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Summary. — The multimodel superensemble (SE) technique has been used with
considerable success to improve meteorological forecasts and is now being applied
to ocean models. Although the technique has been shown to produce deterministic
forecasts that can be superior to the individual models in the ensemble or a simple
multimodel ensemble forecast, there is a clear need to understand its strengths and
limitations. This paper is an attempt to do so in simple, easily understood contexts.
The results demonstrate that the SE forecast is almost always better than the simple
ensemble forecast, the degree of improvement depending on the properties of the
models in the ensemble. However, the skill of the SE forecast with respect to the
true forecast depends on a number of factors, principal among which is the skill of
the models in the ensemble. As can be expected, if the ensemble consists of models
with poor skill, the SE forecast will also be poor, although better than the ensemble
forecast. On the other hand, the inclusion of even a single skillful model in the
ensemble increases the forecast skill significantly.

PACS 07.05.Tp – Computer modeling and simulation.
PACS 92.10.-c – Physical oceanography.
PACS 95.75.-z – Observation and data reduction techniques; computer modeling
and simulation.
PACS 95.75.Pq – Mathematical procedures and computer techniques.

1. – Introduction

Ever since they started producing weather forecasts for general consumption by the
public, meteorologists have faced the problem of improving them, initially concentrat-
ing on the model physics, data-assimilation techniques, and on the relative database.
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However, over the years, it has become apparent that even with a skillful model and
abundant data, sensitivity to initial conditions of the nonlinear systems would not allow
high-fidelity deterministic forecasts, leading to the so-called ensemble techniques: with
a forecast repeated many times and an ensemble of forecasts prepared, it became then
possible to produce probabilistic forecasts, which are more natural for a chaotic system
like the atmosphere. Ensemble forecasts are now routine in both weather and seasonal
forecasts, both in the USA and Europe (e.g., at the National Centers for Environmental
Prediction, NCEP, and at the European Centre for Medium-Range Weather Forecast,
ECMWF, respectively), because of the attractiveness of the concept and also because of
the enormous computing power at the disposal of modern forecasters. However, simply
averaging over several realizations of a single model has its shortcomings too, since no
model or forecast technique is perfect and hence the model bias and error affect the
resulting ensemble forecast.

Given the fact that there may exist several models and techniques, each with its
own advantages and shortcomings, it becomes advantageous to include many different,
presumably skillful, models and techniques in the ensemble (multimodel ensemble). In
operational meteorology, this essentially means including forecasts from several oper-
ational centers in the ensemble, once again made possible by modern computing and
communication technologies.

Meteorologists have realized that it is possible to go even beyond this and substan-
tially improve the forecast skill by assessing the past performance of different models
and techniques and using this information to assign appropriate weights to the individ-
ual forecasts in the ensemble. This technique is now known widely as the multimodel
superensemble (SE) technique [1, 2]. Generally speaking, it involves comparing the per-
formance of individual models/techniques in the ensemble to observational data over a
selected period in the past and statistically assessing the individual model skill. This in-
formation is then used to assign appropriate weights to the forecasts of individual models
in the ensemble to arrive at a better forecast. It appears that this technique is vastly
superior to a simple multimodel ensemble, simply because prior information is used to
assess model strengths and weaknesses, and this is then used to minimize forecast errors.

Naturally, the skill of the SE technique should depend on the length of the “training”
period and the quality and the amount of data available for training. Very much akin
to statistical forecasting, the skill depends on whether the data used for training depict
accurately, in the past, the phenomena to be forecasted at present. The longer the train-
ing period, the better, since the training data are then likely to include more realizations
similar to the events or features being forecasted. And it is here that one runs into data
inadequacies and errors, especially in a field such as oceanography, where observational
data tend to be sparse in time and space as well as duration [3, 4]. Nevertheless, by
judicial choices, it may be possible to reduce the forecast errors significantly via the SE
technique, as shown in recent years in meteorological forecasts [1, 5]. The technique has
been applied to improve hurricane track and intensity forecasts (e.g., [6]) and significant
improvement in skill has been demonstrated. It has also been applied to seasonal fore-
casts (see [2]). The EU project DEMETER [7] was aimed at developing and validating
a multi-model ensemble forecast system for reliable seasonal to interannual predictions.
In the ocean forecasting arena, Rixen and Coelho [8] have applied the SE technique to
operational ocean predictions, particularly to predictions of acoustic properties off the
west coast of Portugal.

While the SE technique has been explored in the context of operational forecasts
using complex atmosphere and ocean models, as mentioned above, or for seasonal
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forecasts [1, 2], there is still a need to understand the strengths and limitations of this
technique in the context of simple, easily understood examples. This paper is an attempt
to do so in the case of deterministic short-term forecasts, appropriate to say weather fore-
casts rather than long-term forecasts such as seasonal forecasts.

In short, the SE technique enables individual model biases to be diagnosed and re-
moved and the best combination of the ensemble to be obtained by appropriately weight-
ing the original models in the ensemble according to their error signature. The general
idea behind is then that of the minimization of a mean squared error with respect to obser-
vations, carried out through a linear regression following standard approaches (e.g., [5,9])
that allows the computations of appropriate coefficients or weights (x).

The SE forecast is constructed from weighted, bias-removed multimodel results:

(1.1) XSE(t) = Xmean +
∑N

n=1 xn [Yn(t) − Y mean
n ]∑N

n=1 xn

TT < t ≤ (TT + TF ),

where N is the number of models in the ensemble, Y mean
n is the model bias determined

by averaging Yn(t) over the training period (TP ) and xn are the weights assigned to
individual models in the ensemble, based on their skills. By definition, observational
forecast mean (true mean) is not available over the forecast period (FP ), therefore Xmean

must be suitably selected.
The simple ensemble forecast is derived from a “blind” averaging of the ensemble:

(1.2) XE(t) =
1
N

N∑
n=1

Yn(t) TT < t ≤ (TT + TF ).

If we define the root mean squares and the correlation for the SE cases as

RMSSE =

√
1

TF

∫ TT +TF

t=TT

{[XSE(t) − Xmean
SE ] − [X(t) − Xmean]}2 dt,(1.3)

CORSE =

∫ TT +TF

t=TT
[XSE(t) − Xmean

SE ] [X(t) − Xmean] dt√∫ TT +TF

t=TT
[XSE(t) − Xmean

SE ]2 dt
√∫ TT +TF

t=TT
[X(t) − Xmean]2 dt

(1.4)

with RMSE and CORE for the simple ensemble defined similarly, then the superensemble
Forecast Skill Improvement (FSI) over that of a simple ensemble can be represented by
the three indices defined as

FSIRMS =
RMSE

RMSSE
− 1, FSICOR =

∣∣∣∣CORSE

CORE

∣∣∣∣ − 1,(1.5)

FSIBIAS =
|Xmean

E − Xmean|
|Xmean

SE − Xmean|
− 1,

where the numerator of the latter represents the bias for the simple multimodel ensemble
cases (BIASE) and the denominator that for the superensemble cases (BIASSE). Values
higher than zero for FSIRMS, FSICOR and FSIBIAS indicate a higher skill for the SE
vis-à-vis the regular ensemble. However, the absolute skill w.r.t. the true forecast is
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indicated by RMSSE and CORSE(1). Two possibilities exist for choosing Xmean in
eq. (1.1). Traditionally, the observation mean (true mean) over the training period
(which we will call tmean) has been used. However, another possibility is to simply use
the ensemble mean of the N models in the ensemble over the forecast period (which we
will call emean).

2. – Simpler first-order example

To illustrate the SE technique, Krishnamurti et al. [2] used the low-order Lorenz
system, whose governing equations are

dX

dt
= −σX + σY + f cos θ,

dY

dt
= −XZ + rX − Y + f sin θ,(2.1)

dZ

dt
= XY − bZ,

where X, Y and Z are the three dependent variables of the third-order system. The
constant σ is interpreted to be a dissipation/diffusion coefficient, r as a heating term and
b the inverse of a scale height. The terms involving f are forcing terms. The constants
σ, r and b denote the parameter space of the Lorenz attractor, with σ being the Prandtl
number, r, the ratio of the Rayleigh number to its critical value, and b is the size of the
convective cells; f = 0 in the original Lorenz attractor (1953).

In their study(2), Krishnamurti et al. [2] set σ = 50, r = 24.74, b = 13.35, f = 2.5, and
θ = 45◦ to define the base case, what they call the “Nature run”. The parameter space
defined by this particular choice of σ, r and b renders the system non-chaotic, unlike the
original choice (σ = 10, r = 28, b = 8/3, f = 0) of Lorenz [10], which leads to a highly
chaotic system. To derive the ensemble of models, Krishnamurti et al. [2] introduced
random perturbations in the values of the parameters σ, r, b and θ (within the range
±12.5, ±3, ±5, ±2.5◦, respectively) but kept the value of f constant at 2.5. The initial
conditions were also perturbed slightly and randomly (although the amplitudes are not
specified in the paper) from the values chosen for the base case: X = 0, Y = 10 and
Z = 0. The result was an ensemble of models that yielded a slowly decaying, oscillatory
behavior for the dependent variables X, Y and Z, with considerable amplitude and phase
differences between the various models in the ensemble. The task is then to arrive at
a methodology able to combine the ensemble results to yield values for the dependent
variables as close to the base case as possible.

Krishnamurti et al. [2] ran the different models for a time interval T of 200 units.
During the training period (TP , 70 units), the multi-model time series of X, Y and
Z were regressed against those of the base case to arrive at the weights (regarded as
invariant) to be assigned to each model of the ensemble when performing the forecast.
This simple and elegant example demonstrated the efficacy of the SE technique and
paved the way for its application to meteorological forecasts. However, the example

(1) Abbreviations used in the text: SE = superensemble; E = simple ensemble; VAR = variance;
M = mean; COR = correlation coefficient; RMS = Root Mean Square; BIAS = bias; FSI =
Forecast Skill Improvement; TP = Training Period; FP = Forecast Period.
(2) Errors in their Table 1 and Eq. (1) have been corrected.
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cited by Krishnamurti et al. [2] is that of a non-chaotic decaying oscillator; while the
governing equations are nonlinear and coupled, and hence allow for the possibility of
chaotic behavior, this feature is not a central part of their study.

Similar results can be demonstrated using a first-order non-chaotic decaying oscillator;
for reasons of brevity, we will not present this in detail, but instead will summarize the
findings. The decaying oscillator demonstrated that accounting for the skill of the models
in the ensemble using prior information (SE forecast) almost always yields more skillful
forecasts than just taking a blind average over the ensemble of models irrespective of
their skill (ensemble forecast). However, the absolute skill of SE depends on the skill
of the models in the ensemble, since to be skillful the ensemble should contain models
with high correlation coefficients during the TP . However, this is not always true: if
the models in the ensemble have high correlation coefficients during the TP , but much
smaller ones during the FP , the skill information deduced from the training period is
not valid during the forecast period, therefore leading to a not skillful SE. Only if the
models in the ensemble behave similarly during both the TP and FP , then the past
performance is indicative of the future behavior. The longer the relative training period,
the better the SE skill. Inclusion of even a single skillful model in the ensemble may
increase the SE forecast skill significantly, while random noise reduces it, with higher
noises producing higher reductions.

3. – Lorenz system

The above conclusions, however, pertain to a non-chaotic system. What happens if
the system is chaotic? This is a more interesting question that Krishnamurti et al. [2] did
not tackle. To answer this question, we appeal to the Lorenz attractor, but instead of the
parameter space employed by Krishnamurti et al. [2], which yields a decaying oscillator,
we explored the chaotic regime by using

(3.1) σ = 22.0, r = 35.0, b = 2.67, f = 2.0, θ = 45.0.

The different parameters were randomly perturbed to generate an ensemble of 10 models
differing from the base model. All the models were run for 20000 time steps with dt =
0.001 (therefore for a total t = 20) and only the time series X(t) was used for the analysis.
The first half of the series (until t = 10) was discarded; the first half of the remaining
time series (t < 5) was used for training, and the second half (t > 5) for the forecast.
Note that a simple fourth-order Runge-Kutta method was used to solve the Lorenz set of
three first-order, coupled nonlinear ordinary differential equations. It is well known that
the Lorenz system possesses a strange attractor characterized by two “regimes”, that is,
two regions in phase space, which are recurrently visited by the orbits of the system.

The basic idea is then to explore situations where chaotic transitions between the two
regimes make accurate predictions quite difficult and discern its impact on the skill of
SE technique.

Figure 1a shows the last part of the training and the forecast performances in the
period t = 5.0–6.6 for two typical cases, while fig. 1b presents the correlation coefficients
between the 10 models used in the ensemble and the “truth” during the training (TP )
and forecast periods (FP ) for both cases. The corresponding statistics obtained using the
set (3.1) are summarized in table I. The top panel of fig. 1a shows Case 1, in which the
superensemble technique (dark blue line) is able to provide results that are in excellent
agreement with the “true” forecast (red line). On the other hand, Case 2 (presented in
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a)

b)

Fig. 1. – a) Time series of individual models (black lines), simple ensemble (green) and su-
perensemble (dark blue) averages for Case 1 (top panel) and Case 2 (bottom panel). Red
denotes the “truth”, the vertical line the end of the TP (see table I for associated relevant
statistics). b) The models in the ensemble and their correlation coefficients with “truth” for
Case 1 and Case 2. TP : training period; FP : forecast period.
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Table I. – Statistics for Case 1 and Case 2. The “true” forecast mean (variance) is 1.28 (78.67).

N V ARSE V ARE MSE ME CORSE CORE RMSSE RMSE BIASSE BIASE FSICOR FSIRMS FSIBIAS

Case 1 10 64.68 5.42 −0.14 2.33 0.91 0.81 3.85 7.20 −1.42 1.05 0.13 0.87 −0.26

Case 2 10 75.89 2.01 −0.14 1.26 −0.81 −0.16 16.80 9.20 −1.42 −0.13 4.20 −0.45 −0.99
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the bottom panel) is characterized by very poor results. The only difference between
the two cases is the make-up of the models in the ensemble, as depicted by fig. 1b, the
excellent performance in Case 1 is due to the inclusion of a highly skillful model (no. 9,
with a correlation coefficient 1.0) in the ensemble. If we just use the results of model
no. 9 for the forecast, the results would be equally good.

In Case 2, all the models in the ensemble had poor skill (maximum value for the
correlation 0.37) and so the SE forecast reflects this. In both cases, the SE forecast
performs clearly better than the simple ensemble forecast, as shown by the index FSICOR.
Note however that indices FSIRMS and FSIBIAS depend very much on the mean used
in the forecast. Here the true training mean is used, and it happens to be slightly worse
than the ensemble mean, consequently FSIBIAS is negative in both cases. However,
just looking at the FSI values can be misleading, since they only show the relative
performance of the super-ensemble and ensemble averages; in Case 2, both are poor.
What matters is the performance relative to the “true” forecast, as indicated by COR,
RMS and BIAS. The closer the value of COR to 1.0, and the closer the values of
RMS and BIAS to zero, the better the forecast skill, per se. From this measure, SE
performance is clearly better in Case 1 compared to Case 2.

In the above example the “true” system stays on the same regime of the attractor.
It is interesting to explore what happens if the system stays on one regime during the
training period, but transitions to the other during the forecast period. To examine this,
we considered a slightly different parameter set for the Lorenz system

(3.2) σ = 20.0, r = 28.0, b = 2.67, f = 2.0, θ = 45.0.

Again, an ensemble of 10 models was generated by random perturbation of the pa-
rameters, and two typical results, called Case 3 and Case 4, are shown in fig. 2a, and
the associated statistics in table II. Case 3 includes a skillful model (as determined from
training, no. 9 with correlation coefficient 0.99), whereas Case 4 does not. From fig. 2b,
showing again the correlations between the models and the truth, it is possible to note
that the results are similar to the Cases 1 and 2 considered earlier, except for the overall
poor performance of the SE technique. One important difference arises from the fact
that the training mean (tmean) is much different from the true forecast mean; using
tmean in the SE forecast leads to a large bias, and hence to worse values of FSIRMS and
FSIBIAS (see values in parenthesis in table II). Slight improvements are seen when using
the ensemble mean emean.

These examples suggest that the skill of the SE technique depends critically on the
skill of the models in the ensemble, and not merely on the number of models adopted.
This was confirmed by repeating the above runs with N = 20 and N = 5 (results not
shown here).

However, the example considered above is somewhat extreme. A better approach,
similar to that of Onken et al. [4], who used different hydrodynamical models employing
different solution methodologies, methods of data assimilation and initializations, but
nevertheless obtained consistent results, might be to take the basic Lorenz oscillator
and perturb the resulting time series, introducing random modifications of the overall
amplitude, phase and bias of the time series. An ensemble of 20 models was generated
and used, producing two examples starting from the following sets:

Case L1: σ = 20.0, r = 28.0, b = 2.67, f = 2.0, θ = 45.0,(3.3)
Case L2: σ = 22.0, r = 35.0, b = 2.67, f = 2.0, θ = 45.0.
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a)

b)

Fig. 2. – a) Time series of individual models (black lines), simple ensemble (green) and su-
perensemble averages (dark blue: tmean, light blue: emean) for Case 3 (top panel) and Case 4
(bottom panel). Red denotes the “truth”, the vertical line the end of the TP (see table II for
associated relevant statistics). b) The models in the ensemble and their correlation coefficients
with “truth” for Case 3 and Case 4. TP : training period; FP : forecast period.
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Table II. – Statistics for Case 3 and Case 4. The numbers in parentheses indicate values corresponding to the use of emean in the SE forecast.
The “true” forecast mean (variance) is −0.48 (59.41).

N V ARSE V ARE MSE ME CORSE CORE RMSSE RMSE BIASSE BIASE FSICOR FSIRMS FSIBIAS

Case 3 10 81.74 3.38 5.81
(4.35)

4.35 0.61 0.04 9.76
(8.89)

9.22 6.30
(4.83)

4.83 14.59 −0.05
(0.04)

−0.23
(0.00)

Case 4 10 93.30 1.45 5.81 5.49 0.09 −0.11 13.40 9.92 6.30 5.97 −0.19 −0.26 −0.05
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The training period lasts from t = 2.4 to t = 5.0, whereas the forecast period is from
t = 5.0 to t = 6.6. The examples were chosen such that the training and forecast periods
correspond to different regime of the attractor of the system in Case L1, and to the same
regime in Case L2. The amplitude, phase and bias are varied randomly to yield the
different models in the ensemble.

Figure 3a shows the results for both tmean and emean; in Case L1, emean just
happens to be close to the true forecast mean and hence its use gives much better results
compared to tmean. Indeed, since the true forecast mean (base case) differs significantly
from the true training mean, its use produces a large bias in the forecast, which is also
reflected in the RMS values (see Case L1 and Case L2 in table III). Figure 3b shows
the models in the ensemble and the coefficients of correlation of each with the true time
series during the training period.

On the other hand, in Case L2, the true forecast mean is not much different from the
true training mean; consequently, the forecast results are essentially similar for tmean
and emean. In any case, in both cases the SE is clearly more skillful than the simple
ensemble, thus suggesting that the technique may turn out to be of great utility in
practical applications to ocean (and atmosphere) forecasting.

To further explore the dependence of the performance of the SE method on the skill
of the models in the ensemble, we ran additional cases starting from the sets (3.3). In
Case 3-L1 and Case 3-L2, we retained only the models in the ensemble with correlation
coefficients < 0.3 (w.r.t. the base case during the training period TP , see table III).
This yielded an ensemble of 8 rather skill-less models. In Case 4-L1 and Case 4-L2, we
retained all models with coefficients > 0.9, yielding two highly skillful models. These
four results are shown in fig. 4 and the corresponding statistics in table III. It is clear
that when the ensemble does not include skillful models, both the simple ensemble and
the SE method fail to provide decent results, even though the SE technique is marginally
better. The precise number of models included is not really that important, as can be
seen from the cases when only two skillful models are included in the ensemble. In this
case, even though only two models are present in the ensemble, the SE technique provides
excellent results, but so does the ensemble.

We ran other cases in which just a single skillful model was added to the ensemble
of skill-less models. In Case 5-L1, we used the ensemble of models used for Case L1,
retaining only the 8 models with correlation coefficients < 0.3 and added Model no. 3,
which has a correlation coefficient of 0.91. In Case 5-L2 we took the ensemble of models
used for Case L2 with correlation coefficients < 0.5 and added Model no. 3, which has
correlation coefficient of 0.93 (see table III). The improvement in the results is quite
dramatic as shown by fig. 5, which compares the time series with and without the skillful
model.

Last, we ran additional cases in which only models of moderate skills with training
correlation coefficients between 0.5 and 0.75 were retained in the ensemble (Case 6-L1
and Case 6-L2, using the ensemble of models for Case L1 and L2, respectively). These
results are also shown in fig. 5, and can be seen that the performance of SE technique is
now intermediate to the above two cases as could be expected.

In all the above cases, the SE technique is consistently more skillful than the simple
ensemble average. FSICOR is always greater than zero, significantly in some cases,
marginally in others (see table III for the statistics). FSIRMS and FSIBIAS values
depend on whether tmean or emean is close to the true forecast mean.

Thus it is fair to say that no matter how many models are in the ensemble, if they
are of questionable skill, the SE technique cannot be expected to yield good forecasts,
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a)

b)

Fig. 3. – a) Time series of individual models (black lines), simple ensemble (green) and su-
perensemble averages (dark blue: tmean, light blue: emean) for Case L1 (top panel) and Case
L2 (bottom panel). Red denotes the “truth”, the vertical line the end of the TP . b) The models
in the ensemble and their correlation coefficients for Case L1 and L2. TP : training period; FP :
forecast period.
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Table III. – Statistics for the Lorenz systems. The numbers in the 2nd column report the number and the correlation coefficient of the models
adopted in that specific run. The number in parentheses in the rest correspond to the use of emean instead of tmean. (Only the numbers differing
from those of the tmean are shown). Observed forecast mean (variance): Case L1: −0.48 (59.41); Case L2: 1.28 (78.67).

Case N V ARSE V ARE MSE ME CORSE CORE RMSSE RMSE BIASSE BIASE FSICOR FSIRMS FSIBIAS

L1 20 (all) 59.48 37.26 5.81
(−1.58)

−1.58 1.00 0.79 6.30
(1.10)

4.82 6.30
(−1.10)

−1.10 0.26 −0.24
(3.38)

−0.83
(0.0)

2-L1 12 (> 0.3) 59.03 45.41 5.81
(−0.64)

−0.64 1.00 0.85 6.30
(0.16)

4.01 6.30
(−0.15)

−0.15 0.17 −0.36
(24.2)

−0.98
(0.0)

3-L1 8 (< 0.3) 30.33 34.18 5.81
(−3.00)

−3.00 0.86 0.60 7.50
(4.79)

6.78 6.30
(−252)

−2.52 0.44 −0.96
(0.42)

−0.60
(0.0)

4-L1 2 (> 0.9) 61.40 51.84 5.81
(0.26)

0.26 1.00 0.99 6.30
(0.80)

1.32 6.30
(0.75)

0.75 0.01 −0.79
(0.65)

0.88
(0.0)

5-L1 9
(< 0.3+#3)

52.43 34.01 5.81
(−3.63)

−3.63 0.99 0.68 6.37
(3.30)

6.52 6.30
(−3.15)

−3.15 0.47 0.23
(0.98)

−0.50
(0.0)

6-L1 5
(0.5–0.75)

52.08 49.95 5.81
(2.01)

2.01 0.99 0.81 6.44
(2.84)

5.32 6.30
(2.49)

2.49 0.23 −0.17
(0.87)

−0.60
(0.0)

L2 20 (all) 78.69 40.83 −0.14
(−0.27)

−0.27 1.00 0.75 1.42
(1.54)

6.00 −1.42
(−1.54)

−1.54 0.32 3.24
(2.89)

0.09
(0.0)

2-L2 16 (> 0.3) 78.68 49.01 −0.14
(−0.35)

−0.35 1.00 0.78 1.42
(1.63)

5.77 −1.42
(−1.63)

−1.63 0.28 3.07
(2.54)

0.15
(0.0)

3-L2 4 (< 0.3) 28.14 36.01 −0.14
(0.06)

0.06 0.60 0.39 7.26
(7.22)

8.67 −1.42
(−1.21)

−1.21 0.55 0.19
(0.20)

−0.14
(0.0)

4-L2 2 (> 0.9) 79.05 66.08 −0.14
(1.79)

1.79 1.00 0.99 1.46
(0.62)

1.49 −1.42
(0.52)

0.52 0.01 0.25
(1.39)

−0.63
(0.0)

5-L2 8
(< 0.5+#3)

75.81 32.85 −0.14
(−1.55)

−1.55 0.99 0.62 2.06
(3.16)

7.51 −1.42
(−2.82)

−2.82 0.59 2.76
(1.38)

1.00
(0.0)

6-L2 4
(0.5–0.75)

63.63 69.76 −0.14
(−2.43)

−2.43 0.93 0.64 3.58
(4.96)

8.24 −1.42
(−3.71)

−3.71 0.46 1.30
(0.66)

1.62
(0.0)
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Fig. 4. – Time series of individual models (black lines), simple ensemble (green) and superensem-
ble (dark blue: tmean, light blue: emean) averages for different cases of Lorenz regimes. Red
denotes the “truth”, the vertical line the end of the TP (see table III for the corresponding
statistics).

even though it will be more skillful overall than the simple ensemble average. On the
other hand, when the ensemble includes even a single skillful model, the SE technique
provides good forecasts. However, it is not clear a priori which mean should be used in
the SE forecast: depending on the particular situation, either the tmean or the emean
can provide better results. In any case, an overwhelming outcome of these trials with the
Lorenz chaotic system is that it is important that the ensemble include skillful models
for the SE technique to be of any practical utility. Naturally, the technique is only as
good as the best models in the ensemble.

4. – Concluding remarks

The major strength of the SE technique is its ability to use observations in the past
to assess the performance of the individual models in the ensemble, and determine the
optimum weighting to be assigned to the individual models to provide the best forecast
possible. Consequently, the SE forecast is almost always better than the simple ensemble
forecast, although the degree of improvement depends on the properties of the models
in the ensemble. However, the skill of the SE forecast with respect to the true forecast
depends on a number of factors, principally on the skill of the models in the ensemble.
As can be expected, if the ensemble consists of models with poor skill, the SE forecast
will also be poor, although better than the simple model ensemble forecast. Inclusion of
even a single skillful model in the ensemble can increase the forecast skill significantly.
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Fig. 5. – Time series of individual models (black lines), simple ensemble (green) and superensem-
ble (dark blue: tmean, light blue: emean) averages for different cases of Lorenz regimes. Red
denotes the “truth”, the vertical line the end of the TP (see table III for the corresponding
statistics).

The technique does provide a means of assessing the skill of each individual model in the
ensemble of forecast models, and this makes it possible to exclude consistently unskillful
models from the ensemble, also contributing to saving computing resources.

The obvious weakness of the SE forecast is that the method assumes that error statis-
tics from the past can be used for arriving at the best forecast of the future. Indeed, prior
behavior is not necessarily a guide to future performance and this of course could limit
the forecast skill in some cases. Nevertheless, the technique is of clear utility in short-
term ocean forecasts and operational atmospheric/oceanic forecast centers, both civilian
and naval, could benefit significantly from a routine day-to-day use of this technique.
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