The 

working reagent and standards or samples were delivered into the micro-channels separately by 

syringe pumps, using two syringes (1.0 mL) connected with PTFE tubes, then mixed and reacted 

on-chip. At the detection cell, solutions are excited by the LED light, and then fluorescence is 

generated and detected using the PMT. The change in current of the PMT is monitored and then 

translated using an analog-to-digital converter. 

System Performance 

A suitable linear relationship between ammonium concentration and fluorescence intensity was 

observed with ammonium concentrations ranging from 0.018 - 1.8 µg/mL. The repeatability and 

limit of detection of the developed method were studied and confirmed that the method was 

satisfactory for quantitative determination of ammonium in aqueous samples. The detection limit 

for ammonium was 3.6 x 10-4 µg/mL. The proposed microchip-based method was successfully 

applied to determine NH4
+ in environmental water samples obtained from a lake. The 

performance of the developed microchip method was evaluated by analysing the same samples 

using a fluorescence spectrophotometer. By comparison, the two methods showed a good 

agreement. The developed method offers simplicity, stability, low-cost, portability and may be 

seen as a promising alternative for ammonium determination in aquatic ecosystems. 

4.2.4.6 IN-SITU AMMONIUM ANALYSER FOR ESTUARINE AND COASTAL WATERS 

 [PJN09] developed an in situ analyser for measuring ammonium in estuarine, coastal and shelf 

waters at depths of less than 3 m which is referred to as the NH4-Digiscan. This wet chemical 

analyser uses micro-solenoid pumps to propel sample and reagents, a gas diffusion cell to isolate 

the analyte from the matrix and a conductivity detector for analyte detection. The system was 

successfully deployed for 30 days, sampling hourly and demonstrated stable measurements. The 
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simple chemistry, in situ capability and high resolution sampling minimises the use of toxic 

reagents, minimises many of the problems plaguing ammonium analyses and assists in capturing 

the high temporal variability of coastal and other waters. 

As previously discussed the orthophtaladehyde (OPA) method is very sensitive and has an 

attractive dynamic range; however the reaction may be effected by temperature changes. An 

alternative approach to ammonium determination uses gas diffusion to separate ammonium from 

the sample matrix prior to detection [HA92]. Generally, a sample is mixed with a base to raise the 

pH above 10.5 and convert ammonium ions to ammonia gas. The gas then diffuses across a 

hydrophobic gas permeable membrane into a receiving solution for detection. This technique is 

advantageous as the separation is very selective, it makes preconcentration possible and 

eliminates matrix effects from the sample solution. [HA92] used 50 µM HCl for the receiving 

solution and detect changes in conductivity as ammonia diffused across the membrane. Ammonia 

gas reacts with the protons in the acid solution forming ammonium ions at the expense of 

protons. Since an ammonium ion is less mobile than a proton, the net result is a drop in the 

receiving solution conductivity. This conductivity change is proportional to the ammonium 

concentration of the sample. This method is well suited for in situ instrumentation due to its 

simple and robust chemistry, low detection capabilities and nontoxic reagents. The in situ 

ammonium analyser, referred to as the NH4-Digiscan, developed by [PJN09] is based on the 

chemistry developed by [HA92]. 

Measurement Method and System 

The NH4-Digiscan ammonium analyser is based on a set of individually controlled micro solenoid 

diaphragm pumps. This pulsed flow technology is similar to the multi-pumping flow system 

described by [LDS04]. It offers a number of advantages over traditional flow injection analysis 

systems driven by peristaltic pumps. These advantages include smaller size, lower power 

consumption, greater analytical flexibility, reduction in reagent usage, less contamination, 

improved mixing and better flushing. In situ chemical analysers based on this concept have 

previously been developed by [CCJ04] where a data logger/controller powered solenoid pumps, 

which propel reagents and sample through a flow path yielding a chemical reaction. The reaction 

product is quantitatively measured with a detector, and the resulting data are then processed and 

stored by the logger. The NH4-Digiscan is primarily utilised for in situ use at depths of less than 3 

m. For in situ applications, the electrical components reside in housings and reagents are 

contained in bags. For ammonium analysis, a combined solution of 50 mM sodium hydroxide and 

200 mM trisodium 

citrate dehydrate is 

mixed with sample, 

standard or blank. This 

mixture is pumped 

through 0.5 m mixing 

coil and then through 

one side of the gas 

diffusion cell, where 

the ammonia gas 

diffuses across the 

membrane into a 20 

µM HCl receiving 

solutions on the other 

side. Following this 

the volume of 

ammonium-enriched HCl in the diffusion cell is pumped through the conductivity cell for 

Figure 4.2.27. Schematic representation of the in situ NH4-Digiscan 

[PJN09] 
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detection. The in situ NH4-Digiscan is schematically represented in figure 4.2.27. Darkened circles 

represent solenoid pumps; solid lines represent fluid circuitry, while dotted lines represent 

electrical connections between the housings. 

In terms of the gas diffusion cell, the cell consisted of a 127 x 51 x 0.071 mm strip of military grade 

Teflon pipe tape sandwiched between two polysulfone blocks. Each block (105 x 40 x 13 mm) 

contained a fluid track 324 mm long by 1.52 mm wide. The sample side was 0.20 mm deep while 

the receiving solution was 0.10 mm deep yielding 100 µL and 50 µL volumes respectively. The 

track was serpentine in shape to increase mixing and the mating faces were machined flat to 

0.025 mm. The gas diffusion cell is illustrated in figure 4.2.28 below. 

 

Figure 4.2.28. Diffusion cell depicted in both assembled and disassembled states [PJN09] 

In relation to detection and control, conductivity was measured using a conductivity cell and 

detector board. The conductivity board was modified so the gain was double. For in situ analysis 

the cell and board were powdered by a 12 volt battery pack, and all components were contained 

within a watertight PVC housing. The analyser is controlled by a Tattletale 5F data 

logger/controller running a specifically developed program. The software manages the pumping 

sequences, flow rates, sampling and calibration intervals, data collection, processing and storage, 

and testing routines. An analysis can be divided into three parts: the flushing sequence, the 

loading sequence, and the eluting sequence. Each sequence can have a unique flow rate and 

pumping schedule. The flushing sequence delivers fresh sample, standard or blank into the 

system, flushes the sample path with blank and then loads the receiving side of the diffusion cell 

with fresh acid. The loading sequence mixes sample, standard or blank with base and pushes it 

through the diffusion cell. The eluting sequence then pushes acid through the conductivity cell for 

detection. A typical in situ analysis utilizing the system for coastal waters uses 1.65 mL of sample, 

3.8 mL of reagents and requires less than 7 min. The battery and controller module were 

packaged in a separate watertight PVC housing.  

System Performance  

The response of the NH4-digiscan to a given sample ammonium concentration is dependent upon 

several factors such as; detector gain, moles of ammonia passing through the diffusion cell, 

transfer efficiency of ammonia gas across the membrane, volume and concentration of the 

receiving acid solution in the diffusion cell, and the dispersion of the conductivity signal as it 

travels from the diffusion cell through the conductivity cell since response was measured as peak 

height. In terms of stability, sensitivity and precision the analyser was quite stable and showed 

little drift over 30 days when deployed on the L01 mooring of the Land/Ocean Biogeochemical 

observatory infrastructure in Elkhorn Slough, California. The operation of the ammonium analyser 

is quite flexible by design. When the NH4-digiscan was set up to measure coastal waters and 

deployed on the L01 mooring, the analyser had a linear range up to 18 µM and a detection limit of 

0.20 µM. The accuracy of the instrument was tested by collecting duplicate samples and 

comparing the gas diffusion-conductometric approach to the traditional indophenol blue method 



COMMON SENSE Deliverable number 2.1  

  

 

 
The COMMON SENSE project has received funding from the European Union’s Seventh Framework 

Program (Ocean 2013-2) under the grant agreement no 614155. 
 

127 

(IPB) method. A total of 160 coastal samples were collected during two 24 hour surveys in Elkhorn 

Slough, California and 98 offshore samples were collected and analyzed. Suitable agreement 

between the two techniques was demonstrated. This system offers great potential in terms of in 

situ analysis of ammonium in the aquatic environment, and through further improvement and 

developments the system may be utilised for long term deployment in marine environments. 

4.2.4.7 REFERENCES 

 [AKK97] Aminot, A., Kirkwood, D.S. and Kerouel, R. (1997) ‘Determination of ammonia in seawater by the 

indophenols-blue method: Evaluation of the ICES NUTS I/C 5 questionnaire’, Marine Chemistry, 56: 59-75. 

[AZ08] Amornthammarong, N. and Zhang, J.Z. (2008) ‘Shipboard fluorometric flow analyser for high-

resolution underway measurement of ammonium in seawater’, Analytical Chemistry, 80(4): 1019-1026. 

[AZO11] Amornthammarong, N., Zhang, J.Z. and Ortner, P.B. (2011) ‘An autonomous batch analyser for the 

determination of trace ammonium in natural waters using fluorometric detection’, Analytical Methods, 3: 

1501-1506. 

[AZO13] Amornthammarong, N., Zhang, J.Z., Ortner, P.B., Stamates, J., Shoemaker, M. and Kindel, M.W. 

(2013) ‘A portable analyser for the measurement of ammonium in marine waters’, Environmental Science 

Processes & Impacts, 15: 579. 

[CCJ04] Chapin, T.P., Caffrey, J.M., Jannasch, H.W., Coletti, L.J., Haskins, J.C. and Johnson K.S. (2004) ‘Nitrate 

sources and sinks in Elkhorn Slough, California: Results from long-term continuous in situ nitrate analysers’, 

Estuaries, 27: 882-894. 

[CCM10] Canadian Council of Ministers of the Environment (2010) Canadian water quality guidelines for the 

protection of aquatic life: Ammonia, Canada: CCME. 

[CCP13] Cogan, D., Cleary, J., Phelan, T. and Diamond, D. (2013) ‘Next generation autonomous chemical 

sensors for environmental monitoring’, CEST2013, Athens, Greece, Dublin: Dublin City University, Dublin 9. 

[CRJ08] Clark, D.R., Rees, A.P. and Joint, I. (2008) ‘Ammonium regeneration and nitrification rates in the 

oligotrophic Atlantic Ocean: Implications for new production estimates’, Limnology and Oceanography, 53: 

52-62. 

[EC97] Environment Canada (1997) ‘Problem formulation for ammonia in the aquatic environment’, 

Canadian Environmental Protection Act Priority Substances, List 2: Version 5.0. 

[GWG10] Gao, D., Wei, H.B., Guo, G.S. and Lin, J.M. (2010) ‘Microfluidic cell culture and metabolism 

detection with electrospray ionisation quadrupole time-of-flight mass spectrometer’, Analytical Chemistry, 

82(3): 5679-5685. 

[HA92] Hall, P.O.J. and Aller, R.C. (1992) ‘Rapid, small-volume, flow injection analysis for CO2 and NH4
+ 

in 

marine and fresh waters’, Limnology and Oceanography: Methods, 7: 144-156. 

[HDC11] Horstkotte, B., Duarte, C. and Cerda V. (2011) ‘A miniature field applicable multi pumping flow 

analyser for ammonium monitoring in seawater with fluorescence detection’, Talanta, 85: 380-385.  

[JLB08] Johnson, M.T., Liss, P.S., Bell, T.G., Lesworth, T.J., Baker, A.R., Hind, A.J., Jickells, T.D., Biswas, K.F., 

Woodward, M.S. and Gibb, S.W. (2008) ‘Field observations of the ocean-atmosphere exchange of ammonia: 

Fundamental importance of temperature as revealed by a comparison of high and low latitudes’, Global 

Biogeochemical Cycles, 22: 1-15. 

[LSD04] Lima, J.L., Santos, J.L., Dias, A.C., Ribiero, M.F. and Zagatto, E.A. (2004) ‘Multi-pumping flow 

systems: an automation tool’, Talanta, 64: 1091-1098. 

[LZM05] Li, Q.P., Zhang, J.Z., Millero, F.J. and Hansell, D.A. (2005) ‘Continuous colorimetric determination of 

trace ammonium in seawater with a long-path liquid waveguide capillary cell’, Marine Chemistry, 96: 73-85. 

[MMM06] Molins-Legua, C., Meseguer-Lloret, S., Moline-Martinez, Y. and Campins-Falco, P. (2006) ‘A guide 

for selecting the most appropriate method for ammonium determination in water analysis’, Trends in 

Analytical Chemistry, 25(3): 282-290. 

[PJN09] Plant, J.N., Johnson, K.S., Needoba, J.A. and Coletti, L.J. (2009) ‘NH4-Digiscan: an in situ and 

laboratory ammonium analyser for estuarine, coastal, and shelf waters’, Limnology and Oceanography: 

Methods, 7: 144-156. 

[WBC05] Watson, R.J., Butler, E.C.V., Clementson, L.A. and Berry, K.M. (2005) ‘Flow-injection analysis with 

fluorescence detection for the determination of trace levels of ammonium in seawater’, Journal of 

Environmental Monitoring, 7: 37-42. 



COMMON SENSE Deliverable number 2.1  

  

 

 
The COMMON SENSE project has received funding from the European Union’s Seventh Framework 

Program (Ocean 2013-2) under the grant agreement no 614155. 
 

128 

[WCL13] Worsfold, P.J., Clough, R., Lohan, M.C., Monbet, P., Ellis, P.S., Quetel, C.R., Floor, G.H. and 

McKelvie, I.D. (2013) ‘Flow injection analysis as a tool for enhancing oceanographic nutrient measurements 

- A Review’, Analytica Chimica Acta, 803: 15-40. 

[XUL12] Xue, S., Uchiyama, K. and Li, H.F. (2012) ‘Determination of ammonium on an integrated microchip 

with LED-induced fluorescence detection’, Journal of Environmental Science, 24(3): 564-570. 

4.2.5 Heavy Metal Detection In Water Samples 

In this report a broad overview of detection of heavy metals, mainly lead, cadmium, zinc, copper and 

mercury among others, in water samples is reviewed. Since the most of the analytical methods to 

determine heavy metals are based on the electrochemical techniques using great variety of 

electrodes, this report is only focused in the use of screen-printed electrodes as transducers of the 

sensors, given the importance of these electrodes in the development of devices that allow 

decentralised or in situ measurement of these metals in wastewaters, rivers, lakes or sea water. 

Stripping voltammetric techniques are an interesting alternative for the detection of trace levels of 

heavy metals in high saline matrices. These techniques present a significant sensitivity due to their 

unique ability to preconcentrate target species during the accumulation step on the working 

electrode, next to its combination with pulse measurement techniques that generate a highly 

favourable signal-to background ratio. Mercury-based electrodes, such as mercury film electrodes 

(MFE), and hanging mercury drop electrodes (HMDE), have traditionally been used in stripping 

techniques because of their advantages, such as high sensitivity, reproducibility, purity of the 

surface, high hydrogen overpotential, and possibility of amalgam formation. Therefore, they have 

been recognized as the most sensitive electrodes for the determination of heavy metals [KBJ07]. In 

particular, the HMDE has successfully been used for the determination of lead and cadmium in 

seawater samples [Dui77, GUS84].. More recently, Süren et al. introduced a modification in the 

system by preceding the differential pulse stripping voltammetry (DPSV) by adsorptive collection of 

complexes with 8-hydroxyquinoline (oxine) on to the mercury electrode [SYT07]. On the other hand, 

several studies with MFE are reported [Kho02, CNK07, MLH00, Fis99, MCS04, JJW81]. For example, 

Khoo and Guo investigated various mercury (I)/(II) salts as modifiers for carbon paste electrodes 

[Kho02]. In an attempt to work with environmentally friendly metals, a comparative study of the 

simultaneous determination of heavy metals in highly saline samples by ASV using both mercury and 

bismuth film electrodes as working electrodes was carried out [CNK07]. 

 The coupling of disposable screen-printed electrodes (SPEs) with stripping techniques presents an 

attractive alternative to conventional stripping analysis. SPE is related to a mass production 

technology based on screening of electroconductive and insulating inks onto planar substrates 

(plastic, ceramic, etc.) at a controlled thickness. The use of stripping analysis based SPEs eliminates 

the problems related to the use of conventional electrochemical cells: the associated cumbersome 

handling, the lengthy cleaning procedures and the need for a de-aeration step, using electrochemical 

techniques less influenced by oxygen interference. Moreover, SPEs related instruments can be 

portable by including a compact battery achieving a user friendly field-deployable device that allows 

the direct monitoring of heavy metal traces in an in situ control of pollution [Dom07, PLM05, CBS07, 

PCM99]. 

Here the different determination of heavy metal using SPEs is reviewed. These will be organized by 

the types of materials used to modify the working electrodes. 

4.2.5.1 Screen printed carbon and metal electrodes  

There are very few works related to the use of unmodified screen printed carbon electrodes (SPCEs) 

in the determination of interesting analytes [Hon03]. Graphite materials are preferred due to their 

simple technological processing and low-cost. However, most studies of heavy metal determination 

using SPEs show that mercury, gold, silver, bismuth or other materials modified on the surface of 

SPEs can improve selectivity or sensitivity [ZAC09, CSC01, LPM06, WLH00, FZO11, CZR09]. 
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Despite it, Honeychurch et al. [HHC00] performed the determination of lead by differential pulse 

anodic stripping voltammetry (DPASV) using SPCEs. A detection limit of 2.5 µg L-1 was obtained and 

the coefficient of variation, determined on one single electrode, was at 2.4% (n = 5). The method was 

used in the determination of lead in water samples. Similarly, trace levels of copper (II) were 

determined using this procedure in samples of water, which established a detection limit of 8.2 µg L-1 

[HHH02].  

Although most SPEs are fabricated with graphite inks, other materials such as gold and silver-based 

inks are also used in their construction for the analysis and determination of various elements. Thus, 

Mascini and co-workers performed the determination of lead and other environmentally hazardous 

metals such as copper, mercury and cadmium on gold-based SPEs using square wave anodic stripping 

voltammetry (SWASV), which resulted in detection limits of 0.5, 2.0, 0.9 and 1.4 µgL-1 and RSDs of 7, 

12, 4 and 14%, respectively [LPM06]. This method has also been applied to the determination of lead 

in wastewater and soil extracts by Noh et al. [Noh06]. Equally, SWASV determination of lead has 

been performed on an silver-based SPE, without chemical modification, which could also be 

exploited as a disposable lead sensor with a detection limit of 0.46 µg L-1 [ZYK02]. 

Commercial gold-based SPEs make routine measurements of mercury in water samples simpler and 

more attractive because preplating steps are unnecessary. Commercial gold-based SPEs (SPGEs, 

DropSens, Spain) have been successfully used for the measurement of mercury in ambient water 

[BSP11]. 

4.2.5.2 Film-coated SPCEs and others 

Hg film-modified SPCEs 

In most cases, the working electrode consists of thin mercury film plating applied to the graphite 

surface of the electrode, which enables electrochemical preconcentration of heavy metals. 

Wang pioneered the use of these electrodes by demonstrating the viability of determining lead at 

ppb levels using stripping voltammetry and potentiometric measurements in urine and water 

samples [Wan92]. Subsequently, he went on to perform a joint determination of various metals such 

as cadmium, lead and copper at ppb levels on mercury-coated carbon strip electrodes [Wan94] 

demonstrating results that were as satisfactory as those obtained on glassy carbon electrodes, and 

on HMDEs. 

Since the research conducted by Wang, other authors have fine-tuned various methods for the 

determination of metals such as lead, copper, zinc and cadmium among others, which are based on 

the easy accumulation on mercury films. Likewise, mercury-coated SPCEs form the subject of a 

number studies by Ashley et al. [Ash94, Ash95, AWM01], and Desmond et al. [DLA96, DLA98] 

obtained detection limits of 55, 71, 64 and 123 µg L-1 for zinc, cadmium, lead and copper, 

respectively, using DPASV and a deposition time of 300 s. Palchetti et al. [PCM99] applied SWASV and 

potentiometric stripping analysis (PSA) in order to determine copper, lead and cadmium on mercury-

coated SPCEs. The detection limits they obtained were 0.4 µg L-1 for lead, 1 µg L-1 for cadmium, and 8 

µg L-1 for copper by using SWASV, and 0.6 µg L-1 for lead, 0.4 µg L-1 for cadmium and 0.8 µg L-1 for 

copper by using PSA. 

The mercury-coated screen-printed sensors can be prepared beforehand in the lab for immediate on-

site use. In this way, handling, transport and disposal of toxic mercury (II) solutions during 

decentralized measurements is avoided, as the coating is pre-deposited on the electrode surface 

[PLM05]. This method combined with SWASV analysis has been successfully applied in the 

determination of various metals and detection limits of 0.3, 1 and 0.5 µg L-1 were found for lead, 

cadmium and copper, respectively. 

Modification of Hg-coated SPCEs with crown-ether based membranes also seems to be a convenient 

and inexpensive technique for trace metal detection. Analytical results showed that these electrodes 

were simultaneously able to detect µg L-1 levels of lead and cadmium with good sensitivity and 

reproducibility, at different pH values by using linear scan anodic stripping voltammetry (LSASV) 

[PBA06]. 
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In the work conducted by Choi et al. [CSC01], the working electrode was SPE with phenol resin-based 

carbon ink containing fine particles of mercury oxide as a built-in mercury precursor. The mercuric 

oxide particles exposed on the surface were reduced to fine mercury droplets by in situ or pre-

cathodic conditioning so that they behaved as heavy metal collectors in the anodic stripping analysis. 

This sensor was evaluated using lead and cadmium as probe metals. 

A thin-film mercury SPE was combined with a micro-well to detect cadmium [PAB07]. The use of a 

micro-well reduced the volume of the sample to 200 µL without stirring, which minimized the loss of 

sensitivity. Moreover, this working electrode was used for direct analysis in raw samples of soil 

solution without pretreatment, which provides a useful method for the in situ determination of 

heavy metals. 

Some researchers have also printed auxiliary electrodes with the working electrode on the same 

polymer plates [ZAC10]. This screen-printed sensor was ex situ electrodeposited with a small 

quantity (approximately 5 µg) of mercury at −0.1 V (vs. Ag/AgCl). However, when this sensor was 

used, an additional commercial reference electrode or counter electrode was needed to compose a 

3-electrode system for detection. Therefore, a screen-printed 3- electrode system on the same 

substrate would be more convenient. 

A 3-electrode device with a standard USB port conveniently connected to a PC or laptop computer 

was designed [ZLS10]. 

However, as Hg is toxic, its incorporation in sensors poses environmental problems, especially 

bearing in mind that these SPEs are disposable and, as a consequence, other metal films and even 

unmodified SPEs are under investigation. 

Despite it, as it will be shown below, although bismuth is widely used to modify SPEs for the 

detection of heavy metals in order to avoid the use of mercury, this approach exhibits shortcomings. 

For example, acidic or highly alkaline working media may be necessary for in situ plating of bismuth 

film, because of the Bi(III) hydrolysis in neutral and alkaline media [Eco05]. In contrast, the quasi-

noble-metal behavior of mercury allows analyses over a wide pH range [ZAC10]. 

Because of the high affinity of mercury for metals associated with the analytical performance of 

stripping voltammetry, low detection limits can be achieved with relatively short analysis times 

without degassing [BPP07]. Mercury is therefore still used as the modifier for trace metal detection 

[ZAC10, ZLS10]. However, because of the toxicity of mercury, researchers are actively pursuing ways 

to reduce the amount that is needed for modification of SPEs. 

Thus, microelectrodes provide new tools for environmental analysis, however, the difficulty of 

recording very low currents using microelectrodes needs to be overcome [Fle99]. Therefore, 

microelectrode arrays have been consequently developed to obtain a higher current output [DBB08]. 

Based on femtosecond laser ablation technologies, square arrays of 64 microelectrodes (8 × 8) were 

made in a polymer substrate and then screen-printed carbon ink [CZR09]. Because of the small 

overall surface of SPµEA, only a low quantity of mercury (less than 1µg) was ex situ deposited, and 

the devices were sufficient to perform a trace analysis of river water close to a zinc mine. 

Bi-coated SPCEs and Bi SPEs 

The most widely used modifier of SPEs for electroanalysis is bismuth because of its good analytical 

performance and its “environment-friendly” characteristics. Since the pioneering report in 2000 

[WLH00], bismuth modified SPEs (BiSPEs) have been broadly applied to the field of environmental 

[SPH10] monitoring. Advantages, such as not requiring the removal of dissolved oxygen during 

stripping analysis and characterization over a wide negative-potential window [Eco05, SPH10, 

Kok08], make testing convenient. Moreover, the BiSPEs can improve sensitivity; for example, the 

detection limits of lead can reach the ppb level or lower [Man09]. 

Bismuth modified electrodes may be prepared ex situ or in situ via electrodeposition. This approach 

involves careful preparation of the electrode surface between samples and to eliminate this 

preparative step, the use of disposable screen printed electrodes as underlying electrode substrates 

have been reported [Zac09]. Towards simplifying the electrochemical methodology further, bismuth-
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powder modified carbon paste electrodes [HSV05] have been reported as well as bismuth 

nanopowder modified electrodes where the bismuth nanopowder is immobilised with Nafion 

[LLU20]. Hwang et al. have recently reported the screen printing of a bismuth oxide layer onto a 

screen printed electrode surface which is then electrochemically reduced ex situ in sodium hydroxide 

to produce a bismuth film. 

A true disposable bismuth oxide screen printed electrode was reported by Kadara et al. [Kad08] 

where bismuth oxide is incorporated into the bulk of the screen printed electrode and was explored 

towards the chronopotentiometric analysis of lead and cadmium in soil and water samples. It was 

demonstrated that the simultaneous detection of cadmium and lead was not possible due to the lead 

stripping response being distorted at highly negative potentials. 

Recently Banks and col. have reported on a bulk modified bismuth oxide screen printed electrode 

[KBJ09, KKK10] and demonstrated its applicability towards the sensing of zinc, cadmium and lead in 

model systems and applied the disposable sensor for the screening of cadmium and lead in river 

water. The sensor is greatly simplified over bismuth nanoparticle modified electrodes and bismuth 

film coated screen printed electrodes but also provides similar detection limits and analytical ranges. 

Within the examples of bismuth modified electrodes, the literature reports of the sensing of zinc are 

quite seldom [BKH04, KBN04]. 

A novel sensor was developed for the one-step sensing of lead [FZO11, TGWE10] by covering a paper 

disk impregnated with buffer and reagents (including an internal standard of zinc and a plating 

solution of Bi(III)) on a SPCE. After the sample was added to the surface of the electrode, it could be 

applied to run a single-step assay for lead detection. The performance of the electrode was 

satisfactory (5–50µg L-1 lead detected), and only a final, small volume of the sample (10µL) was 

needed to be placed on the surface of the paper for running one assay. In addition, an internal 

standard with a known concentration was added to improve the accuracy and precision [HLM09, 

MLL10]. Hg-free screen-printed microband electrodes (µBSPEs), which are easily manufactured with 

the option to renew the electrode surface, was used to detect lead and a theoretical detection limit 

of 2.3µg L-1 was calculated based on a signal-to-noise ratio of three [HBH11]. 

Gold- coated SPCEs 

Gold has also been used to modify SPCEs thereby eliminating the use of toxic elements such as 

mercury. One such example is the work carried out in 1993 by Wang, which demonstrates the 

possibility of analysing lead [Wan93a] and mercury [Wan93b] on gold-coated SPCEs to obtain highly 

reproducible responses for both elements. 

Lead has also been evaluated in spiked drinking and tap water samples [MLS03]. The recoveries of 

lead were 103% (R.S.D.: 2.8%) and 97.9% (R.S.D.: 7.1%), n = 5, respectively. Measurements in the 

presence of typical interferences such as copper, cadmium, zinc, iron, chromium and mercury were 

reported. 

Mercury is also one of the most problematic heavy-metal pollutants in environmental monitoring 

and its organic form is bioaccumulative and toxic. Moreover, the accumulation of mercury in the 

human body can cause severe disease, such as kidney and respiratory failure, and damage to the 

gastrointestinal and nervous systems [Zal00]. 

Bare gold electrodes or modified gold electrodes are usually chosen for inorganic mercury detection 

because the high affinity for mercury enhances preconcentration [GZS10]. However, the major 

drawbacks of the use of a gold electrode are structural changes at the surface caused by amalgam 

formation. For this reason, time-consuming cleaning treatments are necessary to achieve 

reproducibility [GAM08]. 

SPCE, coated with a thin gold film, are used for highly sensitive potentiometric stripping 

measurements of trace levels of mercury [Wan93b]. Applicability to trace measurements of alkyl 

mercury and selenium is also demonstrated. Such adaptation of screen-printing technology for the 

development of reliable sensors for trace mercury should benefit numerous field applications. 
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Metallic nanoparticle-modified SPEs 

The design of new nanoscale materials has acquired ever greater importance in recent years due to 

their wide-ranging applications in various fields. Among these materials, metallic nanoparticles are of 

great interest due to their important properties and multiple applications. The bibliography lists 

numerous methods describing the synthesis of metallic nanoparticles in solution as well as by 

deposition on solid surfaces. They include chemical synthesis by means of reduction with different 

reagents [SZD03], UV light or electron-beam irradiation [FYH03] and electrochemical methods 

[MHL06, DNH04, EOO03, WBS05, YMW03, TLD01, CIK06, PGG09, YGG12]. The latter provides an easy 

and rapid alternative for the preparation of metallic nanoparticle electrodes within a short period of 

time. The combination of electrodeposition and the screen-printing process is beginning to allow 

mass production of electrochemical sensors that possess various catalyst activities. The sensor strips 

fabricated by this process are promising tools with more sensitive detection rates that are now 

starting to come on stream. Thus, gold nanostructured SPCEs are demonstrated to be suitable 

transducers for the determination of lead in water and blood [PGG09] or mercury in water [YGG12] 

based on the under deposition potential of these metals on gold nanoparticles. 

Poly(l-lactide) stabilized gold nanoparticles were also used to modify a disposable SPCE for the 

detection of arsenic by DPASV. The sensitivity was good enough to detect arsenic at ppb levels and 

provides a direct and selective detection method for arsenic in natural waters [SMC06]. 

Dominguez and Arcos [Dom07] have fine-tuned a novel, user friendly and rapid method of 

incorporating silver nanoparticles onto the surface of SPCEs. This method is based on the direct 

electrodeposition of these nanoparticles. The modification of SPCEs with silver nanoparticles 

increases the already well known performance of these kinds of disposable electrodes. In order to 

demonstrate their practical applications, they were used to analyze antimony, a significant pollutant 

of priority interest. The silver nanoparticle-modified SPCE developed in this work presents an 

environmentally friendly method for the analysis of antimony. It brings with it important advantages 

that include a high degree of sensitivity and selectivity in antimony determination. Moreover, the 

electrochemical response is not influenced by common interferents in antimony determination, such 

as bismuth. 

Other modified SPEs 

SPEs made of carbon, bismuth and carbon nanotubes (CNTs) ink were used for the determination of 

mercury in tap water and human hair. The addition of Bi and CNTs to the carbon ink to fabricate the 

SPE, improves the sensitivity separately and especially together [NZL11].  

Other carbon nanostructured material that has been employed in the analysis of mercury is carbon 

black, material with a high number of surface defects. This material has high sensitivity to the 

measurement of thiol groups, which form a stable complex with mercury. Palleschi et al. developed 

an amperometric sensor employing SPEs modified with carbon black for the indirect analysis of 

mercury in drinking water. The sensor responds to the oxidation of thiols and the analytical signal is 

lower when there is presence of mercury in the sample [AMA11].  

Heated SPEs with carbon nanoparticles (SPCNPsE) were employed for heavy metals determination in 

seawater. The use of heated electrodes increased the mobility of ions achieving a faster deposition of 

metals and a higher sensitivity [APM11]. 

The use of carbon nanomaterials in the electrochemical determination of mercury presents some 

important improvements compared to the lack of modification with this kind of materials. The 

increased surface area of the working electrode increases the sensitivity and the measurement of 

low amounts of mercury is achieved. However, where carbon nanomaterials stand out is when 

accompanying the modification with other selective compounds resulting in a higher power of 

preconcentration over the electrode and a higher sensitivity. Although graphene has excellent 

properties for use in electrochemical analysis, the modification of electrodes with only graphene or 

its derivatives has not been tested for mercury determination. In the published works the 
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modification of electrodes with graphene has always been accompanied with species that can 

interact with mercury as gold nanoparticles or species containing functional groups. 

Although the use of single nanostructured materials could present advantages to using the 

macroscopic material, researchers are still looking for new ways to enhance these characteristics 

with innovative technologies. One such technology is the use of hybrid nanostructured materials. 

These hybrid systems can have properties that amplify those of the single nanostructured materials.  

There are several methodologies for modifying electrodes with nanohybrid materials, similar to the 

modification with single nanomaterials, which depend largely on the kind of working electrode and 

the materials used. Several nanohybrid materials have been used in different applications of 

electrochemical analysis, and also in the determination of mercury. SPCEs have also been modified 

with nanohybrid materials such as graphene/AuNPs and MWCNTs/AuNPs. The SPEs were modified 

with carbon nanomaterials by means of physical adsorption, and then the AuNPs were generated 

applying a constant current to a solution of HAuCl4. The use of nanohybrid materials improved the 

sensitivity and lower detection limits than using only AuNPs were obtained. The results showed that 

the nanohybrid formed by MWCNTs/AuNPs was more adequate for analysis of mercury. Moreover, 

the reutilization of the SPEs modified with nanohybrids for several measurements of mercury in 

water samples was achieved [YGG12].  

Strip-type preconcentrating/voltammetric sensors, prepared by incorporating a cation exchange 

resin within screen-printed carbons inks, have been described by Wang and applied to the 

determination of copper [NWD95]. The device presents good reproducibility (a relative standard 

deviation of 2%) and a detection limit of 32µg L-1 with a 10 min accumulation time. 

Some researchers have detected mercury using SPEs based on the electrochemical behavior of a Hg-

complex. A thiol-probe based on SPEs modified with a film of nanostructured carbon black is highly 

sensitive to thiocholine and cysteine. After the mercury is added, a non-electroactive complex is 

formed, which leads to a diminished signal [AMA11]. This sensor is a promising replacement for the 

traditional gold electrode. The application of polyaniline (PANI) has been investigated for the 

preconcentration and speciation of inorganic mercury and methyl mercury, [CH3Hg]+, in various 

water samples [KKR05, GSD04]. Other researchers have modified bare SPCEs with a conducting 

polymer layer of PANI, polyaniline–poly(2,2`- dithiodianiline) (PANI-PDTDA) [SLM10a] or polyaniline-

methylene blue (PANI-MB) [SLM10b], and these SPCE/polymer sensors could be used as alternative 

transducers for the voltammetric stripping and analysis of inorganic mercury. Moreover, this 

electrochemical sensor has been utilized for the simultaneous determination of mercury, lead, nickel 

and cadmium [SHI11, SIH09]. 

4.2.5.3 Enzyme-modified SPEs 

It is a well-known fact that some metallic ions, especially heavy metals, can inhibit the activity of 

various enzymes. Disposable biosensors based on the principle of inhibition have to date been 

applied for a wide range of significant analytes, amongst which heavy metals [RBT04a, AMB06, 

OTW05, RBT04b, TZK05]. 

The most widely employed enzyme in the inhibitive detection of heavy metals ions using SPE is 

urease. The urease enzyme catalyzes the hydrolysis of urea and the reaction produces ammonium: 

Urea + H2O + urease → CO2 +2NH3 

As a consequence of the ammonium liberation, a variation in the pH value takes place. This change 

might cause a decrease in the potential of an internal pH-subsensor. Thus, for example, the presence 

of ruthenium dioxide in the biosensing film causes pH-dependent potentiometric sensitivity [OTW05, 

TZK05]. The presence of silver and copper causes the heavy metals to inhibit the enzyme which leads 

to a decrease in enzymatic activity and, as a result, a lower quantity of ammonium is liberated that is 

recorded as an analytical signal by the sensor [OTW05]. 

The analysis of copper, mercury and cadmium can be carried out employing a disposable screen-

printed biosensor [RBT04a, RBT04b]. Amperometric measurements of urease activity are possible 

after coupling this enzyme to glutamate dehydrogenase (GLDH), which catalyzes the synthesis of l-
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glutamate from µ-ketoglutarate. Both dihydronicotinamide adenine dinucleotide (NADH) and NH4
+ 

are required in equimolecular amounts for this reaction to take place: 

Urea + H2O + urease → CO2 +2NH3 

NH3 + µ-ketoglutarate + NADH + H+ +GLDH → l-glutamate + NAD+ 

NADH consumption is monitored by measuring the decrease in its amperometric signal. The urease 

enzyme is inhibited by the presence of heavy metal ions resulting in decreased ammonia production. 

This leads to a reduction in the oxidation rate obtained for NADH. The presence of metal ions can be 

determined by comparing the latter with the NADH oxidation rate in an uninhibited reaction. 

4.2.5.4 Simultaneous detection of several different metals 

SPEs designed for the simultaneous determination of different metals are more interesting for time 

and cost reasons. SPEs modified with mercury and bismuth, either in situ [Noh11] or ex situ [PAA11, 

GAF08], are commonly used to determine lead and cadmium concentrations. 

Otherwise, bismuth could be deposited on SPEs in many forms, such as bismuth oxide [HHP08, 

Kad08, KJB09], bismuth nanoparticles [RMG09], bismuth co-deposited with metal ions in solution 

[RMG08] and bismuth pre-deposited as a film [SDA10]. As far as we can determine, Bi nanoparticles 

plated on SPEs using the SWASV technique exhibited the lowest detection limits of lead, cadmium 

and zinc. When combined with a flow cell, the detection limits could be lower [RMG09]. 

The normal Au-film-coated SPEs displayed excellent linear behavior. Moreover, the researchers 

improved the preconcentration technique by modifying the magnetic particles (superparamagnetic 

iron oxide (Fe3O4) nanoparticles [YMS07, WSH09] with thiols to preconcentrate heavy metals from 

samples whose concentrations were lower than 1µg L−1 [MIA10]. 

Because crown-ethers can form complexes by fitting metal cations into the cage of the crown 

structure, some researchers have modified crown-ether-based membranes on a thin-film of Hg 

coated SPCE to achieve a selective uptake of lead and cadmium [PBA06]. 

In addition, the crown-ethers can protect the working surface from interferences during analysis. 

Without deoxygenation and stirring, this device was successfully used to detect lead and cadmium. 

Also, this device was utilized in raw samples and in the semicontinuous monitoring of lead and 

cadmium for 42 h in tap water [BPP07]. 

Chitosan, poly-[µ-1-4]-2-amino-2-deoxy-d-glucopyranose (CTS), can form stable chelates with many 

transition-metal ions through hydroxyl and amino groups. CTS and its derivatives have been used for 

the electrochemical determination of metal ions with glassy carbon electrode (GCE) [MJL07]. Some 

researchers modified CTS on the surface of SPCEs for the simultaneous determination of lead, 

copper, cadmium and mercury with preconcentration time of only 30 s [KHH10]. In addition, CTS 

could be used for the homogeneous dispersion of MWCNTs [SZS10] and the CTS-MWCNTs composite 

film exhibited significant improvements in tensile modulus and strength [WSZ05]. A small amount of 

mercury was subsequently deposited in situ, and a random array of mercury nano-droplets formed 

on the surface of the MWCNTs-CHIT/SPE. This sensor was used for the simultaneous determination 

of lead, cadmium and copper. Moreover, a hybrid analytical method, which combined 

electrochemical “adsorption–desorption” with colourimetric analyses, was developed to detect 

heavy-metal ions [LLL11]. The electrochemical adsorption–desorption procedure, which is more 

convenient and less time-consuming, was used as a pretreatment process for the colourimetric 

analysis. The colourimetric approach used for quantitative analysis may avoid errors that arise from 

the instability of the electroanalytical method. 
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4.2.6 Microfluidic chip/disc systems 

Since the “miniaturised total analysis system” (µTAS) concept was introduced by Manz et al. in 1990 

[Man90], it has been recognised that the properties of microfluidic or “lab-on-a-chip” systems make 

them eminently suitable for the development of compact, autonomous analytical devices for a range 

of applications including environmental monitoring. The advantages of microfluidics-based in situ 

sensing systems for can be summarised as: 

• The small sample sizes used, typically in the sub 100 µL range, minimise reagent 

consumption and waste generation. 

• The minimisation of fluid volumes reduces the power requirements associated with fluid 

control/movement, allowing for long deployable lifetimes. 

• The small size of the microfluidic manifold facilitates the development of compact and 

portable analytical systems. 

• Fast analysis times result from performing chemical analysis on the µm scale, where 

diffusion-based mixing can be an efficient process, allowing high frequency measurements. 

• Low-cost sensing devices can be developed by combining microfluidic systems with simple, 

low cost detectors.  

This combination of properties makes microfluidic systems highly attractive as a basis for reagent-

based monitoring of chemical species in the aquatic environment. There are however, drawbacks 

associated with operating at the micro-scale. 

• Using µL-scale sample sizes has implications in terms of adequately representing the 

complete body of water which is to be measured. This issue is significantly mitigated by the 

higher measurement frequency which is possible using in situ systems.  

• Due to the small dimensions of the microfluidic channels, they are susceptible to blockage or 

interference by fine particulate matter. The use of fine filters at the sampling point can 

eliminate or minimise this issue, although at the cost of limiting the analytical parameter to 

the dissolved fraction of the target species. 

These issues, and others including measurement interferences caused by bubble formation/trapping 

within the micro-analytical system, have represented significant barriers to the development and 

uptake of microfluidics-based in-situ sensing systems. Although numerous micro-analytical systems 

have been developed and their performances described under laboratory conditions, examples of 

integrated micro-analytical devices which have been successfully deployed for extended periods 

under real environmental conditions are much scarcer. Therefore, while the development of sensing 

nodes for the aquatic environment which are sufficiently reliable and inexpensive to form the basis 

of extensive wireless sensor networks has been anticipated, realisation of this goal has been more 

difficult to achieve. The challenges in developing such systems include achieving adequate stability 

and reliability of the analytical system, minimising the cost and power consumption of the integrated 

device, robustness under harsh environmental conditions, and fouling due to microorganisms and 

particulate matter. In developing autonomous environmental monitoring devices, deployable 

lifetimes on the order of months to a year are desirable. Achieving such lifetimes without elevating 

the fabrication cost of the integrated system to unviable levels has been described as a key challenge 

for the analytical science community [Nie10]. 

4.2.6.1 Examples of miniaturised/microfluidic nutrient analysers. 

The area of nutrient detection via integration of colorimetric assays into microfluidic manifolds with 

light emitting diode (LED) and photodiode (PD) based optical detection systems has seen significant 

progress. Gardolinski et al. [Gar02] developed a miniaturised, LED-based chemical analyser for in-situ 

monitoring of nitrate. The limit of detection (LOD) with a 20 mm path length flow cell was 2.8 mg L-1 

N. The linear range could be adjusted to suit local conditions in the field by changing the flow cell 

path length. The analyser was tested in shipboard mode for mapping nitrate concentration in the 

North Sea and in submersible mode to conduct a transect of Tamar Estuary (England). 
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Doku and Haswell [DH99] developed a micro-flow injection analysis (µFIA) technique for 

orthophosphate based on the molybdenum blue reaction. The µFIA manifold was formed by etching 

of borosilicate glass, and electroosmotic flow was used both for the mobilization of reagents and for 

sample injection.  A LOD of 0.1 µg mL-1 was achieved, with a rapid analysis time of 60 s and low 

sample/reagent volume (total system volume of 0.6 µL).  

Greenway et al. [Gre99] produced a similar µFIA system for the determination of nitrite, based on 

the Greiss reaction to form an azo dye. Following optimisation of the electro-osmotic flow 

characteristics, reaction chemistry, and injection time, a LOD of 0.2 µmol L-1 was achieved. A further 

progression of this work was to incorporate a cadmium reduction column within the device. This 

allowed for the analysis of nitrate in water, for which a LOD of 0.51 µmol L-1 [Pet01] was achieved. 

Daridon et al. [Dar01] investigated the Berthelot reaction for the determination of ammonia in water 

utilising a microfluidic device consisting of a silicon chip between two glass plates. The pathlength in 

this device was 400 µm, and the integrated system comprised fibre optics coupled to an LED. High 

aspect ratio channels (30 µm wide × 220 µm deep) were used for sample/reagent mixing in order to 

achieve efficient diffusional mixing. 

Azzarro and Galletta [AG06] described an automatic colorimetric analyser prototype (MicroMAC 

FAST MP3) for high frequency measurement of nutrients in seawater. This system utilises the 

Berthelot method for ammonia detection, the sulphanilamide/ethylendiamine method for nitrate 

detection, and the blue phosphomolybdate method for phosphate detection, and LODs of 5, 2.5 and 

2.5 µg L-1 were reported for N-NH4, N-NO3 and P-PO4 respectively. The system was based on loop 

flow analysis technology and was further developed via the WARMER FP6 project [WAR09] to 

provide a system more suited to deployment on typical monitoring platforms. The resulting multi-

nutrient analyser system was trialled in collaboration with YSI Hydrodata at two locations in the 

United Kingdom (Hannigfield Reservoir and River Blackwater Estuary) [MT09]. 

A number of other systems for in-situ nutrient monitoring have been assessed by the Alliance for 

Coastal Technologies (ACT) [ACT14] at Chesapeake Biological Laboratory, USA [ACT07], 

[ACT08a],[ACT08b]. ACT conducts technology evaluations which focus on classes of commercially 

available instruments in order to provide confirmation that each technology meets the 

manufacturer's performance specifications or claims under real deployment conditions. The 

American Ecotech NUT 1000 was originally developed at Monash University and commercialised by 

Ecotech Pty. Ltd. The system can achieve LODs for reactive phosphate of < 3µg L-1 with a response 

time of 30 seconds. The high sampling rate is allowed by the use of rapid sequenced reagent 

injection in combination with a multi-reflection flow cell. Reagent injection also minimises the 

reagent consumption, allowing over 1000 measurements to be performed with only 20 mL of 

reagent. In the ACT trials, the NUT 1000 was used for surface mapping on board a research vessel in 

Monterey Bay, California [ACT08a]. Very good correlation with validation samples was achieved, 

after correction for a measurement offset of 50 µg L-1 P-PO4, which was attributed to differences in 

refractive index of natural seawater versus the reagent grade water used for preparation of internal 

standards and machine calibration. The ACT has also reported on successful deployments of the WET 

Labs Cycle-P nutrient analyser [ACT08b] and the YSI 9600 Nitrate Monitor [ACT07].  

Vuillemin et al. [Vui09] described a miniaturised chemical analyser (CHEMINI) for dissolved iron and 

total sulphide, based on FIA and colorimetric analysis. Designed for deep-sea applications, the system 

is submersible to a depth of 6000m, with detection limits of 0.3 µM and 0.1 µM for iron and sulphide 

respectively. It was used to monitor the chemical environment within mussel beds, over a 6 month 

deployment period during which 8 measurements per day were performed. 

Mowlem and co-workers at the National Oceanography Centre (NOC), Southampton, UK, have 

developed in-situ sensors for a range of chemical parameters [Pat08],[Sie10],[Bey11],[Flo11],[Bea12] 

including nitrite, nitrate, ammonia, phosphate and iron. The first of this series of microfluidic 

chemical analysis systems [Patey08] was used to detect nitrate and nitrite with a limit of detection 
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(LOD) of 0.025 μM for nitrate (0.0016 mg L-1 as NO3
−) and 0.02 μM for nitrite (0.00092 mg L-1 as 

NO2
−). The device was deployed in an estuarine environment (Southampton Water, UK) to monitor 

nitrate and nitrite concentrations in waters of varying salinity and was able to track changes in the 

nitrate-salinity relationship of estuarine waters due to increased river flow after a period of high 

rainfall. In subsequent work, nanomolar detection limits were achieved for iron [Sie10], ammonium 

[Bey11], phosphate and nitrate [Flo11]. The NOC is a major player in the development and 

deployment of microfluidic sensor systems for marine monitoring with a range of deployable 

platforms including research vessels, gliders and autonomous underwater vehicles (AUVs) for long 

term, long range, deep oceanographic applications. However, like the CHEMINI system, the level of 

engineering required to achieve the ruggedisation and high analytical performances required in this 

environment means that the cost of such systems is likely to be prohibitive in terms of deploying 

large numbers of devices for routine monitoring applications. 

4.2.6.2 Autonomous microfluidic platform for nutrient analysis 

Bowden et al. [Bow02a],[Bow02b] evaluated the yellow (vanadomolybdophosphoric acid) method as 

an analytical method for the determination of phosphate in water within a microfluidic device with 

the aim of producing an automated device with a field-deployable lifetime of one year. In this 

method ammonium molybdate, (NH4)6Mo7O24.7H2O, is reacted with ammonium metavanadate, 

NH4VO3, under acidic conditions. The combined reagent and sample containing orthophosphate react 

to form the vanadomolybdophosphoric acid complex, (NH4)3PO4NH4VO3.16MoO3. The resulting 

solution has a distinct yellow colour arising from the strong absorbance of this complex below 400 

nm. It was shown that batches of the reagent could be used for over a year without significant loss in 

performance [Bow02a]. This method was therefore selected in preference to the molybdenum blue 

method, due to the greater stability of the reagents used in the analysis, and resulted in an assay 

with an LOD of 0.2 mg L-1 and a dynamic linear range of 0–30 mg L-1. 

Following these investigations, an autonomous microfluidic analyser for phosphate was developed, 

which has been successfully deployed in wastewater, freshwater and estuarine locations. The first-

generation prototype for this system consisted of bottles for storing the reagent, calibration 

solutions and cleaner, a sample port for collecting the water sample to be analysed, and an array of 

solenoid pumps for pumping the required liquids through the microfluidic chip. The microfluidic chip 

allowed mixing of the reagent and sample, and also presented the reacted sample to a photodiode 

and LED for an absorbance measurement. The analysed sample was then pumped to the waste 

storage container. All of the fluid handling and analytical components were controlled by a 

microcontroller which also performed the data acquisition and stored the data in a flash memory 

unit. A GSM modem was used to communicate the data via the SMS protocol to a laptop computer. 

The first generation phosphate analyser was validated in the laboratory [Sla10] and during 

deployments in wastewater [Cle09] and estuarine water [Cle10]. 

A substantial redesign of the phosphate analyser was later carried out in collaboration with an 

industry partner in order to reduce the component cost of the system (to approx. €200 per unit) and 

improve manufacturability while maintaining or improving the analytical performance. The major 

design alterations and improvements implemented during this process are described in detail in 

[Cle13a]. These include: 

• More compact, cylindrical design for better portability and deployability. 

• Improved external mounting system. 

• Folded sheet metal frame for mounting of internal components. 

• Flexible bags for storage of colorimetric reagent, calibration solutions and waste. 

• Low-cost dual channel peristaltic pumps. 

• Redesign of microfluidic chip. 

• Bubble detection and removal protocol. 

• Implementation of ZigBee radio based communications. 
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• Redesign of sample intake/filter module to incorporate antifouling measures. 

 

 
Figure 4.2.29. (a) Microfluidic chip for phosphate detection. (b) DCU’s second-generation phosphate 

sensor in situ during a freshwater monitoring deployment. 

The second-generation phosphate sensor (Fig. 4.2.29b) was deployed at Broadmeadow Water 

Estuary, Co. Dublin, Ireland [Cle13a]. The sensor performed 124 measurements during the trial, and a 

number of manual samples were collected for laboratory analysis. These samples were analysed in 

the laboratory using a Hach-Lange DR890 Portable Colorimeter. An excellent correlation (R2 = 0.9706) 

was achieved between the sensor output and the laboratory analysis. The second generation 

phosphate sensor has also been used for wastewater monitoring at Osberstown Wastewater 

Treatment Plant, Co. Kildare, Ireland. An autosampler (Buhler BL 2000, Hach-Lange Ireland Ltd.) was 

used to collect validation samples at 7-hour intervals, these were stored within the refrigerated 

compartment of the autosampler, collected periodically, and analysed in the laboratory using the 

vanadomolybdophosphoric acid method (yellow method) for phosphate detection and a UV-vis 

spectrophotometer (UV-1600PC Spectrophotometer, VWR International). Over the course of a 22 

day deployment good agreement between the sensor output and the validation dataset was again 

achieved [Cle13a].  

Recent developments of DCU’s deployable analyser platform have focussed on implementing 

colorimetric methods for additional parameters including pH, ammonia, nitrate and nitrite 

[Clea12],[Cle13b],[Cog13],[Cog14]. 

4.2.6.3 Disc-based microfluidic systems 

DCU has also developed a fully integrated portable centrifugal microfluidic analysis system (CMAS) 

for on site colorimetric analysis [Czu12a], [Czu12b],[Czu13]. This handheld device with wireless 

communications capability is based on a reconfigurable low cost optical detection method employing 

a paired emitter detector diode device (PEDD) which allows a range of centrifugal microfluidic 

layouts to be implemented. In this kind of system, disc spinning provides the energy for fluid control 

and movement. Due to the wireless communication, acquisition parameters can be controlled 

remotely and results can be uploaded in remote locations and displayed in real time. CMAS is 

coupled via Bluetooth to an Android tablet for data collection, geotagging and Cloud sharing. The 

portability and wireless communication provide the flexibility needed for on site water monitoring. A 

centrifugal microfluidic disc was designed for nitrite detection in water samples, and a limit of 

detection (LOD) of 9.3 µg/L was obtained [Czu13]. 

Other implementations of centrifugal discs for environmental monitoring have been reported. Salin 

and coworkers developed discs for the detection of aqueous sulphide [KS12], and nitrate and nitrite 

[Yon10] employing centrifugal microanalysis. Hwang et al. reported [Hwa13] a microfluidic 

centrifugal disc that is capable of simultaneous determination of several nutrients in water samples 

(nitrite, nitrate, ammonium, orthophosphate, and silicate). However, in these cases a bench-top 

fiber-based optics/spectrophotometer system was employed for the optical detection. Therefore, 
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while these platforms did demonstrate the suitability of centrifugal discs for implementing 

environmental assays, the devices were not suitable for on-site water quality monitoring. 

 

 

Figure 4.2.30. CMAS portable system for on-site monitoring of water quality. (a)Loading sample onto 

the disc. (b) A disc for performing nitrite analysis at a range of concentrations for calibration 

purposes. 

Centrifugal disc based microfluidic systems such as CMAS have significant potential for use as 

handheld/portable devices for environmental monitoring and for diagnostic/point-of-care biomedical 

applications [Gorkin10]. However, in terms of deployable, fully autonomous devices for in situ 

environmental monitoring, their usefulness is limited by the relatively high power consumption 

required in order to achieve the revolution speeds (typically 300 – 3000 rpm) needed to drive fluid 

motion in the disc. 
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4.3 Antifouling 

4.3.1 Generic aspect 

Fouling is the accumulation of unwanted material on solid surfaces to the detriment of function. The 

fouling material can consist of either living organisms “Biofouling” or a non-living substance 

(inorganic or organic). Fouling is usually distinguished from other surface-growth phenomena in that 

it occurs on a surface of a component, system or plant performing a defined and useful function, and 

that the fouling process impedes or interferes with this function. 

Biofouling or biological fouling is the undesirable accumulation of micro-organisms, algae and 

diatoms, plants, and animals on surfaces, for example ships' hulls, or piping and reservoirs with 

untreated water. Bacteria can form biofilms or slimes. Thus the organisms can aggregate on surfaces 

using colloidal hydrogels of water and extracellular polymeric substances (EPS). The biofilm structure 

is usually complex. Bacterial fouling can occur under either aerobic (with oxygen dissolved in water) 

or anaerobic (no oxygen) conditions. In practice, aerobic bacteria prefer open systems, when both 

oxygen and nutrients are constantly delivered, often in warm and sunlit environments. 

Anaerobic fouling more often occurs in closed systems when sufficient nutrients are present. 

Examples may include sulfate-reducing bacteria or sulfur-reducing-bacteria, which produce sulfide 

and often cause corrosion of ferrous metals (and other alloys). Sulfide-oxidizing bacteria on the other 

hand, can produce sulfuric acid, and can be involved in corrosion of concrete. 

Sensors immersed in natural water are affected by fouling and biofouling. Since the time when long-

term monitoring was first carried out in water, strategies to protect the deployed instrument/sensor 

from fouling have been adopted and most of the time with indeterminable results.  

4.3.2 Present solutions 

Among others mechanical brushes, chemical substances, copper foil, copper paints and other 

complex devices have been used to mitigate the fouling/biofouling effects on deployed instrument 

and sensor packages.  

Antifouling treatments 

Tributyltin (TBT) is primarily used as an antifoulant paint additive in the marine environment to 

discourage the growth of marine organisms. TBT by itself is unstable and will break down in the 

environment unless it is combined with an element such as oxygen. One of the most common TBT 

compounds is bis(tributyltin) oxide, or TBTO. TBTs are toxic to fish and other aquatic life and are 

accumulated by these species. TBTs can bind strongly to particles in water bodies and to sediments 

and can then persist for a considerable time. There is concern that exposure to TBTs can interfere 

with animal hormones, that they are "endocrine disruptors".  

European Directives regulating levels of TBTs include that concerned with pollution of the aquatic 

environment (76/464/EEC) [EC2014] and they are listed as priority substances for the Water 

Framework Directive. At an international level, the use of TBTs in marine situations is gradually being 

phased out as the potentially harmful effects they may have on aquatic life are recognised. In the UK, 

for example, the use of TBTs is restricted to large boats (of more than 25 metres in length). TBTs are 

listed as substances for priority action under the Helsinki and OSPAR Conventions which protect the 

marine environments of the Baltic Sea and north-east Atlantic Ocean respectively. 

To emphasize the attention given to the danger of this poisoning treatment, we below show the 

circular that one of the manufacturers of marine instrumentation disseminated some years ago to 

their users:  
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ATTENTION 

Return Policy for Instruments with Anti-fouling Treatment 

WET Labs cannot accept instruments for servicing or repair that are treated with anti-fouling 

compound(s). This includes but is not limited to tri-butyl tin (TBT), marine anti-fouling paint, ablative 

coatings, etc. 

Please ensure any anti-fouling treatment has been removed prior to returning instruments to Wet 

Labs for service or repair. 

 

Mechanical antifouling devices 

The Zebra-Tech Hydro-wiper [Zeb14] 

“The Hydro-Wiper is an innovative mechanical wiper system, with versions 

available for a wide variety of underwater instruments. Using a regular gentle 

brushing action, the Hydro-Wiper keeps the sensing window of the instrument 

clean from unwanted deposits such as mud and bio-fouling. 

The Hydro-Wiper reduces the need for costly site visits to manually clean the 

instrument, maintaining data quality throughout long deployments, even in the  

harshest environment. 

All Hydro-Wipers can be supplied in two formats, either self contained or data 

logger controlled.” 

Turner Design mechanical wiper [TUR14] 

“The Mechanical Wiper, installed in the C3 Submersible Fluorometer, is designed to reduce 

biofouling during extended deployments. It helps maintain consistent readings by reducing bio-

fouling.  Replaceable brushes available.” 

 

Figure 4.3.2. Turner Designs Mechanical Wiper 

WetLabs – Water Quality Monitor (WQM) [Wet14] 

The WQM employs active flow control, passive flow 

prevention, light-blocking, active biocide injection and 

passive inhibitors to effectively and safely combat internal 

and external fouling. With fouling minimized, the superior 

inherent stability of the WQM sensors translates directly to superior long-term data 

quality.  

Anti-Fouling Features 

• Pump-controlled flow 

• Extensive copper cladding 

• BLeach Injection System (BLIS) protects DO sensor and CTD flow path 

• Anti-Foulant (AF) collar for conductivity cell (EPA approved) 

• Light-blocked sample chambers 

• Bio-wiper protects optical components  

 

Electro-chemical antifouling devices    

The Idronaut innovative antifouling system 

Figure 4.3.1. 

Hydro-wiper 

Figure 4.3.3. 

Wetlabs WQM 
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“The antifouling kit, installed by the 

Ocean Seven 316 probe, is composed of

electrode which  supplies  an electrical  current  towards six 

external titanium electrodes on which a copper foil (replaceable) 

surrounding the sensors, can be wrapped. In addition to free 

chlorine formation, there is copper dissolutio

the sensors. The copper foil has a typical endurance of more than 

one year.  The sensors are washed

profiling. 

The fouling probably represents the major difficulty 

during continuous monitoring of waters and, 

although many efforts in research at worldwide level 

have been dedicated to this problem during the past 

decades, a definitive solution is not yet available. 

Therefore, a compromise must be made each time according to the specific difficulty encountered.

Because our 601 BUOY PROFILER monitoring system is frequently used in inshore waters where 

fisheries or shellfish beds may be present, we have avoided the 

polarised copper foil antifouling system. To the best of our knowledge,

does not appear in the scientific literature and no other manufacturer has ever used it until now. So, 

we intend to apply for a patent on it.

A foil of copper (1 mm thickness) has been placed around the sensor cage in such 

easily replaced with a new one without damaging the measuring sensors and to also avoid reducing 

the flow of water to be measured. The presence of this simple device has, on average, increased the 

time between each cleaning from 1 to 4

Passive antifouling systems based on copper lose their activity after a few days because the surface 

of the copper becomes oxidised and no longer produces sufficient copper ions to remain effective. 

avoid passivation of the copper, a titanium central electrode has been installed and a small electrical 

current is passed between the central titanium electrode and the copper foil.  In this way the copper 

foil, which acts as a flow-measuring chamber, i

dissolution in an ionic form. This effect has drastically decreased the formation of fouling around the 

sensors. The current between the titanium electrode and the copper foil is only applied when the 

probe idles and not carrying out

acquire measurements, the current is turned off and the water to be measured flows between the 

sensors and flushes out the ionic copper previously dissolved.

increases the “time between cleanings” up to three/four weeks, depending on the water quality.

Optical  antifouling devices – UV disinfection

AML UVXchange [AML14] 

AML recently launched UV•Xchange 

module.Biofouling solution unlike any method currently on the market,

prevents biofouling during long-

surfaces in ultraviolet (UV) light, killing early growth to prevent biofouling, and thus

eliminating environmental drift in CTDs and multi

studies show UV•Xchange to be as effective as chemical protection methodologies like 

TBT at eliminating drift due to biofouling.

UV•Xchange offers significant advantages

technologies. It does not use toxic chemicals, simplifying deployment and maintenance 

while at the same time eliminating environmental damage. The module has no moving 

parts and hence greater reliability compared to wipers
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easily replaced with a new one without damaging the measuring sensors and to also avoid reducing 

the flow of water to be measured. The presence of this simple device has, on average, increased the 
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Figure 4.3.4. Idronaut anti

A) Titanium inner electrode.

B) no. 6 titanium outside electrodes.

C) Copper foil (replaceable).
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weeks when deployed in warm and very productive waters. 
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of the copper becomes oxidised and no longer produces sufficient copper ions to remain effective. To 
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This improvement considerably 
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parameter instruments. Comparative 
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emitting LED can be adjusted independently and positioned as desired, ensuring effective coverage 

of all critical surfaces, regardless of geometry. 

Like all other members of the Xchange suite, UV•Xchange is field-swappable and easily configured to 

fit the needs of any operation. Installed directly on the end cap of an X•Series instrument, the 

module can be set to various positions, enabling optimal coverage of any sensors requiring 

protection. When used in conjunction with AML’s C•Xchange conductivity sensor-head, the resulting 

CTD system has overall drift performance due to biofouling similar to a Sea Bird.  UV•Xchange can 

also protect third party devices: cameras, transducers, sensors, etc. Simply install the UV•Xchange 

module onto a Micro•X instrument, point, and apply power to protect 

 

Woods Hole Oceanographic Institution, Woods Hole, MA (US) – United States patent No. US 

2014/0078584 A1 

The present invention relates to systems and methods 

for reducing fouling of a surface of an optically 

transparent element with a light source. According to 

one aspect, the invention is a system including an LED 

for emitting UV-C  radiation, a mount for directing 

emitted UV-C radiation toward the optically 

transparent element and control circuitry for driving 

the LED. The system may be used to remove a desired 

amount of biofilm. 

4.3.2.1 Antifouling – general References 

[AML14] AML Oceanographic UV•Xchange: http://www.amloceanographic.com/Products-Services-

Hydrographic-Oceanographic/Biofouling-Control_3/UVXchange  Accessed 13 Aug 2014 

[EC14] Dangerous substances documentation: http://ec.europa.eu/environment/water/water-

dangersub/lib_dang_substances.htm  Accessed 13 Aug 2014 

[TUR14] Turner Designs Mechanical Wiper: http://www.turnerdesigns.com/inline-

monitoring?page=shop.product_details&flypage=flypage_default.tpl&category_id=96&product_id=255 

Accessed 01 Aug 2014 

[WET14] WetLabs WQM: http://www.wetlabs.com/wqm Accessed 01 Aug 2014 

[ZEB14] Hydro-wipers: http://www.zebra-tech.co.nz/product_type/hydro-wipers/ Accessed 01 Aug 2014 

4.3.3 Antifouling strategy for nutrient sensors 

Implementation of antifouling protection for the COMMON SENSE nutrient sensing platform will 

focus on three main areas: 

1. Protection of the sensor housing. 

2. Protection of the sample intake/filter assembly. 

3. Protection of the internal fluidic system and microfluidic chip. 

4.3.3.1 Protection of sensor housing 

Protection of the sensor housing can be seen as the least critical of the three areas, as fouling of the 

housing will not have direct or immediate impact on sensor performance. Nevertheless, given the 

high degree of fouling which can occur on surfaces exposed to the marine environment, this aspect 

should not be neglected for a number of reasons [Del10]:  

• Ease of use – it is obviously preferable from a user point of view to have a (relatively) clean 

or easy to clean instrument at the end of a deployment period, particularly if a post-

deployment calibration is to be carried out in the laboratory. 

• Effect on post-deployment calibration – when a sensor is heavily fouled after deployment, 

users are likely to clean it using potentially aggressive techniques such as high pressure water 

jet, brushes or chemical methods. These have potential to affect the instrument and perhaps 

render the post-deployment calibration invalid. 
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• Macro-fouling effects – extensive fouling by organisms such as barnacles, mussels and 

macro-algae can affect the chemical composition of the local environment. 

Fouling potential of the housing material should be considered when selecting/designing the sensor 

housing. A variety of commercially available antifouling paints/coatings should also be considered as 

protective measures.  

• Antifouling paints with active biocides such as copper compounds, copper oxides and co-

biocide chemicals can be used to protect the sensor container. Other biocides are 

incorporated in antifouling paints in addition to, or in replacement of, copper compounds; 

these biocides are designated as pesticides, algicides or bactericides and are not used 

frequently to protect sensors for ocean monitoring. 

• Self-polishing paints can be effective to protect the sensor container provided that the 

deployment site has an active water flow. As for conventional biocide-based antifouling 

paint, self-polishing paints often contain biocides and consequently can disrupt the 

environment to be monitored by the sensor.  

• Paints based on non-stick coatings incorporate silicone materials or fluorinated polymers, 

and can be biocide free. They are known to be effective to protect ship hulls since the 

movement of the ship creates sufficient shear forces to remove the fouling. In the case of 

sensor housing protection non-stick coatings can help to inhibit fouling growth if the currents 

at the site are sufficient as this will help with cleaning. 

4.3.3.2 Protection of the sample intake/filter assembly. 

DCU’s approach to nutrient monitoring is based on mixing a filtered sample with a colorimetric 

reagent inside a microfluidic chip and using light emitting diode (LED) and photodiode (PD) based 

optical detectors to measure the colour formed. The measurement is therefore carried out within a 

protected environment, with only the filter (and associated fittings) directly exposed to the sample; 

this compares favourably to optical or electrochemical probe systems in which the sensor surface is 

directly exposed to the bulk sample and is consequently vulnerable to biofouling. The current version 

of DCU’s phosphate sensor uses commercially available copper-containing fitting to hold a 

membrane filter in place. In addition to being cost-effective and facilitating easy exchange of the 

membrane filter, the copper content is of benefit in terms of protecting the membrane filter from 

biofouling. Copper, copper alloys and copper compounds are widely used as biofouling inhibitors for 

sensors and other devices deployed in aquatic environments [Del10], [SR11]. The filter/intake is 

located on the bottom of the cylindrical sensor unit. This is a practical placement for deployment 

purposes, and has the benefit of partly shielding the membrane filter from ambient light. Light 

favours growth of micro-organisms which can promote the formation of biofilms on surfaces. The 

membrane filter used is a polyethersulfone (PES) membrane [PAL14]. PES is a hydrophilic polymer 

with extremely low protein binding, and these membranes are designed for biological sample 

preparation. As attachment of macromolecules (organic and inorganic) and microorganisms 

represent the initial stages in the biofouling process [Del10], [SR11], this combination of measures is 

expected to delay and/or limit biofouling of the filter surface.  

 

 

Figure 4.3.5 Components of the sample 

intake/filter assembly used on DCU’s phosphate 

sensor. (a) PMMA filter backing with “spider 

web” pattern, (b) polyethersulfone membrane 

filter, (c) O-ring seal, (d) copper washer, (e) brass 

screw-on fitting. 
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The sample intake/filter assembly is shown in Fig. 4.3.5. A “spider-web” pattern is formed on the 

surface of a PMMA disc by micro-milling. The disc is then fitted into a brass connector where it acts 

as a backing for the polyethersulfone membrane filter. The spider-web pattern allows a higher 

proportion of the membrane surface to be used for sample intake, while minimising the dead volume 

created. The membrane is held in place using an O-ring seal, a copper washer and a brass threaded 

nut. These copper/brass fittings allow the filter to be easily replaced while also offering a degree of 

protection from biofouling. 

 
Figure 4.3.6. Second generation phosphate sensor in-situ during wastewater monitoring trial. 

 (b) Biofouling on the sensor housing after approx. 2 weeks immersion in wastewater. 

Fig. 4.3.6 and Fig. 4.3.7 show the extent of biofouling which occurred during a phosphate sensor trial 

in wastewater monitoring application. Fouling of the sensor body was a significant feature of this 

trial. Fig. 4.3.6(b) shows the partially cleaned sensor module after removal from the effluent tank 

after approx. 14 days immersion. A fouling layer approximately 1 mm in thickness was observed. The 

copper-containing filter housing was noticeably less affected than the sensor body. Fig. 4.3.7(a) 

shows that the membrane filter was also fouled with a thin, adherent layer of material, although 

there was no discernible effect on the sensor performance. The filter was replaced and the system 

was replaced in the effluent tank. At the end of the trial (after a further 10 days) the membrane and 

 
Figure 4.3.7. Fouling of membrane filters and filter assembly after approx. 14 days (a) and 10 days (b) 

immersion in wastewater during a sensor trial at Osberstown Wastewater Treatment Plant. 

housing were again examined. At this point the filter holder was heavily fouled as shown in Fig. 

4.3.7.(b). A layer of fouling material was again in evidence on the membrane filter itself. However, in 

this case the material was found to be only loosely adherent to the filter surface, and was readily 

removed with gentle washing with deionized water.  
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The qualitative difference between the types of fouling material on the two filters shown in Fig. 

4.3.7. highlights the variability of fouling which can occur over a relatively short period of time, 

presumably due to changes in sample composition and prevailing weather conditions. While no 

specific effect of fouling on sensor performance was observed in this trial, the rapid build-up of 

material suggests this could be an issue in longer-term deployments in wastewater and in other 

sample matrices including seawater. For this reason testing of this design in seawater will be carried 

out during the COMMON SENSE project, to determine the effects of filter biofouling on (i) sample 

delivery through the filter membrane and (ii) measured levels of nutrients (as localised uptake of 

nutrients by biofilms on the filter surface could potentially impact on the measured value). 

Additional measures to be considered for protection of the sample intake/filter assembly include the 

addition of a copper screen outside the filter, and the use of commercially available antifouling 

coatings on the assembly. 

A variety of active strategies have also been implemented for protection of sensors, these include 

approaches based on vibration, wipers, water jets, ultrasound, UV irradiation, electric pulses, and 

mechanical systems for immersing the sensor at time of measurement and withdrawing it from the 

water between measurements. These approaches all entail additional power consumption and are 

therefore not ideal for use with autonomous in situ monitoring systems.  

4.3.3.3 Protection of the internal fluidic system and microfluidic chip. 

Fouling of the nutrient sensors’ internal fluidic components (tubing, pumps, valves) and microfluidic 

chip by particulate matter or biofilm growth has the potential to effect the system by 

blocking/interfering with fluid flows or by interfering with the optical measurement (e.g. light 

scattering by particles between the light source (LED) and detector (PD) could result in spuriously 

high values for light absorbance). In laboratory testing of the phosphate sensor using real samples, 

and during field deployments in freshwater, wastewater and estuarine waters [Cle09], [Cle10], 

[Cle13], this has been observed only in the case of filter failure resulting in ingress of suspended 

particles. 

In the case of the phosphate sensor, an additional protection is automatically conferred by the use of 

a highly acidic reagent (the colorimetric “yellow reagent” contains 10% HCl by volume, in addition to 

ammonium molybdate and ammonium metavanadate). This aggressive reagent protects against 

biofouling of the microfluidic chip and any other internal fluidic components which are exposed to 

the reagent (pre- or post-reaction with sample). Reagents used for detection of other nutrients may 

confer similar protection, however consideration should be given to increasing the acidity/basicity of 

these reagents where feasible. 

The biofouling potential of seawater samples should also be considered in the selection of all internal 

fluidic components. In this context, the tubing delivering sample from the intake/filter point to 

microfluidic chip (as well as any pumps or valves between these points) may be considered as most 

vulnerable to fouling, since this section of the fluidic system is exposed to sample without being 

exposed to the protective properties of the reagent. Testing with seawater samples should be used 

to test for occurrence of biofouling within tubing and other components, and if necessary anti-

fouling measures should be implemented. Viable antifouling methods for this section of the system 

may include: 

• Use of fluidic components with lower susceptibility to biofouling. 

• Implementation of a cleaning cycle using a solution with biocidal properties. 

• Internal coating of the fluidic components with antifouling layers, e.g. those based on 

nanomaterials with biocidal/antimicrobial properties [Cha10]. 

• Localised UV irradiation. 

4.3.3.4 Nutrient Sensors Anti-fouling References 

[Cha10] Chapman, J. et al. (2010) "Period four metal nanoparticles on the inhibition of biofouling" Colloids and 

Surfaces B: Biointerfaces 78 (2010) 208-216. 
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[Cle09] Cleary, J. et al. (2009) "Analysis of phosphate in wastewater using an autonomous microfluidics-based 

analyser" World Academy of Science, Engineering and Technology 28 (2009) 196-199. 

[Cle10] Cleary, J. et al. (2010) “In situ monitoring of environmental water quality using an autonomous 

microfluidic sensor”, In: SAS 2010: IEEE Sensors Applications Symposium, 23-25 Feb 2010 , Limerick, Ireland. 

[Cle13] Cleary, J. et al. (2013) "Development and deployment of a microfluidic platform for water quality 

monitoring". In: Mukhopadhyay, Subhas C. and Mason, Alex, (eds.) Smart Sensors for Real-Time Water Quality 

Monitoring. Smart Sensors, Measurement and Instrumentation. Springer-Verlag, Berlin Heidelberg 2013, pp. 

125-148. 

[Del10] Delauney, L. et al. (2010) “Biofouling protection for marine environmental sensors” Ocean Science 6 

(2010) pp. 503-511. 

[PAL14] PALL Corporation, Polyethersulfone Membrane (Hydrophilic), http://www.pall.com/main/OEM-

Materials-and-Devices/Product.page?id=3949, accessed on 29 July 2014. 

[SR11] Sullivan, T., and Regan, F. (2011) “Biomimetic design for the development of novel sustainable 

antifouling methods for ocean monitoring technology” Journal of Ocean Technology 6 (2011) 41-54. 

4.3.4 Micro-Plastics 

The analytical methods described in Section 4.1.7 (Microplastics) are based on optical measurement 

technologies, meaning that components such as lenses, mirrors and light sources are critical to 

ensure reliable results. An important restriction to use optical devices in marine environment is 

fouling. Equipment’s operating in marine environments must be protected to prevent the deposition 

of materials/substances and organisms (biofouling). 

There are different types of anti-fouling treatments and coatings. Currently, the most common 

method to prevent the occurrence of fouling is the combination of paints and biocides. Among 

existing options, the most used are TBT-based paints (using tributyltin and derivatives). However, 

paints based solutions are not applicable to optical measurement systems, so it is necessary to find 

alternatives for anti-fouling protection[MKD03].  

Some alternative anti-fouling methods to avoid the use of paint coatings are based on the application 

of nanoscale surface treatments that hinder the adhesion of organisms. In particular, the 

combination of surface plasma treatments with TiO2 nanoparticles has shown good anti-fouling and 

photocatalytic properties with high hydrophilicity [YSL12].  

Another possible solution is the application of high-transparent epoxy coatings. This solution 

maintains most of the advantages of paint coatings (easy to apply, proven) with minimal alteration of 

the optical properties of reading systems. As reported by Kiu Ho Chae et al. [CJK06], epoxy polymers 

containing phosphorylcholine (MPC) groups, show high anti-fouling effect while maintaining good 

adhesion properties and high transparency at wavelengths of more than 300 nm.  

During this project, different possible solutions will be tested to avoid fouling presence in 

microplastic sensor. Those sensor elements in contact with seawater (fluidic channels, light emitters, 

light receptors) will be protected against fouling using one of the techniques described above or a 

combination of different options. It is important to notice that the use of light conducting materials 

(such as optic fiber) could help to prevent the contact between seawater and the most sensible 

elements. 

4.3.4.1 Micro-Plastics Anti-fouling References 

[CJK06] D. H. Chae, Y. M. Jang, Y. H. Kim, O. Sohn, J. I. Ree; “Anti-fouling epoxy coationgs for optical biosensor 

application based on phosphorylchlorine”, Sensors and Actuators (2006): 153-160 

[MKD03] D. Messeguer, S. Kiil, K. Dam-Johansen; “Anti-fouling technology – past, present and future 

steps towards efficient and environmentally friendly antifouling coatings”, Progress in Organic coatings (2003): 

75-104.  

[YSL12] You SJ, Semblante GU, Lu SC, Damodar RA, Wei TC; “Evaluation of the antifouling and photocatalytic 

properties of poly(vinylidene fluoride) plasma-grafted poly(acrylic acid) membrane with self-assembled TiO2”, 

Journal of Hazardous Materials (2012): 10-19 
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4.4 Remote Sensing 

4.4.1 Introduction 

Remote sensing means obtaining information about objects or areas from a distance, e.g. from 

aircraft or satellites, typically using the attenuation or reflection of beams of electromagnetic energy. 

Starting from the 1970s, the use of satellite data for the study of water reservoirs, including seas and 

oceans, has become increasingly popular, and today satellites are key instruments for the global 

monitoring of climate. Among others, parameters like sea surface temperature, sea level, sea state, 

sea ice, surface wind are routinely measured in this way [EUMET14]. 

In general, remote sensing of water reservoirs involves the selection of a specific band of the 

electromagnetic spectrum and then comparing the spectral response of reference water with the 

spectral response of the substance to be measured. 

With the development of new, more complex observation systems and algorithms for data analysis, 

the use of remote sensing for monitoring the state of water through the measurement of a wide 

range of parameters has become more popular [WJO13]. Modern satellite imaging sensors offer new 

possibilities, making them suitable for water quality assessment. The use of multispectral and 

hyperspectral sensors [MHS10] increases the accuracy of the data collected and allow us to monitor 

a wide number of ecological and hydrological parameters. As a matter of fact, the large number of 

contiguous spectral bands recorded by hyperspectral sensors increase the probability of finding a 

unique combination of spectral data that allows the discrimination of the desired observable among 

the other elements in the image. The current limitation of remote sensing methods includes the 

need of external data (e.g. atmospherical model) for a correct processing, cloud coverage and limited 

spatial resolution. Moreover, remote sensing is limited to the surface of the water column, with a 

penetration depth ranging from nearly zero (reflected UV radiation) to few tens of meters (visible 

light in the blue-green range); nevertheless the advantages of remote collection of large scale data, 

to complete and complement in situ measurements that are very demanding in terms of money, 

time and manpower, are enormous [Chip04]. 

Well known examples of satellite sensors used for ocean observation are the Coastal Zone Colour 

Scanner (CZCS), MEdium Resolution Imaging Spectrometer Instrument (MERIS) and Sea viewing Wide 

Field-of-view Sensor (SeaWiFS), all of which are devoted to studying the colour of the sea. In 2001 

the European Space Agency (ESA) launched the hyperspectral sensor Compact High-Resolution 

Imaging Spectrometer (CHRIS), as part of the Project for the On-Board Autonomy platform system. 

Moreover, the launch of three new hyperspectral satellite missions, Environmental Mapping and 

Analysis Program - EnMAP, Hyper-spectral Imager Suite - HISUI and PRecursore IperSpettrale of the 

application mission - PRISMA, of the German, Japanese and Italian Space Agencies, respectively, are 

programmed for next year [Cav14].  

Water monitoring based on aerial measurements is less diffused than satellite-based data. 

Nevertheless, hyperspectral spectrometers for aircraft installation have been developed, with a 

spectral resolution comparable with satellite instruments and a much higher spatial resolution (down 

to few cm). One of the first imaging spectrometers was the AVIRIS instrument, developed by NASA, 

working in the 0.4 - 2.5μm range with 224 channels, that was developed for geological, hydrological 

and environmental monitoring purposes [Lee01].  

A new generation aerial hyperspectral systems is the AAHIS (Advanced Airborne Hyperspectral 

Imaging System), which was designed specifically for marine applications, working in the 0.39- 0.84 

μm range with a maximum resolution of 6.5 cm. The AAHIS scanner was originally produced for 

military purposes [TPS02].  

4.4.2 Chlorophyll sensing 

Satellite ocean color sensors data, based on the passive measurement of visible light emerging from 

the ocean surface, are widely used for the detection, mapping and monitoring of phytoplankton 



COMMON SENSE Deliverable number 2.1  

  

 

 
The COMMON SENSE project has received funding from the European Union’s Seventh Framework 

Program (Ocean 2013-2) under the grant agreement no 614155. 
 

152 

growth.  Since the 1970s, a wide number of color sensors and data analysis algorithms have been 

developed, the advance in sensor technology being driven by the demand for more effective and 

reliable environmental monitoring of the open and coastal waters. Present challenges include 

overcoming the severe limitation of these algorithms in coastal waters and refining detection limits 

in various oceanic and coastal environments [BGD14].  

Quantitative information about optically active substances present in water can be in principle 

obtained from its spectral reflectance spectrum. Spectral bands located in the blue, green, yellow, 

red or near-infrared (NIR) in the 

reflectance spectrum can be 

combined in many ways to detect 

algal blooms, measuring essentially 

the concentration of chlorophyll-a. 

The reliability of the measured 

reflectance is disturbed by factors 

like the variable thickness of the 

floating algal layer, the presence of 

suspended matter, bottom 

reflectance and atmospheric 

conditions, that requires correction 

procedures. This reliability is even 

more questionable when dealing 

with coastal waters, where other 

optically active substances affect 

the water-leaving radiance, so care 

must be taken in the quantitative 

interpretation of remotely sensed 

data [Kut09].  

Most algorithms for Chl-a calculation use empirical blue–green (440–550 nm) spectral bandratios. 

However, the best results with these methods are obtained in clear, oligotrophic waters, while in 

coastal waters due to the usually high concentration of concentrations of color dissolved organic 

matter (CDOM) or gelbstoff, that includes essentially humic and tannic substances, and total 

suspended matter (TSM),  the use of blue–green reflectance and in general of visible wavelengths 

can be unreliable and must be combined with the analysis of, as an example, red-NIR spectral bands. 

The use of standard visible light band-ratios has been demonstrated to significantly overestimate Chl-

a, with errors as big as 50% in open ocean and 100% in coastal waters [Kom09].  

Probably the most promising algorithm tested to overcome this problem is the Fluorescence Line 

Height (FLH) that exploits the solar induced fluorescence of Chl-a, centred approximately at 685 nm. 

The FLH is more sensitive than blue-green band-ratio but is still influenced by the presence of CDOM, 

turbidity and the algorithms that better describe the amount of dissolved Chl-a are concentration-

dependent [Xin07]. 

Summarizing, quantitative measurements of chlorophyll from remote sensing still requires a 

refinement of calculation methods and data processing, especially in complex coastal water where 

the high concentration of Chl-a is accompanied by the presence of many other compounds and 

characterized by  high spatial variability. The new generation of ocean color sensors addressed the 

need for more spectral bands (see Figure 4.4.1), thereby enabling the development of sophisticated 

schemes for both atmospheric correction and water dissolved substances discrimination. 

Figure 4.4.1. Spectral band positions for five ocean color 

sensors of the first (CZCS), second (SeaWiFS), third (MERIS, 

MODIS) and fourth (VIIRS) generations, compared with 

some experimental spectra (from reference BGD14). The 

potential applications for each spectral region are indicated. 
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Moreover, remote sensors covers typically very wide areas, giving an ensemble picture of the region 

of interest (a gulf, a portion of shoreline, an estuary) in just “one shot”. This is typically exploited to 

track the position of drifting buoys as they move with ocean currents (GPS). 

4.4.2.1 Example of a combined remote sensing – in situ eutrophication study 

Satellite images have been used for applications on eutrophication events. The ISAC CNR of Rome, in 

collaboration with the Area of Research, Development and Remote Sensing of Hydrometeorological 

Service of ARPA EMR has elaborated MODIS images (Moderate Resolution Imaging 

Spectroradiometer) with the aim of detecting the presence of mucilaginous aggregates in the 

Adriatic Sea, with particular attention on the northern and central areas off the monitored coast. The 

information obtained from the images was to supplement the data collected at sea and, together 

with the images produced by the numerical forecasting models, allowing information and possibly 

any predictions on the dynamics of the mucilaginous phenomenon. From the archives of NASA 

MODIS data were collected and subsequently processed at high resolution (250m and 500m). In 

parallel the spectral properties of the mucilage with issues related to the quality of the satellite signal 

and its validation by comparing the data collected in situ by Regional Agencies for Environment have 

been studied. The correlations between the in situ observations concerning the presence of 

mucilaginous aggregates and archive images led to the creation of a database to validate the spectral 

methods for the detection of clusters. 

In addition, the CNR ISAC has continued to develop daily data of sea surface temperature (SST) from 

the AVHRR sensor of NOAA satellites that have been provided to the centers of numerical calculation 

of the INGV - University of Bologna for assimilation into models to predict the movement.  

The MODIS sensor is one of the main instruments on board the Terra and Aqua satellites. The orbit 

around the planet is planned so that it passes from north to south across the equator in the morning, 

while Aqua passes from south to north across the equator in the afternoon.  

The images acquired by the MODIS Aqua and Terra satellites can be downloaded for free from the 

NASA website at http://daac.gsfc.nasa.gov. 

4.4.3 Sea surface salinity 

Satellite observation of the ocean in the microwaves 

frequency field have provided accurate 

measurements of the sea surface height (altimeters) 

and surface winds (scatterometers) for about 30 

years. Satellite altimetry was a real revolution for 

large-scale ocean observation, allowing precise sea-

level values far from coast to be used in ocean 

circulation numerical models. 

Sea surface salinity (SSS) is a fundamental physical 

parameter that can in principle be measured 

remotely. The electromagnetic radiation 

spontaneously emitted from a body is proportional 

to its physical temperature and can be measured by 

a radiometer, retrieving a brightness temperature 

TB. The proportionality coefficient (emissivity) 

between TB and T for sea water depends on the 

dielectric constant that depends on conductivity, that 

is, on salinity [Fon12]. The sensitivity of TB on salinity 

shows a maximum at low microwave frequencies 

[Ber02].  

Until recently, remote measurement of salinity has 

Figure 4.4.2. Variation of brightness 

temperature with sea surface 

temperature for different water salinities 

at L-band and normal incidence. Adapted 

from [Kle11] 
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been carried out only with airborne microwave radiometers, with all the limits of this approach 

(limited  aircraft operating range, complex planning, cost). Airborne Scanning Low- Frequency 

Microwave Radiometers (SLFMRs) have been used on rivers, estuaries, and coastal waters to map 

their salinity, exploiting the relation among brightness temperature and salinity described above. The 

Salinity, Temperature, and Roughness Remote Scanner (STARRS), operated by the USA Naval 

Research Laboratory, is a more modern instrument used to map temperature and salinity. Apart 

from an L-band radiometer for the brightness temperature and an IR radiometer for physical 

temperature, STARRS features another microwave radiometer that measures sea surface roughness. 

This parameter affects the apparent brightness of the sea surface and must be measured to increase 

the accuracy of salinity calculation. [PWD06].  

Measurement of sea surface salinity (SSS) from space, though postulated many years ago, has 

become accessible only in recent times and given the importance of salinity as a global climate 

variable, the availability of satellite data is expected to be a major breakthrough for oceanography 

and climate studies [BNY12]. Some of the results expected from global SSS measurements from 

satellites include the improved characterization of its spatial and temporal variability on the surface 

of the oceans, the observations of seasonal salinity changes (ice melting, monsoon) and a better 

understanding and prediction of events such as El Nino oscillation [SSS11].  

Because surface salinity must be measured using long wavelengths (20 – 30 cm), reliable 

measurements from the space would require a very large antenna, unsuitable for satellite 

operations. Recently, the problem of antenna size have been overcome with a new interferometric 

technology, as shown on the European Soil Moisture and Ocean Salinity (SMOS) satellite. Its 

radiometer, the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS), operates over a 

range of incidence angles and features 69 mini-antennas mounted on 4 meters long Y-shaped arms: 

the signals collected by each radiometer are cross-correlated (somewhat as in synthetic aperture 

imaging) to construct an interferometric image of brightness temperatures over a 1000-km-wide 

swath (official data from ESA). [Kle11] 

 

 

Figure 4.4.3. Combined global SSS and soil moisture map produced with SMOS data 

(http://www.smos-bec.icm.csic.es). 
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4.4.4 Sea Pollutants 

4.4.4.1 Heavy metals 

Heavy metals inserted into the water stream by industrial activities can be extremely dangerous for 

health as they may enter the food chain, accumulate into the body of marine animals and from here 

end into human alimentation. Both fishery and environmental management would then take 

advantage from the development of new methods for the estimation of heavy metal concentration 

in water. 

Recently the feasibility of concentration measurement of three heavy metals (copper, lead and zinc) 

by remote sensing through sea color observation has been demonstrated [Che10].  

To simulate satellite acquired data, the water-leaving radiance was measured with a spectrometer in 

the 340 – 1040 nm range, at the same time water samples were collected for lab analysis of water 

component, including chlorophyll, CDOM, sediments and metals. The relationships between the 

concentration of the three heavy metals (Cu, Pb and Zn) and the remote sensing reflectance were 

analyzed, showing a relatively good correlation with specific bands and an error estimated between 

26 and 40%. The algorithms developed from field testing were then applied also to satellite (Landsat) 

acquired data, with acceptable results [Che12].  

4.4.4.2 Marine debris 

The NOAA Marine Debris Program (http://marinedebris.noaa.gov/) defines marine debris as: ‘‘any 

persistent solid material that is manufactured or processed and directly or indirectly, intentionally or 

unintentionally, disposed of or abandoned into the marine environment”. Of particular interest due 

to their abundance and potential danger are plastic debris and abandoned fishing gears/nets. 

The common strategy used to predict the position of litter clusters over ocean surface is based on 

the accurate mapping of surface currents, main gyres and local eddies, that are obtained from the 

combination of remote observations (both from satellite and aircrafts), and from the tracking of 

drifting buoys motion. From these data, the motion of floating particles can be simulated and the 

position where the particles will most likely accumulate can be identified [Mac12].  

 

 
Figure 4.4.4. An example of simulated distribution of marine litter in the ocean, calculated starting 

from an uniform distribution. Floating plastic finally concentrates in the five subtropical gyres 

[IPRC08]. 

Satellite remote sensing has not been used for the direct detection of marine debris, due to the small 

dimension of the objects to be observed and to the fact that many of them can be suspended under 

water surface [MCS11]. Airborne observations are on the contrary widely used for this purpose: 
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apart from visible light observations, a number of techniques can used to increase the sensitivity, like 

laser imaging devices (LIDAR) and infrared imagers [PVC12].  

4.4.5 Sources 

http://www.uvm.edu/rsenr/nr146/general_information/rsterms.pdf 

http://www.nrcan.gc.ca/earth-sciences/geomatics/satellite-imagery-air-photos/satellite-imagery-

products/educational-resources/9483 

http://casde.unl.edu/glossary/ 

https://earth.esa.int 
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4.5 Reliability challenges for inventory infrastructure 

Moorings and platforms are structures that allow water scientists to position instruments, collect 

samples, and take long-term measurements in water bodies. A mooring typically consists of a flexible 

cable that is tethered to the ocean floor by a weight or anchor and suspended from the sea surface 

by a buoy. On the contrary a platform has a flat workspace for instruments and people, and can be 

free-floating, moored to the seafloor, or rigidly fixed in place. Moorings and platforms often 

accommodate numerous pieces of measuring equipment, allowing scientists to collect several types 

of data at a site. A typical oceanographic mooring holds a large array of instrumentation including 

current meters/profilers, temperature gauges, turbidity scanners, salinity/conductivity/pressure 

meters. Also the wind speed and direction, air temperature, relative humidity at the sea surface are 

recorded. Together with shipboard and satellite data, the global network of measuring sites provides 

further understanding of the ocean-atmosphere system and its influence on global climate and 

biological productivity. 

Moorings and platforms are left at their sites to record data for extended periods of time (years) with 

a periodic servicing (e.g. every 6/12 months). They carry transmitting systems to send data to 

receiving stations. Moorings often also features global positioning system (GPS) instruments that 

measure their precise location over time, and self-check systems that collect information about 

mechanical/electrical failures. An international initiative called the Global Ocean Observing System 

(GOOS) is a global scientific collaboration that seeks to collect data from moorings and platforms all 

over the planet, and to compile this data into a global database that would be available to scientists 

for comparison and analysis. 

Moorings and platforms are designed to work while submerged in corrosive seawater and exposed to 

extreme weather conditions for long periods of time. Their buoys have heavy-duty steel flotation 

collars, resilient solar panels, safety devices such as beacons and radio transmitters, and insulated, 

reinforced wells that protect sensitive scientific instruments. Mooring cables, while flexible, are 

extremely strong. The mooring line can be made up of synthetic fiber rope, steel wire, chain or a 

combination of the three, based on cost and design requirements. 

Concrete reinforced with carbon steel is widely used for structures such as permanent platforms and 

measuring stations in, or in close proximity to, marine environments. Under normal conditions the 

natural alkalinity of the cement paste promotes the formation of a protective oxide film around the 

steel bars, which provides the reinforcing with some protection against corrosion. However, when 

chloride-ions diffuse through the cementitious cover down to the steel bars in sufficient 

concentration, the oxide layer is destroyed and corrosion is started in the presence of water and 

oxygen. Corrosion is manifested in two primary forms: cracking and spalling of cover concrete due to 

the expansion of corrosion products at the reinforcement, and local pitting of the steel which 

reduces the cross-sectional area of the bar. 

The impact of chloride-induced corrosion can be described by an initiation/propagation model: in the 

initiation phase, chloride-ions diffuse through the concrete channels and cracks until a critical 

concentration is reached at the depth of the reinforcement. During the propagation phase, steel 
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oxidation goes on creating an additional volume of products that induces a pressure over the 

concrete coverage, resulting in cracks and delamination [TUU82]. Penetration of the cover concrete 

occurs because chloride-ions are transported through the pores by a variety of different chemo-

physical processes. In the parts that are permanently under water, chloride ions diffuse in the water 

that saturates the pores, while above the high tide line, where the surface of concrete is reached 

only by splashes, water is transported inside by capillary suction. 

The loss of concrete, in combination with the narrowing of steel section, reduces the load bearing 

ability of the structure and can also compromise its structural integrity. Normally the corrosion rate 

below water level is limited by low oxygen availability, and conversely lower chloride and moisture 

content limit the corrosion rate above the high tide level. Corrosion is most severe within the splash 

and tidal zones where alternate wetting and drying result in high chloride and oxygen content 

[LCH05]. 

In order to guarantee the absence of any significant cracking/spalling during service life, the structure 

must be designed so that the first initiation phase is longer than the foreseen life of the concrete 

installation. To reduce the penetration of chloride ions into concrete, the beneficial effect of 

incorporating materials such as fly ash, furnace slug and silica into the cementitious material is widely 

recognized.  

It must be noted that, in the marine environment, concrete surface may be also damaged by sulfate 

attack, freeze/thaw cycles and erosion due to wave motion. In particular, sulfate dissolved in water 

are responsible for chemical reactions with the constituent of cement paste that result in extensive 

cracking, expansion followed by delamination, and bond failure between the aggregate and the 

cement paste. All these effects weaken the structure and enhance water penetration. 

 

Over the last years, cathodic protection has increasingly been used to provide long-term corrosion 

control for reinforced concrete structures in marine environments. This protection process can 

effectively use both sacrificial (galvanic) and impressed current anodes and can be applied to all 

zones (tidal, splash) affected by corrosion problems.  

Impressed current protection utilize an inert anode material, such as titanium, which is forced to 

slowly oxidize in favor of the steel reinforcement. This is obtained by injecting a current into the 

steel/anode system. The current must be adjusted depending on the corrosion rate, that changes 

from one part of the structure to the other. This is a major point to be taken in account for the design 

of the protection system. Electrical isolation between the anode and steel must be guaranteed to 

avoid short circuit that hinder the effectiveness of the anodic protection. 

Sacrificial or galvanic cathodic protection exploits the different position of metals in the galvanic 

series and then the higher or lower tendency to oxidation. No auxiliary power supply is required and, 

as the anode is connected directly to the steel reinforcement, shorting of the anode is not a concern. 

This method can also be used for prestressed or post tensioned concrete parts. However, depending 

on which anode is used, the life expectancy of ICCP anodes is typically much greater than sacrificial 

anodes. For instance the life of a conductive coating system in a marine environment could be less 

than 10 years, whereas titanium mesh can readily exceed 75 years [Dai09]. 

4.5.1 Reliability challenges References 

[Dai09] Daily, S.F., (2009), “Using Cathodic Protection to Control Corrosion of Reinforced Concrete Structures in 

Marine Environments”, Corrpro technical paper 49, Web: http://www.corrpro.co.uk/pdf/TechnicalPapers/ 

accessed 20 July 2014. 

[LCH05] Lee, N.P., Chisholm, D.H. (2005), “Durability of Reinforced Concrete Structures under Marine Exposure 

in New Zealand”, Branz study report No. 145, Web: www.branz.co.nz, accessed 10 July 2014. 

[Tuu82] Tuutti, K. (1982), “Corrosion of Steel in Concrete”, Report No. 4. Swedish Cement and Concrete 
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4.6 Communication and positioning systems 

Underwater sensor network (USN) technology enables opportunities to; collect oceanographic data 

e.g. pollution monitoring, nitrogen content in water; investigate environmental issues and coastal 

surveillance.  Moreover, it can be used for underwater warfare including real-time control of 

unmanned-guided vehicles and submarines. However, USN has several communication challenges 

due to the large signal attenuation and low-band width of data transmission for both acoustic, 

optical and radio frequencies in seawater. Additionally, in-deep water only acoustic signals can 

propagate because radio frequencies attenuate rapidly and optical signals scatter.  

Another challenge of underwater sensor nodes is the energy requirements, because it is different 

from radio based terrestrial sensor node. Therefore, high-energy propulsion and reducing 

communication energy are not the main areas of concern in USN [ME13]. However, selection of 

appropriate synchronization protocol, localization techniques, novel medium of communication, 

energy-harvesting techniques and network architecture is still a big challenge [ME13]. 

Underwater Wireless Sensor Networks have severe communication challenges due to large acoustic 

or electromagnetic (EM) signal attenuation in deep water [HDL87]. The propagation of acoustic 

signals in submarine media is possible with very low frequency signal carriers only, with reduced 

bandwidth and low transmission rates, thus extending transmission duration and diminishing battery 

life. Following are some state of the art communication techniques used for USN applications. 

4.6.1 Satellite communication: 

The marine satellite communication systems are widely used for positioning and tracking of buoys 

and marine vessels. For that purpose, geostationary satellites are well suited to cover large areas. 

Specifically for marine communication, there are three geostationary satellites placed above the 

Atlantic, Pacific, and Indian oceans. These three satellites cover almost the entire ocean areas and 

establish communication links with vessels and buoys [HDL87]. This fact led to the development of 

the MARISAT maritime satellite communication system by COMSAT in the early 1970’s.   

From 2000 onwards, maritime satellite communications using the INMARSAT system employ a 

second and third generation of satellites and new ship earth stations (SES). The new SES standards 

are using very small antennas with gains between 0 and 15dBi. At the lower end of SES, there will be 

no antenna stabilization. INMARSAT provides good communication links to buoys and ships at sea. 

These links use a VSAT type device to connect to geosynchronous satellites, which in turn link the 

ship to a land based point of presence to the respective nation’s telecommunications system. 

Following Figure 4.6.1 shows the typical layout of satellite communication system. 

 

Figure 4.6.1. Block diagram of Satellite Communication 

4.6.1.1 GPRS packet based Communication:  

There are several off the shelf equipment and products available in the market, based on marine 

VSAT network, which uses GSM/ GPRS and Iridium communication technologies. GSM on-board 

Earth Base Station Marine vessel Buoy 
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works perfectly with the marine VSAT package. A GSM server will be connected to VSAT, which 

creates mobile coverage on your vessel even in international waters. The main advantage for GSM/ 

GPRS based packet communication network is that the equipment used for transmission and 

reception of telemetry and telecommand is economical and off the shelf. There is no special need to 

install sensitive and expensive equipment on-site.  

4.6.2 Radio Communication: 

Usually WSNs utilize the unlicensed ISM bands for communications which varies from tens of Mega 

Hz to few Giga Hz [EMO11] [AMA12] [GGA12].  The main drawback of radio frequencies is the rapid 

attenuation underwater. However, in [EMO11] [GGA12], the authors proposed a unified model for 

EM wave propagation in seawater environment and this model accurately calculates the path loss 

during underwater radio transmission. Following are successful implementation of radio-frequency 

based USN models specifically for marine applications 

4.6.2.1 High frequency (HF):  

In [APM05], the author gave reference to the case study of Mica2 motes from University of 

California. These motes communicated up to 120cm at 433MHz underwater close to the surface. 

Recent case study has been done in [ABP09], in which performance of EM communication on 

different wavelengths and sea-water conditions has been presented in detail. Moreover, on 

comparison of Electromagnetic (EM), optical and acoustic physical layers, EM signal with state-of-art 

digital signal processing and filtration technique makes preferable choice in shallow coastal water 

environment. 

4.6.2.2 VLF (Very-low Frequencies) & ELF(Extremely low frequencies):  

Apart from underwater acoustic telephones, VLF or ELF is the only feasible wireless communication 

method with submerged vehicles and systems. The ranges of ELF are from 30Hz to 300Hz and VLF is 

from 3KHz to 30KHz 29. The main advantage of low-frequencies transmission is that signals can be 

received in-deep waters and even in the earth’s-crust. However, the VLF transmitter antenna size is 

too big and practically not possible to transmit from a submerged platform. Therefore, VLF & ELF are 

preferably used for simplex communication mode. For full duplex communication, different 

frequencies such as VLF for reception and HF for transmission can be used. 

4.6.3 MULE System 

MULE (Mobile Ubiquitous LAN Extension) system consists of a vehicle that physically carries a 

computer with storage between remote locations to effectively create a data communication link 30. 

A data mule is a special case of a sneakernet, where the data is automatically loaded and unloaded 

when the data mule arrives at its terminal locations. There are several applications in which data 

MULE systems have been implemented, such as in remote village or in rural area where there is no 

internet connectivity available. Computers with a disk and Wi-Fi link are attached to transport buses. 

As bus stops at the bus station in city to pick up passengers, the router on the bus communicates 

through Wi-Fi with the router installed at Bus-station. In the meantime, email or other required stuff 

can be downloaded and uploaded, while passengers boarding in bus, as shown in Figure 4.6.2 

In wireless sensor network, several studies have been done on MULEs based mobile agent [DDA11]. 

Thus, MULE system is suitable for low priority, nearly constant and noncritical applications. However, 

in marine applications, most of the time we need real-time telemetry and telecommand from 

submerged sensors and floating-platforms. Therefore, this technique is not suitable for such critical 

applications.   

                                                           
29

 http://submarinecommunications.weebly.com/index.html. Accessed on 15 Aug, 2014 

30
 http://en.wikipedia.org/wiki/Data_mule Accessed on 1 Aug 2014 
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Figure 4.6.2 Data Mule System 
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4.7 Sensor network operating systems 

Operating systems for sensor network nodes are typically less complex than general-purpose 

operating systems. They more strongly resemble embedded systems, for two reasons: 

1. Specific application. Sensor networks are typically deployed with a particular application in 

mind, rather than as a general platform.  

2. Low costs and low power requirements. Most sensor nodes must be implemented with low-

power microcontrollers ensuring that mechanisms such as virtual memory are either 

unnecessary or too expensive to implement. 

It is therefore possible to use embedded operating systems for sensor networks such as: 

� eCos. (http://ecos.sourceware.org/). Free and open source real-time operating system, intended 

for embedded systems  

� MicroC/OS. (http://micrium.com/rtos/ucosii/overview/). Real-time multitasking operating 

system kernel for microprocessors, written mainly in C programming language  

However, such operating systems are often designed with real-time properties. 
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Other sensor network operating systems are: 

� TinyOS [Lev09]. Perhaps the first operating system specifically designed for wireless sensor 

networks. It is based on an event-driven programming model instead of multithreading. TinyOS 

programs are composed of event handlers and tasks with run-to-completion semantics. When 

an external event occurs, such as an incoming data packet or a sensor reading, TinyOS signals 

the appropriate event handler to handle the event. Event handlers can post tasks that are 

scheduled by the TinyOS kernel some time later. 

� RIOT. Implements a microkernel architecture. It provides multithreading with standard  

Application Programming Interface (API) and allows for development in C/C++. RIOT supports 

common Internet of Things (IoT, http://www.theinternetofthings.eu/) protocols such as IPv6 

over Low power Wireless Personal Area Networks (6LoWPAN) [Ham13]. 

� Contiki. (http://www.contiki-os.org/). Contiki is an open source operating system for the IoT. 

Contiki connects tiny low-cost, low-power microcontrollers to the Internet.  

� LiteOS. (http://www.liteos.net/). Newly developed OS for wireless sensor networks, which 

provides UNIX-like abstraction and support for the C programming language. 

� ERIKA Enterprise. (http://erika.tuxfamily.org/drupal/) Open-source and royalty-free OSEK 

compliant Kernel [OSK05], a standards body that has produced specifications for an embedded 

operating system, a communications stack and a network management protocol for automotive 

embedded systems. As major features, this OS supports multicore, memory protection and 

kernel fixed priority, adopting C programming language. 

 

Online platforms for collaborative sensor data management 

The online platforms for collaborative sensor data management are on-line database services that 

allow sensor owners to register and connect their devices to feed data into an online database for 

storage and also allow developers to connect to the database and build their own applications based 

on that data.  

Examples include: 

� Xively (https://xively.com/). Xively offers an IoT platform as a service, business services and 

partners, that enable businesses to quickly connect products and operations to the Internet. 

� Wikisensing. The architecture of the Wikisensing system is described in [Sil12] defining the key 

components of such systems to include APIs and interfaces for online collaborators, a 

middleware containing the business logic needed for the sensor data management and 

processing and a storage model suitable for the efficient storage and retrieval of large volumes 

of data. 

Such platforms simplify online collaboration between users over a large variety of data sets ranging 

from environmental data to information on energy, or all kind of data collected from transports. 

Other services include: allowing developers to embed real-time graphs & widgets in websites, 

analyse and process historical data pulled from the data feeds, or send real-time alerts from any 

datastream to control scripts, devices or environments. 

4.7.1 Sensor network operating systems References 
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[Sil12] Silva, D.; Ghanem, M.; Guo, Y. (2012). WikiSensing: An Online Collaborative Approach for Sensor Data 

Management. Sensors 12 (12): 13295. doi:10.3390/s121013295 
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July 2014. 

4.8 Miniaturization 

Miniaturisation of sensors and sensing systems is a major area of research and development, driven 

by a number of factors which include: 

• Potential for faster, more cost effective, and more convenient analysis. 

• Reduced consumption of reagents, sample and power. 

• Lower manufacturing costs. 

• Ease of transport and shipping. 

• Reduced space requirements for laboratory devices. 

Demand in a number of emerging/growing application areas is also increasing demand for 

miniaturised chemical sensors, these include: 

• Portable/handheld devices for point-of-care assays. 

• Portable and field deployable devices for environmental monitoring. 

• Wearable and implantable sensors for monitoring of health and athletic performance. 

• The needs of the pharmaceutical industry for microscale, highly parallel drug discovery 

assays. 

• Trends towards compact, portable electronic consumer devices (smartphones, tablets, smart 

watches, smart glasses etc.) which incorporate sensors. 

 

Analysis in Frost & Sullivan’s report on “World Emerging Sensors Markets” [FS11] predicts that in the 

next seven to ten years miniaturisation of systems is expected to drive innovation; and OEMs will 

increasingly incorporate smaller sensors to improve performance, reliability, and longevity as well as 

reduce costs. Sensor materials are also expected to play a key role. Small form factor, less power 

consumption, higher feature integration, and low costs are some of the trends driving sensors 

market growth in numerous industries and applications. In addition, supporting electronics and 

packaging have become more advanced, so much so that sensors have become indispensable in 

every walk of life. 

Ongoing developments in the area of Wireless Networks make the implementation of large-scale 

deployments (in terms of number of sensing nodes and geographical spread) of environmental 

sensors increasingly feasible. The challenge in this area is to provide compact, robust and reliable 

chemical sensors at a cost sufficiently low to enable deployment of large numbers of sensing nodes.  

The coming years will see the emergence and deployment of low cost, low power, intelligent wireless 

sensor networks (WSN) in various applications such as environmental monitoring, agriculture, traffic 

control, home automation and healthcare. Miniaturisation and modularity of the sensing platforms 

will be necessary for these and many other uses that require large numbers of dispersed monitoring 

points [HOP09]. 

4.8.1 Miniaturisation based on microfluidics 

Microfluidic technology has the potential to affect chemical analysis and synthesis in the same way 

that microchips have revolutionised computers and electronics [Gra02]. Microfluidics is based on 

devices and processes which handle volumes of liquid on the microliter or nanolitre scale. The silicon, 

glass or plastics devices have typical overall dimensions of a few millimetres; fluids flow through 

microbore channels produced by a range of high precision techniques. Fluids circulating in such 

channels can exhibit dramatically different performance from that in macro-scale tubes. Flow is 

normally turbulence-free, so layers containing different components can move along together, 

mixing only by diffusion. Speed is one of the main advantages of microfluidic systems. Chemical 
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separations such as electrophoresis, for example, are 100 times faster when a system is 10 times 

smaller. The advantages of, and challenges for, microfluidic systems are summarised in Table 21. 

Table 21. Advantages and challenges of microfluidic analytical systems. 

Advantages Challenges 

Very low sample and reagent consumption Microfabrication requirements 

Very low power consumption Interfacing to the macro-world 

Small size of analytical system allows for 

compact portable and in situ devices 

Robustness and reliability under  environmental 

conditions 

Fast processes / short time of analysis Representativeness of very small samples 

Good reproducibility Achieving highly sensitive detection using very small 

samples 

Low cost Scaling fabrication from prototype to production scale 

 

Advantages such as reduced consumption of sample, reagents and power are direct results of the 

small size of micro-scale analytical systems. Micro-scale engineering also makes it possible to 

integrate chemistry with mechanics, electronics and optics, and to integrate multiple analytical 

systems into very small areas. However, in many cases it is necessary to interface the microfluidic 

chip with conventional-sized peripheral equipment for sampling, pre-treatment and fluid handling. 

While the development of on-chip pumps and valves for truly integrated fluid control is an active 

area of research [CFOB12],[GKB10],[BBR10],[OSC11],[BMZ12],[Rerolle13], many of these systems are 

limited in terms of response times, long-term repeatability, mechanical durability, and chemical 

compatibility, and are therefore generally limited to single use/disposable or short-term applications. 

Microfluidics-based analytical systems designed for long-term deployment under environmental 

conditions have so far chiefly relied on conventional off-chip (though miniature) pumps, valves, filter 

assemblies etc. Peristaltic pumps and syringe pumps are among the most widely used solutions for 

fluid control in such systems [ME01], with size, cost and power consumption, as well as pumping 

characteristics such as flow rate and reproducibility, being among the primary factors influencing the 

selection of pump for a particular device or application. 

 

Other issues which require consideration when designing a microfluidic analytical system include: 

• Materials and fabrication techniques 

Microfluidic chips are manufactured using a range of materials and fabrication techniques, as 

summarised in Table 2. Materials selection is based on factors such as chemical compatibility, 

optical transparency, mechanical properties, and ease of processing. Due to the small size of 

microfluidic devices, costs of processing typically take precedence over materials costs. 

Selection of fabrication technique depends on the material to be used, the volume of chips 

required, and the required dimensions and aspect ratios of channels and other micro-scale 

features to be formed. 

3D-printing of microfluidic devices has recently been reported [SKY12], [ESG14], representing a 

potentially flexible and low cost route for fabrication, however this approach has not been 

widely implemented to date. 

• Scale up issues 

Fabrication techniques typically used by microfluidics researchers allow designs to be 

iteratively modified with new designs produced rapidly in small numbers (typically < 5). 

However, due to the specialised equipment, skilled personnel and individual processing steps 

involved, these techniques are not scalable to production/commercialisation levels. On the 

other hand, processing techniques suitable for high volume production typically entail 

significant initial setup costs, leading to high costs per chip in early commercialisation and for 

niche applications. This gap between prototyping and manufacturing scales can represent a 
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significant barrier to commercialisation of microfluidic analytical systems, and it is important 

that a clear route to fabrication of the microfluidic chips to be used in the COMMON SENSE 

nutrient sensors is developed from initial design phase onwards. 

• Interfacing with the macro world 

All microfluidic systems need to interact with the macro world in order to obtain sample and 

reagents, remove waste, and communicate the measurement to the user. Fluidic connections 

in/out of the chip are critical components and can represent a significant cost. While 

standardisation of these components would be a major advantage for the development and 

implementation of microfluidic systems, progress in this area has been limited due to the large 

variety of designs, dimensions and processes used by researchers, developers and 

manufacturers. 

• Representativeness and sensitivity 

Some issues inevitably arise when using an assay performed on a very small (typically sub 100 

µL) analytical sample to represent, for example, a large body of water such as a river, lake or 

area of ocean. In addition, depending on the detection technique used, the size of the sample 

may represent a limitation on the measurement sensitivity which can ultimately be achieved 

[VH14]. It is therefore important to realise that an individual miniaturised device may not 

compete in terms of precision or accuracy with the “gold standard” laboratory technique. 

Rather, field deployable micro-analytical devices will have the advantage of measuring in situ, 

at higher frequency, and at a larger number of locations than is achievable using conventional 

techniques, thereby ultimately increasing the amount of information available. It should also 

be noted that samples are invariably filtered before entering a microfluidic analytical system, 

in order to avoid channel blocking and/or interference with the optical measurement by 

particulate matter, and the analytical measurement is therefore limited to the soluble fraction 

of a particular analyte, rather than the total. 

Table 22. Materials and corresponding processing techniques typically used in the production of 

microfluidic chips [VH14, RZW13]. (PDMS = polydimethylsiloxane, PMMA = polymethylmethacrylate, 

PC = polycarbonate). 

Materials Fabrication Technique Features 

Silicon and  

Glass 

Photolithography 

Wet Etching 

Dry etching (fused silica only) 

High volumes, high setup costs. 

High precision fabrication processes well 

developed due to electronics industry. 

Good mechanical properties and chemical 

resistance. 

Silicon not optically transparent. 

Elastomers 

(chiefly PDMS) 

Casting  Convenient for prototyping, easy bonding, widely 

used in research laboratories, low volume, low 

setup cost.  

Long term use limited by mechanical properties 

and pososity/permeability. 

Polymers 

(PMMA, PC) 

Micromilling/laser milling  

 

 

Injection moulding 

Hot embossing 

Convenient for prototyping, widely used in 

research laboratories, low volume. 

 

High setup cost, medium batch sizes. 

Medium setup cost, high batch sizes. 

4.8.2 Marine monitoring issues 

Aquatic environments in general, and the marine environment in particular, are extremely 

challenging for in situ sensing systems. Sensors deployed at sea face multiple challenges such as: 

• Salt water ingress. 
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• Bio-fouling of equipment. 

• Damage from wave/tidal action (if deployed at/near surface). 

• High pressures and low temperatures (if deeply submerged). 

• Limited power supply. 

• Communications range constraints. 

• Access limitations (e.g for maintenance purposes). 

All of these factors considerably add to the expense of maritime environmental measurement 

systems, which often renders them unviable as long-term environmental monitoring tools for 

applications such as environmental research and government agency operated monitoring and 

management programs. While a number of miniaturised, microfluidics-based analytical systems have 

been developed and successfully deployed in marine environments, these systems are highly 

engineered, consequently very expensive, and unlikely to be feasible for deployment in large 

numbers. 

 

Table 23. Planned improvements to DCUs low-cost nutrient sensing system 

Analytical aspects Ruggedisation aspects 

High performance pumping system 

Miniature diaphragm pump or syringe pump will 

be implemented in place of low-cost peristaltic 

pumps. 

Electronics 

All electronic components to be specified for 

required temperatures. 

Improved optical detection system 

Measures will be taken to improve light path. 

Approaches under consideration include the use 

of: 

• Optical waveguides and/or longer optical 

pathlengths. 

• Micro-LEDs to localise light source close to 

microfluidic channel/cuvette. 

• Optical fibres to precisely direct light in/out 

of optical cuvette. 

• Optical filters to isolate wavelengths of 

interest. 

Housings & Connectors 

Robust housings, rated to IP68 and specified for 

submersion to 5m, with appropriate fittings to 

allow mounting/installation in a variety of 

deployment scenarios. 

Any external connectors will be specified to the 

same rating as the main housing, and to be 

suitable for use in marine environments.  

Detection chemistries 

Stability of reagents and calibrants tested at 

relevant temperatures for period of at least 3 

months. 

Assay performance and response time tested at 

relevant temperatures. 

Antifouling measures 

Antifouling measures will be adopted to protect 

the sensor housing, sample intake and filtering 

assembly, and internal fluidic system from 

biofouling. 

 

DCU’s approach in this project is to build on the platform provided by a number of low-cost 

microfluidic systems for water monitoring which have been previously developed and validated 

under laboratory and environmental conditions [CCP13], [CMD13], [SCL10], [CMS10] including in 

freshwater, in estuarine water, and in wastewater. In order to ensure that the required analytical and 

ruggedisation specifications are achieved, a number of improvements will be implemented as 

summarised in Table 23.  

Due to the more demanding requirements, the cost base of the COMMON SENSE nutrient sensors 

will be significantly higher than the previous systems. However, by using the low-cost systems as a 

starting point, and by limiting the deployment depth (to ≤ 3m), the cost base of the COMMON SENSE 

nutrient sensors is projected to be significantly lower than current marine sensing systems. 
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4.8.3 Compact LED/photodiode-based optical detectors 

Portable, robust, accurate methods of analysis are needed to achieve widespread in situ 

environmental monitoring. The miniaturisation of analytical instruments using microfluidics is one 

strategy to move this concept forward, and the resulting ability to manipulate smaller amounts of 

sample, combined with the need for fast response times, has placed great demands on the 

corresponding detection systems [GK07]. The advancement in LED sources and photodetector 

technologies provide a solution to these issues as they are compact, low power and low cost 

detectors for incorporating colorimetric analytical methods into remotely deployable devices 

[SDD02],[Dia04]. 

Following the trend of miniaturisation, detectors must provide high sensitivity for small detection 

volumes (sub 100 µL range) and low analyte concentrations, in addition they must be affordable, 

versatile, reliable, accurate and small in size. To form an optical detector, LEDs can be coupled to a 

wide variety of detectors such as, photodiode-arrays, photomultiplier, light dependent resistors, 

phototransistors, photodiodes, and LEDs. The most common detector used in LED based chemical 

sensors is the photodiode (PD). PDs are extremely versatile and have been employed in various 

configurations, such as flow through detectors in flow injection analysis (FIA) and separation systems. 

PDs are popular because of their low cost, rapid response and wide range of response. LED and PD 

based optical detectors have been primarily used in DCU’s deployable nutrient sensors to date 

[CMD13], [SCL10], [CMS10]. 

The novel use of an LED as both light source and detector (paired emitter detector diode, or PEDD) 

for analytical applications was developed by Lau et al. [LBS04], [OLD05], [LBO06]. The emitter LED is 

forward biased while the detector LED is reverse biased. A simple timer circuit is used to measure the 

time taken for the photocurrent generated by the emitter LED to discharge the detector LED from 5 

V (logic 1) to 1.7 V (logic 0), giving digital output directly without using an analog-digital converter or 

operation amplifier. This method achieves excellent sensitivity [OLS07]. DCU’s handheld disc-based 

microfluidic system for water quality analysis uses a PEDD as the optical detection module [CGP12]. 

A distinct advantage of using the PEDD optical sensor in comparison with widely used LED-PD system 

is that the LED–LED combination is less expensive in both the cost of components and the cost of the 

signal transduction circuitry. The measuring technique employed by the PEDD device does not 

require a relatively expensive analog-digital converter as the output seen by the microprocessor is a 

direct pulse-duration-modulated signal. Additional advantages of the PEDD approach is the size, low 

power consumption (can operate in microwatts range), detection of low absolute light levels, 

response to a broad spectral range (247 to >900 nm) and ability to achieve good signal/noise ratio. 

The PEDD sensor is also versatile and can be configured in a variety of ways to measure 

transmittance/absorbance or reflectance [OD08]. 

4.8.4 Design considerations for COMMON SENSE nutrient sensors 

The maximum possible extent of miniaturisation of the COMMON SENSE nutrient sensors is limited 

by a number of factors, including: 

• Fluid control components 

As fully integrated on-chip fluid control elements (pumps/valves) with sufficient long-term 

reliability are not currently available, the system will rely on miniature conventional 

components (such as high-performance miniature diaphragm, syringe-based or peristaltic 

pumps) for this key operation. A number of pumps will be required for each analytical 

parameter, as a typical colorimetric assay requires inputs for reagent (single- or dual-

component), sample, 2 x calibration solutions, and potentially a conditioning/cleaning cycle. 

The space requirements for the required pump arrays are therefore significant, in 

comparison to the micro-analytical system itself, despite the small size of individual pumps 

and their ability to be stacked in compact formats. 
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Power consumption and compactness will be among the key factors in determining the 

choice of pumping system, and the small volumes required for each assay will minimise the 

power consumption per analytical cycle. Dead volume within the fluidic system will also be 

carefully reduced/eliminated to ensure the minimisation of reagent and power consumption. 

• Power supply 

Achieving the longest possible maintenance-free deployable lifetime is a key consideration 

for the COMMON SENSE nutrient sensors. Key factors will include the selection of power-

efficient components (microcontroller, electronic components, fluid control components, 

optical detection components), the implementation of low-powered “sleep” modes between 

analytical cycles, and the minimisation of total volume of fluids moved per analytical cycle. 

Identification and implementation of efficient high-capacity batteries will also be of key 

importance in terms of maximising the available power/battery volume ratio. However, with 

the goal of maximum deployable lifetime taking precedence over miniaturisation, significant 

space will be devoted to the power supply. 

• Reagent storage requirements 

The COMMON SENSE nutrient sensors will require storage for reagent(s), calibration 

solutions, conditioning/cleaning solutions, and waste solutions. Despite the small volume of 

each solution required for an individual assay, the goal of implementing high-frequency 

measurements (e.g hourly) over sustained periods (weeks/months) implies that total storage 

volume requirements used per deployment will be on the litre scale.  

The fluid storage system will be designed for compactness; one possible solution is to store 

the various solutions within flexible reagent bags which will be collectively contained within a 

rigid container. This will maintain the advantages of bag-based storage (compactness, 

obviating the need for pressure equalisation systems, and efficient use of space by allowing 

the gradually expanding waste bag to use the space previously occupied by the gradually 

contracting reagent/calibrant bags) while providing a single, robust, modular reagent pack to 

achieve a user-friendly solution to reagent replenishment/waste removal. 

 

Compactness and portability are important design factors for the COMMON SENSE nutrient sensors, 

and miniaturisation of the analytical system (fluidic system, microfluidic chips, and detector modules) 

will be prioritised in order to minimise reagent and sample consumption, waste generation, and 

power consumption. 

However, there is limited justification for pursuing miniaturisation of the device as a primary 

objective in itself. The COMMON SENSE nutrient sensors will ultimately be deployed on/from 

relatively large deployment platforms and in conjunction with other COMMON SENSE sensor units, 

implying that the overall deployable platform will be of significant size. Moreover, maintenance-free 

deployable lifetime will ultimately be of key importance in terms of maximising the sensors’ cost-

efficiency and ease of implementation to the end user, and this, in addition to factors such as 

deployability, physical robustness, and ease of access to key internal components (e.g. for scheduled 

maintenance purposes) should be prioritised over device miniaturisation. 

4.8.4.1 Miniaturisation References 
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4.9 Energy storage and usage

Energy storage plays a very important role especially in distributed sensor network.

unmanned instruments at sea require batteries to supply energy to the sensors, 

storage and transmission of the information. In certain cases, e.g., buoys at fixed points or moorings 

with surface elements, solar panels or even windmills, able to recharge the batteries, can be 

installed. However, in most cases batterie

gliders, etc. In general, the cost of instruments left at sea is relatively high and they are difficult to 

recover once they are out of power, either because they cannot be located or because retr

them is more expensive than their cost. In order to save money, it is convenient that such 

instruments should be working for as long as possible. Battery life may be, then, a crucial weak point 

for instruments left at sea. 

4.9.1 Batteries 

There are several types of chemical compositions of rechargeable batteries available in market. Due 

to limited space, high rechargeable cycles and long backup time, it is still a big challenge to selection 

appropriate battery technology

demand for mobile energy used in marine applications required not only reliability but also cost 

efficient. However, environmental pressure is high, the temperature is around five degrees Celsius or 

below, and conditions are unsuitable for many chemical reactions in the deep sea.

Therefore, for underwater (deep sea) applications, the costs are mainly driven by the construction of 

robust pressure housing, which is the typically made of titanium. 

comparison of different battery technologies 

Table 24. Comparison between different battery technologies

 

The battery capacity is dependent upon its mass and cruising range of underwater vehicles is 

proportional to the mass of the battery. 

need bulky-battery. In order to resolve such problem completely, batteries are enclosed with oil, to 

equate environmental pressure [HYI11]. This is called oil compensated method and it is applied to

various types of batteries. In [HYI11], author showed the testing results of oil filled Li

H, Ni-Cd batteries. However, oil

sustain under high pressure (up to 3000m in deep

using oil filled method. 
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Energy storage and usage 

Energy storage plays a very important role especially in distributed sensor network.

unmanned instruments at sea require batteries to supply energy to the sensors, 

storage and transmission of the information. In certain cases, e.g., buoys at fixed points or moorings 

with surface elements, solar panels or even windmills, able to recharge the batteries, can be 

installed. However, in most cases batteries cannot be recharged, e.g. drifting buoys, Argo profilers, 

gliders, etc. In general, the cost of instruments left at sea is relatively high and they are difficult to 

recover once they are out of power, either because they cannot be located or because retr

them is more expensive than their cost. In order to save money, it is convenient that such 

instruments should be working for as long as possible. Battery life may be, then, a crucial weak point 

l types of chemical compositions of rechargeable batteries available in market. Due 

to limited space, high rechargeable cycles and long backup time, it is still a big challenge to selection 

appropriate battery technology especially for the Marine sector. In order to meet the growing 

demand for mobile energy used in marine applications required not only reliability but also cost 

efficient. However, environmental pressure is high, the temperature is around five degrees Celsius or 

uitable for many chemical reactions in the deep sea.

Therefore, for underwater (deep sea) applications, the costs are mainly driven by the construction of 

robust pressure housing, which is the typically made of titanium. Table 24 

comparison of different battery technologies [SK11].  

Comparison between different battery technologies 

The battery capacity is dependent upon its mass and cruising range of underwater vehicles is 

proportional to the mass of the battery. Therefore, for long duration of cruising displacement, we 

battery. In order to resolve such problem completely, batteries are enclosed with oil, to 

equate environmental pressure [HYI11]. This is called oil compensated method and it is applied to

various types of batteries. In [HYI11], author showed the testing results of oil filled Li

Cd batteries. However, oil-filled Lithium-ion battery showed promising results and it not only 

sustain under high pressure (up to 3000m in deep sea) but also give 1.3 times more backup time by 
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Energy storage plays a very important role especially in distributed sensor network. Autonomous and 

unmanned instruments at sea require batteries to supply energy to the sensors, microprocessors, 

storage and transmission of the information. In certain cases, e.g., buoys at fixed points or moorings 

with surface elements, solar panels or even windmills, able to recharge the batteries, can be 

s cannot be recharged, e.g. drifting buoys, Argo profilers, 

gliders, etc. In general, the cost of instruments left at sea is relatively high and they are difficult to 

recover once they are out of power, either because they cannot be located or because retrieving 

them is more expensive than their cost. In order to save money, it is convenient that such 

instruments should be working for as long as possible. Battery life may be, then, a crucial weak point 

l types of chemical compositions of rechargeable batteries available in market. Due 

to limited space, high rechargeable cycles and long backup time, it is still a big challenge to selection 

n order to meet the growing 

demand for mobile energy used in marine applications required not only reliability but also cost 

efficient. However, environmental pressure is high, the temperature is around five degrees Celsius or 

uitable for many chemical reactions in the deep sea. 

Therefore, for underwater (deep sea) applications, the costs are mainly driven by the construction of 

 shows the detailed 

 

The battery capacity is dependent upon its mass and cruising range of underwater vehicles is 

Therefore, for long duration of cruising displacement, we 

battery. In order to resolve such problem completely, batteries are enclosed with oil, to 

equate environmental pressure [HYI11]. This is called oil compensated method and it is applied to 

various types of batteries. In [HYI11], author showed the testing results of oil filled Li-ion, Ag-Zn, Ni-

ion battery showed promising results and it not only 

sea) but also give 1.3 times more backup time by 
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In [WS09], author proposed especially designed “Pressure-tolerant Lithium Polymer Batteries” for 

marine applications. The main advantages are compact size, maximum discharged rate 30Amps, 

microcontroller-based electronics package integrated all types of electrical protections, solid-state 

switch cuts the supply before reaching to that level where fuse would blow, integrated telemetry and 

tele-command via RS-485 [WS09]. In [SFN13], author also used lithium-ion batteries and listed 

several advantages of Li-ion batteries over Lead-acid, Nickel cadmium and silver zinc batteries.  

In recent survey report [SFN13] on recorders for passive acoustic monitoring of marine mammals 

stated that around 45 data recorders deployed in deep sea from more than 18 countries including 

Canada, UK, Russia, Italia etc. for acquiring data of marine mammals.  In most of the recorders 

Lithium-ion and Alkaline battery technology have been used.  

In conclusion, Lithium-ion technology showed promising results especially in high-pressure tolerant 

for marine application. It can be used for energy storage in underwater sensor nodes, because of 

following advantages: 

• High energy density resulting in long duration of cruise time. 

• Compacted and sealed housing, no gas generation. 

• Maintenance free. 

• Highly reliable, long charging and discharging cycles up to 800-1000.  

• Economical and plug-in charging. 

4.9.1.1 Battery supervisory circuit 

Li-ion batteries are sensitive to overvoltage, overcurrent or under-voltage conditions. Therefore an 

electronic supervisory circuit is required to ensure, the batteries operate smoothly under 

aforementioned conditions. The circuit which monitor and control the battery terminal voltage and 

current during charging/ discharging is called the Battery Supervisory Circuit (BSC). Batteries 

equipped with a BSC are switching off on low tension to prevent damage. It disconnects the load for 

the time of the defective condition such as an over current or short circuit. 

Li-ion batteries can deliver high output current (up to 50A), in contrast to other battery technologies. 

Li-Ion batteries are chosen especially for the marine industry and work even at very low 

temperatures much more efficient than other battery technology such as Alkali prime or Ni-Mh 

batteries. 

The Li-ion battery must never be discharged too low, therefore charging and discharging could be 

easily controlled by BSC module, which enables a safe and gentle charge process. The BSC cuts off 

when the battery discharges to about 3.0V/cell, by stopping the current flow. If the discharge 

continues to about 2.70V/cell or lower, the BSC protection circuit puts the battery into a sleep mode. 

This renders the pack unserviceable and a recharge with most chargers is not possible. To prevent a 

battery from falling asleep, apply a partial charge before a long storage period. 

While charging the housing of the battery system could be left closed because the Li-ion process 

does not exhausts any gas.  Thus, the BSC module can be integrated with the battery pack and ideal 

for deep-sea or ocean applications. Following are some guidelines for Li-ion batteries: 

• Charge at a moderate temperature. Do not charge below freezing. 

• Lithium-ion does not need to be fully charged; a partial charge is better. 

• Discontinue using charger and/or battery if the battery gets excessively warm. 

• Before prolonged storage, apply some charge to bring the pack to about half charge. 

• Over-discharged batteries can be “boosted” to life again. Discard pack if the voltage does not 

rise to a normal level within a minute while on boost. 

4.9.1.2 Commercial Example - PowerPacks from SubCtech 

SubCtech relies on standard Li-Ion cells for their rechargeable PowerPacks. They provide the highest 

capacity by low weight and volume. SubCtech produces complete battery packs, the PowerPacks™, in 

cooperation with manufacturers of high-class and certificated industrial cells. The PowerPacks™ are 

easy and safe to operate with the matching charging technology SmartCharger™.Charging is easily 
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controlled by the SmartCharger™ which 

enables a safe and gentle charge process. 

While charging the housing of the battery 

system could be left closed because the 

Li-Ion process does not exhaust any gas.  

Thus, the packs can be even charged built 

in or in water. 

Comparing SubCTech Li-Ion PowerPacks™ 

with other – non-chargeable - battery 

technologies the Li-Ion batteries are 

already profitable after the third charging 

process. It is environmental friendly. Good 

operating data of the Li-Ion technology 

simplify projects and usage. 

The Li-Ion PowerPacks™ provide more power under rough conditions than Alkali primary cells or 

older storage battery technologies - such as very low temperatures, high currents (also peaks) or 

under difficult offshore conditions. The easy handling is an important characteristic that makes the 

PowerPacks™ ideal for the on board or under extreme conditions like under ice or in the deep ocean. 

Specification 

• High-power Li-Ion PowerPack™ 

• Standard range of capacities 666Wh, 1700Wh up to max. 4kWh 

• Voltages typical 14,8V up to 52V 

• Currents typ. 7A, optional up to 50A (high-power option) 

• Robust Titanium housing with standard ranges 300m, 1000m, 3000m, 6000m 

• SubConn BH4F titanium connector or other - depending on requirements 

• Simple installation and operating 

Options 

• High-power output up to 50A 

• Battery Management System (→ SmartBMS™) 

• Data interface RS-232 or RS-485, galvanic de-coupled 

• Data logging on industrial µSD card of up to 32GB 

• Control LED 

• Redundant construction for high-safety requirements 

• Multiple connectors 

• Build-in DC/DC  converter for your devices 

• Design, capacity and mechanical customization to your project 

• Manual operation or ISO ROV Switch (→ ROV Switch) 

4.9.1.3 Optimisation for high energy pulses 

In those cases where batteries cannot be recharged, the duration of the monitoring could be limited 

by the effective life of the batteries, which can be seriously compromised by high current demand, 

see Figure 4.9.2. 

 

Figure 4.9.1. SubCTech Li-Ion PowerPack 
1
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Figure 4.9.2. Capacity of a typical D 1.5 V alkaline cell as function of the intensity of a continuous 

discharge [Ene13]. 

Such behaviour can be stressed if the battery, instead of suffering a continuous discharge, is being 

discharged in short pulses of high current (> 1 A) such as those required for satellite transmissions.  

The development of solutions for getting maximum sampling for long-time deployments, including 

satellite transmissions, requires finding a way to prolong the batteries life.  

How to save the batteries life in a stressing circuitry 

At the Institut de Ciències del Mar (CSIC) a circuitry to power instrumented drifting buoys left at sea 

was developed [FSJ07]. Combining batteries and other elements such as supercapacitors, a special 

circuit was designed to satisfy short pulses of high-current demands without stressing the batteries. 

The suggested technical solution is a battery-capacitor hybrid set, submitting the batteries to a 

continuous drainage at low current to slowly charge the capacitors that, in turn, will supply the high 

current short pulse required by the transmissions (Fig. 4.9.3). 

Due to high current pulses of 1 A/s, we choose aerogel capacitor class, made of carbon-foam 

dielectric, for a range of 1 to 50F. In order to provide enough isolation between each battery subset, 

it is necessary to use Shottky diodes which have a voltage drop less than 0.3 V. Finally, to provide the 

whole set with the necessary thermal and current protection, PTC resistors with positive abrupt 

characteristics are used. 

 
Figure 4.9.3. Scheme of a circuit to avoid charge dropping for moderate current consumption, used to 

power ICM-CSIC Drifting buoys  

More than 50 drifting buoys using the above mechanism have been launched since 2008 [Fer13]. 

Among those, there is the oldest still working, more than 3 years after they were launched (7 July 

2011). 3 of them are the only surviving in 2014 among the 39 launched in 2011 (http://www.locean-

ipsl.upmc.fr/smos/drifters/liste_SSS.html) 

4.9.2 Fuel cells 

An underwater power source is one of the critical elements to perform underwater experiments and 

sensor data-collection. There is no source available in deep-underwater and typically series of 

experiments/ operations take place, for longer cruising distance simply relying on rechargeable 



COMMON SENSE Deliverable number 2.1  

  

 

 
The COMMON SENSE project has received funding from the European Union’s Seventh Framework 

Program (Ocean 2013-2) under the grant agreement no 614155. 
 

174 

batteries are not enough. This is the reason why underwater sustainable sources and storage became 

a hot research topic. 

In [Tad11], the authors proposed a novel concept of second generation fuel-cell system for 

underwater power source named as HEML (high efficiency multi less) fuel-cell system. The overall 

efficiency of HEML is over 60% with blower-less, humidifier-less, leakage-less, purge-less and few 

minute’s start-up time. This novel 2nd generation fuel-cell system tested over long cruising range up 

to 3000 Kilometres with large endurance up to 600 hours in harsh sea environment.     

Solid oxide fuel cell (SOFC) uses a hard ceramic compound of metal (such as calcium or zirconium) 

oxide. SOFC has around 60% efficiency, which is quite high as compared to other types of fuel cells. 

However, SOFC can be used for low power application up to 100KW. In [Ghe14], author 

demonstrated Hybrid Solid Oxide Fuel cell (HSOFC)-Battery system up to 37KW for long displacement 

vessels. This system operated and tested for more than 28,000 hours with peak efficiency and idea 

for marine applications. 

Autonomous unmanned vehicles are operating commercially on HUGIN3000 all over the world. The 

technology used in HUGIN3000 is based on alkaline aluminium/ hydrogen peroxide semi fuel-cell 

(AL/HP SFC) [HSF06]. The stack consists of six serially connected cells, which generates around 

30VDC. The main advantages of the AL/HP SFC power source are high energy density, low weight in 

water and normal operations in ambient pressure, that is why it is ideal for deep-water systems (e.g. 

3000m) [HSF06].   

4.9.3 Energy harvesting  

Energy harvesting is the technique of capturing, converting and storing the generated energy that 

can be used to power-up low energy electronics circuit. There are several techniques can be used for 

energy harvesting such as solar, piezoelectric, kinetic, inductive, thermoelectric, Pyro electric 

materials and electromagnetic. 

4.9.3.1 Solar energy harvesting:  

Solar energy is one of the most important sources of renewable energy and it is gaining market 

interest because it has the greatest availability compared to other energy sources. In surveys [KG14] 

[AO09], the amount of solar energy which shines on earth in one day is more than the total amount 

of energy we require in a whole year. Our earth’s crust consists of 70% of water, therefore, for 

marine deployments, solar energy could be a major source of energy. Solar energy is clean and free 

of emissions, since it does not produce pollutants or by-products harmful to nature. The conversion 

of solar energy into electrical energy has many application fields such as residential, vehicular, 

aircraft, and naval applications are the key fields of solar energy. On the basis of technology, solar 

energy systems are classified into two main categories. 

Active Solar Energy System 

In active solar energy systems, semiconductor materials are used to convert electricity directly from 

Sunlight. This process is known as the photoelectric effect and the device is called a photovoltaic cell. 

The light falls on the photovoltaic cell is absorbed and converted into electric charges.  On the bass of 

application or deployment, we can classify the active solar energy system into two main groups. 

Surface water solar cells: 

On the surface of the ocean, there are three main types of materials of photovoltaic cells (PV cells) 

which can be used, which are mono & poly silicon, amorphous silicon and single crystal gallium 

arsenide (GaAs) PV cells.  GaAs is especially suitable for use in multi-junction and high-efficiency solar 

applications, as shown in Figure 4.9.4. 
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Figure 4.9.4. Floating active solar platforms.  

Underwater solar cells: 

Good quality Gallium indium phosphide (GaInP) cells can be used for underwater energy harvesting 

operation. This technique showed promising results - even at a maximum depth of 9 meter generates 

7watts per square meter. Figure 4.9.5 shows the deployment of underwater solar cells. 

 

  
Figure 4.9.5. Deployment of underwater solar panels 

Passive Solar Energy System 

In a passive solar energy system or concentrated solar energy system, sunlight is converted into heat 

energy and then used to generate electrical energy by using heat pumps, gas-turbine, steam engine 

etc.  However, there is no direct conversion possible like in PV cells. Figure 4.9.6 shows practically 

installed passive solar energy system in marine environment.  

  

Figure 4.9.6. Passive solar energy system 
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4.9.3.2 Wave Energy harvesting:  

Non-uniform heating around the earth causes winds to blow that generates ocean waves. The 

motion of the water waves creates kinetic energy which is proportional to the wind speed. It is the 

cheapest sources of energy and around the world’s coastlines are generating estimated 2 to 3 million 

megawatts [AO09]. There are several ways methods to converts ocean wave energy into electricity. 

Typically, different types of turbines are used, however, generators and power electronics are also 

involved in conversion of wave mechanical energy into electrical energy.   

Both rotational and linear generators produce variable amplitude and frequency of AC power, which 

is rectified and converted into DC before transmission, as shown in Figure 4.9.7. 

 
Figure 4.9.7. Block diagram of wave power generation system  

Several types of wave energy harvesting technologies have been proposed and practically 

implemented such as the Salter Cam, a hinged floating system developed in England [SCG75], a 

pressure activated submerged generator developed by Kayser [IWS76] in Germany, the wave-

powered pump developed at Scripp’s Institution of Oceanography, and a pneumatic wave converter 

originally developed by Masuda [Mcc76] in Japan. Generally, there are two types of wave energy 

generation technologies used, which is dependent upon the distance from the shore. Following are 

the details regarding wave energy harvesting topologies. 

Off-shore Energy Harvesting 

Off shore wave energy generating system are located far from shore and they are mostly floating 

platforms either manoeuvring or fixed to the ocean bottom. Typically, linear generators connected 

with buoys are being used in off shore energy harvesting. 

Dynamics of Fixed Bodies in Water 

In this technique, when the waves hit a body fixed to the bottom of the ocean, it generates alternate 

electricity. The ocean waves force the body to move in a forward and backward direction, which can 

be seen in 2D diagram of the generator in Figure 4.9.8. 

 

Figure 4.9.8. Dynamics of Fixed Bodies in Water 

Dynamics of Floating Bodies in Water 

In this technique, the object can float freely on the ocean surface. Typically, the orientation and 

motion are both quite random i.e. heave, sway, and roll, which can be seen in Figure 4.9.9. Such type 
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of floating objects can generate electricity, which can be utilized only for on-board operations such as 

lights or communication equipment installed on buoys. 

  
Figure 4.9.9. Dynamics of Fixed Bodies in Water Figure 4.9.10. Illustration diagram for air driven 

turbines 

Air-Driven Turbines 

The air driven turbine system can be designed for near-shore and offshore power generation 

applications. It consists of two parts such as primary part and secondary part. The primary part of the 

turbine converts wave energy into compressed or pressurized air. In second portion of the turbine, 

pressurized air drives the electric turbine. However, this technique requires a fully sealed air 

chamber and the ventilating generator must be mechanically insulated, which adds complexity and 

high cost of the system. Figure 4.9.10 shows the detail operation of the turbine. 

Fixed Stator and Directly Driven PM Linear Generator – Based Buoy Applications 

In this technique, fixed linear generators are used with floating buoys. This method is useful for those 

areas where water level goes up and down significantly as shown in Figure 4.9.11.  

The buoys move vertically on a pillar, which is connected to a hull. PMs are mounted on the surface 

of the hull, and coil windings on the outside of the hull. The pillar and stator are connected on a 

foundation standing on the seabed of the ocean. The hull with the mounted magnets is called the 

rotor or the piston of the generator, and they are the moving parts of the generator. 

Since the motion is linear, this generator is called a linear generator. The generator AC voltage starts 

at zero when the buoy is in its lowest position, increases until the buoy reaches its highest position at 

the top of the wave and descends back to zero as the buoy stops. 

 

 

 

 

 

 

 

Figure 4.9.11. Illustration diagram of fixed linear 

generator connected with floating buoys  

Salter Cam Method 

In the salter cam technique, the motion of the cam is converted from wave into a hydraulic fluid, and 

then the hydraulic motor is used to convert the pressurized hydraulic fluid into rotational mechanical 
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energy. Consequently, the rotational mechanical energy is converted to electricity by utilizing electric 

generators, as shown in Figure 4.9.12.  

 

 
Figure 4.9.12. Diagram of Salter Cam generator  

4.9.3.3 Near-shore Energy Harvesting Topologies 

Near shore topologies are applied on coastal areas or within the surfing zone of the ocean. The near 

shore topologies are not so productive like offshore topologies and some of them are error prone. 

Following are some methods typically used near shore for power generation. 

Near-shore Wave Energy Harvesting by the Channel/ Turbine Method 

In this technique, wave energy / wave currents can be funnelled into a narrow channel, in order to 

intensify their power and size. The waves can be channelled into a catch basin and used directly to 

rotate a turbine, as shown in Figure 4.9.13. This method is expensive and huge infrastructure is 

required for generation. 

 

 
Figure 4.9.13. Wave energy harvesting technique by channel turbine method 

Air-Driven Turbines Based on the Near-shore Wave Energy Harvesting Method 

Another way to harness wave energy is with an oscillating water column that generates electricity 

from the wave-driven rise and fall of water in a cylindrical shaft or pipe. The rising and falling water 

drives air into and out of the top of the shaft, powering an air-driven turbine as shown in Figure 

4.9.14. 
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Figure 4.9.14. Wave Energy harvesting technique by air-driven turbine 

4.9.3.4 Other Harvesting techniques:  

Galvanic Cell 

In [RKJ12], the authors proposed energy harvesting technique based on galvanic energy. Two 

electrodes from dissimilar metal strips with electrolyte, which is river water. The generated energy is 

enough to power-up on board electronics circuitry. 

RF Inductive charging:  

This type of energy harvesting technique can be used for those sensor nodes that are close or 

floating on the surface of water [Ene14]. 

Piezoelectric transducer: 

Fiber-based flexible piezoelectric material can generate power by underwater thrust [ED11]. The 

average power generated by 10g of piezoelectric material (area: 50.8mm x 25.4mm x 0.017mm) on 

thrust of 19mN is around 120mW. The generated power is enough to power-up low electronics 

circuitry. 

Smart Solid-State battery: 

In order to eliminate bulky chemical batteries, thin-film solid-state rechargeable batteries can 

delivery up to 6mAh. Solid-State batteries have low profile, minimum footprint, improved 

electrochemical efficiency, high rechargeable cycles fabricated inside same processor package and 

available as a separate electronics chip/part [Cym14]. 

Sweater battery: 

In [STK94],the authors proposed conceptual model of battery having energy density of 1008Wh/Kg 

over a period of 12 months in sub-sea environment. However, this design is too old, but still viable to 

use. 

Salinity gradients: 

Energy harvesting by reverse electro-dialysis from anodic alumina nano-pores is recently 

experimentally done in [KKK13]. The peak power generated is 542nWatts, which is far better results 

obtain as compared to previous studies.   

4.9.4 Energy generator 

We can generate significant amount of energy by using tidal generators. These are underwater 

turbines which can be placed in areas where there are high tidal movements. It converts mechanical 

energy of the ebbing and surging of ocean tides into electrical energy. Typically, electromagnetic 

generators are used to convert mechanical energy to electrical energy. However, miniature type of 

electrostatic generator can be used to power up low power electronics loads. 
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4.9.4.1 Electromagnetic generator:  

This technique converts mechanical field into electrical field by using an oscillating coil in the 

magnetic field. We can use such type of custom small generator designed for underwater 

application. Following are the two types of electromagnetic generators which are typically used in 

the tidal energy harvesting. 

• Rotary Magnetic generators 

• Linear Magnetic generators 

4.9.4.2 Piezo-Ceramic Device: 

Ruggedized laminated piezo (RLP) device is used as a power generator, which converts the tidal 

motion into electrical energy. The main advantage of the RLP device is the simple mechanical design 

and high volume of power generation with small foot print, as shown in Figure 4.9.15. 

4.9.4.3 Electrostatic generator:  

Varactor or variable capacitor can be used as a nano-generator. It is initially charged then separates 

its plates by vibrations; in this way, mechanical energy is transformed into electrical energy. 

 
Figure 4.9.15. Illustration diagram of working principles of piezo, rotatory and linear type of 

generators. 
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5 CONCLUSION 

The scientific and technological objectives of the COMMON SENSE project are comprehensively 

targeting a significant number of the OCEAN 2013.2 call requirements  - See COMMONSENSE DoW. 

These objectives include ; the development of  cost-effective sensors suitable for large-scale 

production and to take advantage of "new generation" technologies such as within the fields of 

miniaturisation, communication, positioning systems, disposable technologies, and IT tools, software, 

energy storage and usage. In order for the ‘Technology’ WP’s [WP4-8] to achieve these objectives, 

they require: 

• A comprehensive understanding and an up-to-date state of the art of existing 

sensors. 

• A working basis on “new generation” technologies in order to develop cost-effective 

sensors suitable for large-scale production. 

In consultation with the WP2 task leaders and the other WP Leaders, a comprehensive matrix was 

generated of topics to be reviewed for this deliverable. The 11 partners who contributed to D2.1, 

experts in their own fields, have used that domain knowledge to perform an exhaustive review of 

scientific literature, existing sensors and relevant commercially available sensors. This impressive 

collection of information provides a solid foundation for the real technical work of the 

COMMONSENSE t o build upon 

ACRONYMS 

µFIA  Micro flow injection analysis 

ACT  Alliance for Coastal Technologies 

AVHRR (Advanced Very High Resolution Radiometer): 

A five-channel scanning instrument that quantitatively measures electromagnetic radiation, 

flown on NOAA environmental satellites. AVHRR remotely determines cloud cover and surface 

temperature. Visible and infrared detectors observe vegetation, clouds, lakes, shorelines, 

snow, and ice. TIROS Automatic Picture Transmissions (APT) are derived from this instrument. 

API  Application Programming Interface 

AUV  Autonomous underwater vehicles 

CHRIS (Compact High Resolution Imaging Spectrometer): 

CHRIS is a sensor located on board of the Project for On Board Autonomy (PROBA) satellite. 

This satellite was launched on October 22nd 2001 by ESA. CHRIS can acquire data up to a 63-

band mode with a spatial resolution of 36 meters, in the range between 410nm and 1050nm. 

CFP  Common Fisheries Policy 

CMAS  Centrifugal microfluidic analysis system 

CZCS (Coastal Zone Color Scanner): 

The first spacecraft instrument devoted to measurement of ocean color. Although instruments 

on other satellites have sensed ocean color, their spectral bands, spatial resolution, and 

dynamic range were optimized for geographical or meteorological use. In the CZCS, every 

parameter is optimized for use over water to the exclusion of any other type of sensing. The 

CZCS flew on the Nimbus-7 spacecraft. 

EnMAP (Environmental Mapping and Analysis Program): 

EnMAP  is a German hyperspectral satellite mission providing high accuracy hyperspectral 

image data of the Earth surface. The satellite provides a high resolution hyperspectral imager 

capable of resolving 244 spectral bands from 420 to 2450 nm with a ground resolution of 30 m 

x 30 m. The envisaged launch of the EnMAP satellite is in 2015. 

FIA   Flow injection analysis 
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FTIR (Fourier Transform Infrared):  

An analytical technique utilizing an interferometer with moving and stationary mirrors to 

"transform" the spectral distribution of wavelengths in the IR into a form that can be 

mathematically converted in a conventional infrared intensity spectrum. 

GEOSS  Global Earth Observation System of Systems 

IR (Infrared):  

Electromagnetic radiation with frequency lower than visible, usually having a wavenumber 

range of 400 to 4000 cm-1i.e., a wavelength range of 2.5 to 25 µm. 

LANDSAT: 

Owned and launched by the United States, this is a series of remote sensing satellites that use 

the visible and infrared parts of the spectrum to record images of the Earth's surface.  

LED  Light emitting diode 

LIDAR (Light Detection and Ranging): 

A pulsed laser system used like a radar system where the time of return of reflected light is 

detected and used to determine the distance of the target. 

LOD  Limit of detection 

MIRAS (Microwave Imaging Radiometer with Aperture Synthesis): 

MIRAS is the major instrument on the Soil Moisture and Ocean Salinity satellite (SMOS). MIRAS 

employs a planar antenna composed of three deployable arms carrying in total 69 receivers 

which detects radiation in the microwave L-band, both in horizontal and vertical polarizations. 

The aperture of the detectors, point directly toward the Earth's surface as the satellite orbits. 

The arrangement and orientation of MIRAS makes the instrument a 2-D interferometric 

radiometer that generates brightness temperature images, from which geophysical variables 

are computed. 

MERIS (MEdium Resolution Imaging Spectrometer): 

MERIS is a programmable, medium-spectral resolution, imaging spectrometer operating in the 

solar reflective spectral range. Fifteen spectral bands can be selected by ground command. 

The instrument scans the Earth's surface by the so called "push-broom" method. Linear CCD 

arrays provide spatial sampling in the across-track direction, while the satellite's motion 

provides scanning in the along-track direction. The MERIS is one of the main instruments on 

board the European Space Agency (ESA)'s Envisat platform 

METEOSAT: 

(METEOrological SATellite) Europe's geostationary weather satellite, launched by the European 

Space Agency and now operated by an organization called Eumetsat. METEOSAT transmits at 

13691 MHz. 

MODIS (Moderate-resolution Imaging Spectroradiometer): 

MODIS is a payload scientific instrument launched into Earth orbit by NASA on board the Terra 

and Aqua satellites. The instruments capture data in 36 spectral bands ranging in wavelength 

from 0.4 µm to 14.4 µm and at varying spatial resolutions. 

MSFD  Marine Strategy Framework Directive 

NOAA (National Oceanic and Atmospheric Administration) 

NOAA was established in 1970 within the U.S. Department of Commerce to ensure the safety 

of the general public from atmospheric phenomena and to provide the public with an 

understanding of the Earth's environment and resources. NOAA includes: the National Ocean 

Service which charts the oceans and waters of the U.S. and manages 265,000 acres of 
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estuarine reserves; the National Marine Fisheries Service which maintains the world's largest 

and most complex marine fisheries management system; the NOAA Corps which operates 18 

NOAA research and survey ships and flies 15 NOAA aircraft; and the Office of Oceanic and 

Atmospheric Research which supports experiments, laboratories, and the National Sea Grant 

College Program, among other efforts. NOAA has two main components: the National Weather 

Service (NWS), and the National Environmental Satellite, Data, and Information Service 

(NESDIS). 

NOC  National Oceanography Centre 

OEM   Original equipment manufacturer 

PC  Polycarbonate 

PD  Photodiode 

PDMS  Polydimethylsiloxane 

PEDD  Paired emitter detector diode 

PMMA   Polymethylmethacrylate 

PRISMA (Hyperspectral Precursor of the Application Mission): 

PRISMA is an Earth Observation system with innovative, electro-optical instrumentation that 

combine a hyperspectral sensor with a medium-resolution panchromatic camera. The 

advantages of this combination are that in addition to the usual capability of observation 

based on recognising the geometric characteristics of the scene there are hyperspectral 

sensors which determine the chemical-physical composition of the objects present on the 

scene. This offers the scientific community and users many applications in the field of 

environmental monitoring, resource management, crop classification, pollution control and 

other things. In addition, there may be other applications in the field of National Security. 

SeaWiFS (Sea viewing Wide Field-of-view Sensor): 

SeaWiFS was the only scientific instrument on GeoEye's OrbView-2 (AKA SeaStar) satellite, and 

was a follow-on experiment to the Coastal Zone Color Scanner on Nimbus 7. It stopped 

collecting data on December 11, 2010. SeaWiFS was designed primarily to monitor ocean 

chlorophyll-a concentrations from space, however it also collected many other parameters for 

research and educational purposes. These parameters included reflectance, the diffuse 

attenuation coefficient, particulate organic carbon concentration (POC), particulate inorganic 

carbon concentration (PIC), colored dissolved organic matter (CDOM) index and normalized 

fluorescence line height (NFLH) 

SMOS (Soil Moisture and Ocean Salinity): 

 The SMOS is a satellite which forms part of ESA's Living Planet Programme, intended to 

provide new insights into Earth's water cycle and climate. The SMOS satellite carries a new 

type of instrument called Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) 

VIIRS (Visible Infrared Imaging Radiometer Suite): 

VIIRS is a sensor designed and manufactured by the Raytheon Company on board the Suomi 

National Polar-orbiting Partnership weather satellite. VIIRS is a scanning radiometer which 

collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and 

oceans in the visible and infrared bands of the electromagnetic spectrum. VIIRS data is used to 

measure cloud and aerosol properties, ocean color, sea and land surface temperature, ice 

motion and temperature. It extends and improves upon a series of measurements initiated by 

the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging 

Spectroradiometer (MODIS). 


