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(ricevuto il 16 Ottobre 2008; approvato il 15 Dicembre 2008; pubblicato online il 5 Febbraio
2009)

Summary. — In two-layer ocean circulation models the possible dissipation mech-
anism arising at the interface between the layers is parameterised in terms of the
difference between the horizontal velocities of the flow in each layer. We explain
and derive such parameterisation by extending the classical Ekman theory, which
originally refers to the surface and to the benthic boundary layers, to the interface
of a quasi-geostrophic, two-layered flow.

PACS 92.10.Fj – Dynamics of the upper ocean.

1. – Introduction

Two-layer models of circulation of geophysical flows constitute the simplest step in
the framework of baroclinic models. For this reason, both two-layered atmospheres and
oceans were considered in the early numerical circulation models; according to Salmon [1]:
“To a surprising extent, the extra-tropical ocean and atmosphere behave like two-layer
fluids”. The difference between the current fields in each layer are ascribed to a frictional
mechanism, of the same kind of Ekman’s boundary layers, but acting in the proximity of
the interface between the layers. For instance, in the oceanographic frame, the propaga-
tion of the motion with depth has been investigated first by Rhines and Young [2] just
by means of a two-layer model equipped with frictional dissipation at the interface. The
same problem has been reconsidered, with further details, by Pedlosky in [3]. Usually,
this kind of dissipation is parameterised by means of an assumption ad hoc, while, in
the present investigation, it is derived along the same line adopted to infer the Ekman
pumping in the classical theory of Ekman’s boundary layers.
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Fig. 1. – Sketch of the positions of the stretched coordinates ξ, relative to the upper and benthic
Ekman layers, in the classical model.

2. – Review of the classical Ekman theory

The classical Ekman theory is a basic component, for instance, of the homogeneous
model of wind-driven ocean circulation but it suggests also the framework to describe
the special dissipative mechanism which typically arises in two-layer circulation models,
close to the interface between the layers. For this reason, in the present section the
fundamental mathematical content of the theory is outlined, in the context of the quasi-
geostrophic dynamics.

In both the upper and benthic Ekman layers the non-dimensional momentum equa-
tions are [4]

v = v0(x, y) − 1
2

∂2u

∂ξ2
,(2.1)

u = u0(x, y) +
1
2

∂2v

∂ξ2
.(2.2)

In (2.1) and (2.2), (u0, v0) is the geostrophic current of the interior, (u, v) is the current
in the considered layer and ξ is the related stretched vertical coordinate pointing, in any
case, towards the geostrophic interior (fig. 1).

Equations (2.1) and (2.2) can be decoupled to give

∂4u

∂ξ4
+ 4u = 4u0,(2.3)

∂4v

∂ξ4
+ 4v = 4v0.(2.4)

The general integrals of (2.3) and (2.4) are

u=C1 exp[(−1−i)ξ]+C2 exp[(−1+i)ξ]+C3 exp[(1+i)ξ]+C4 exp[(1−i)ξ]+ u0,(2.5)
v=D1 exp[(−1−i)ξ]+D2 exp[(−1+i)ξ]+D3 exp[(1+i)ξ]+D4 exp[(1−i)ξ]+ v0,(2.6)
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respectively, where Ci = Ci(x, y) and Di = Di(x, y). The matching conditions

lim
ξ→∞

u(ξ) = u0 and lim
ξ→∞

v(ξ) = v0

demand C3 = C4 = D3 = D4 = 0, and therefore (2.5) and (2.6) simplify into

u = exp[−ξ][K1 sin(ξ) + K2 cos(ξ)] + u0,(2.7)
v = exp[−ξ][K3 sin(ξ) + K4 cos(ξ)] + v0,(2.8)

respectively, where Ki = Ki(x, y). Substitution of (2.7) and (2.8) into (2.1) and (2.2)
gives K3 and K4 in terms of K1 and K2 so one obtains

u = exp[−ξ][K1 sin(ξ) + K2 cos(ξ)] + u0,(2.9)
v = exp[−ξ][−K2 sin(ξ) + K1 cos(ξ)] + v0.(2.10)

The coefficients K1 and K2 are selected by the remaining boundary condition, as shown
below.

Unlike the usual approach, we define the vector function

(2.11)
⇀

V = K1î − K2ĵ

which implies

(2.12) k̂ ×
⇀

V = K2î + K1ĵ.

Using (2.11) and (2.12), in vector notation (2.9) and (2.10) are syntetized as

(2.13)
⇀

u = exp[−ξ]
[⇀

V sin(ξ) + k̂ ×
⇀

V cos(ξ)
]

+
⇀

u0.

Although eq. (2.13) is valid for a homogeneous flow, we stress that it will be useful
also in dealing with the frictional dissipation at the interface of a two-layer model, as
will be shown in the following.

In the framework of the classical Ekman theory, the substitution of

(2.14)
⇀

V = −α

2

(
k̂ × ⇀

τ +
⇀

τ
)

into (2.13) allows to obtain the solution in the upper layer. The definitions of α and
⇀

τ are
found, for instance, in [4]. Analogously, in the case of the lower layer, the substitution of

(2.15)
⇀

V = k̂ × ⇀

u0

leads to the solution in the benthic layer [4].
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Fig. 2. – Scheme of the geometry, in a vertical plane, of the two-layer model in its nondimensional
version. Above z = zi the fluid density is ρ1, while below the density is ρ2(> ρ1). Above z = z1

and below z = z2 the currents are geostrophic, while, for z2 ≤ z ≤ z1, the profiles of the
depth-dependent horizontal current are given by (4.5) and (4.11). The vertical currents w(z1)
and w(z2) influence the vorticity of the flow above z = z1 and below z = z2, thus yielding the
evolution equations (5.3) and (5.4).

3. – The quasi-geostrophic two-layer model

As mentioned in the Introduction, the simplest model which exhibits baroclinic fea-
tures of real fluids is the two-layer model. Here, we resort to a very schematic picture
of such model (see fig. 2) and retain, into it, only the aspects related to the dynamics of
the interface. In what follows, nondimensional quantities are used.

The fluid is included between the sea floor, located in z = 0 (flat bottom) and the
upper surface z = 1 (rigid lid). Unlike the single-layer model, an impermeable and
deformable interface, placed at

(3.1) z = zi(x, y, t),

separates the lighter water (ρ = ρ1) above zi from the heavier one (ρ = ρ2 > ρ1) below
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zi. If the fluid is at rest, z1 = const, otherwise the deformation of the interface influences
the motion of the fluid of each layer and induces a mutual interaction between them. In
the latter case, the difference between the geostrophic velocities

⇀

u1 and
⇀

u2 of the layers,
far enough from zi, can be ascribed to a dissipative mechanism, quite similar to that
described in sect. 2. It is assumed to take place above and below the interface, in the
proximity of it. While above a certain depth z1(> zi) the current

⇀

u1 is geostrophic and,
analogously, below another certain depth z2(< zi) the current

⇀

u2 is also geostrophic, in
both the sublayers zi < z ≤ z1 and z2 ≤ z < zi the horizontal currents, say

⇀

u(1) and
⇀

u(2) respectively, are not geostrophic because they undergo dissipation. Thus, according
to the Ekman theory,

⇀

u(1) and
⇀

u(2) are depth dependent and have a vertical component.
In other words, z1 is the transition depth between the upper geostrophic layer and the
underlying sublayer, while z2 is the transition depth between the lower geostrophic layer
and the overhanging sublayer. The vertical velocity, say w, of the fluid in the sublayers
propagate up to z = z1 and down to z = z2, thus forcing, through w1 = w(z1) and
w2 = w(z2), the potential vorticity of the geostrophic flows above z1 and below z2,
respectively. This is, qualitatively, the mechanism by means of which

⇀

u1 and
⇀

u2 are
influenced by the friction which develops in the proximity of zi. Finally, we anticipate
that the assumption that friction disappears in the case in which

⇀

u1 =
⇀

u2 is sufficient to
close the model.

To simplify the discussion, both wind forcing and bottom dissipation are disregarded
since their presence is not essential for the purposes of this investigation.

4. – The current in the Ekman sublayers

This section is devoted to the determination of the vertical velocities w1 = w(z1) and
w2 = w(z2). We introduce preliminarily the upward stretched coordinate (fig. 2)

(4.1) ξ =
z − zi

E
1/2
V1

and the downward stretched coordinate

(4.2) η =
zi − z

E
1/2
V2

,

where EV1 and EV2 are the vertical Ekman numbers of the upper and lower sublayer,
respectively.

With reference to the upper one, and in full analogy with (2.13), the current
⇀

u(1)(ξ)
in this sublayer is

(4.3)
⇀

u(1)(ξ) = exp[−ξ]
[⇀

V sin(ξ) + k̂ ×
⇀

V cos(ξ)
]

+
⇀

u1

and, in particular,

(4.4)
⇀

u(1)(0) = k̂ ×
⇀

V +
⇀

u1.

Equation (4.4) yields
⇀

V = −k̂ × (
⇀

u(1)(0) − ⇀

u1), whence

(4.5)
⇀

u(1)(ξ) = exp[−ξ]
[
−k̂ ×

(
⇀

u(1)(0) − ⇀

u1

)
sin(ξ) +

(
⇀

u(1)(0) − ⇀

u1

)
cos(ξ)

]
+

⇀

u1.
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Equation (4.5) implies

(4.6)
⇀

∇ · ⇀

u(1) = exp[−ξ] sin(ξ)k̂ ·
⇀

∇×
(

⇀

u(1)(0) − ⇀

u1

)
,

where
⇀

∇ is the horizontal gradient operator. Using the incompressibility equation ∂w(1)

∂ξ +

E
1/2
V1

⇀

∇·⇀

u(1) = 0, written in terms of the variables (x, y, ξ), and (4.6), the vertical velocity
in the Ekman sublayer is derived

(4.7) w(1)(ξ) = −E
1/2
V1 k̂ ·

⇀

∇×
(

⇀

u(1)(0) − ⇀

u1

)∫ ξ

0

exp[−ξ′] sin(−ξ′)dξ′ + w(1)(ξ = 0).

In (4.7) we identify w(1)(ξ = 0) with the vertical velocity of the interface, i.e.

(4.8) w(1)(ξ = 0) =
Dzi

Dt
.

Finally, the vertical velocity w1 at the transition depth z = z1 between the geostrophic
interior and the underlying sublayer is given by w(z1) = limξ→∞ w(1)(ξ), that is to say

(4.9) w(z1) = −1
2
E

1/2
V1 k̂ ·

⇀

∇×
(

⇀

u(1)(0) − ⇀

u1

)
+

Dzi

Dt
.

Consider then the lower sublayer, where (4.2) holds. Here, again according to (2.13),
the current

⇀

u(2)(η) is

(4.10)
⇀

u(2)(η) = exp[−η]
[⇀

V sin(η) + k̂ ×
⇀

V cos(η)
]

+
⇀

u2.

In this case
⇀

V = −k̂ × (
⇀

u(2)(0) − ⇀

u2) so (4.10) is equivalent to

(4.11)
⇀

u(2)(η) = exp[−η]
[
−k̂ ×

(
⇀

u(2)(0) − ⇀

u2

)
sin(η) +

(
⇀

u(2)(0) − ⇀

u2

)
cos(η)

]
+

⇀

u2.

From the incompressibility equation ∂w(2)

∂η − E
1/2
V2

⇀

∇ · ⇀

u(2) = 0 written in terms of the

variables (x, y, η) and with
⇀

∇ · ⇀

u(2) evaluated from (4.11), the vertical velocity in the
sublayer is obtained

(4.12) w(2)(η) = E
1/2
V2 k̂ ·

⇀

∇×
(

⇀

u(2)(0) − ⇀

u2

) ∫ η

0

exp[−η′] sin(−η′)dη′ +
Dzi

Dt
.

Finally, the vertical velocity w2 at the transition depth z = z2 between the geostrophic
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interior and the overhanging sublayer is given by w(z2) = limη→∞ w(2)(η), that is to say

(4.13) w(z2) =
1
2
E

1/2
V2 k̂ ·

⇀

∇×
(

⇀

u(2)(0) − ⇀

u2

)
+

Dzi

Dt
.

As anticipated, in the case
⇀

u1 =
⇀

u2 the above dissipative mechanism is expected to
disappear: the simplest way to achieve this is by putting

(4.14)
⇀

∇× ⇀

u(1)(0) =
⇀

∇× ⇀

u2

and

(4.15)
⇀

∇× ⇀

u(2)(0) =
⇀

∇× ⇀

u1.

Note that
⇀

u(1)(0) differs from
⇀

u2 in the gradient of a scalar and the same holds true
for

⇀

u(2)(0) and
⇀

u1. Under assumptions (4.14) and (4.15), the velocities (4.9) and (4.13)
become

(4.16) w(z1) =
1
2
E

1/2
V1 k̂ ·

⇀

∇×
(

⇀

u1 −
⇀

u2

)
+

Dzi

Dt

and

(4.17) w(z2) =
1
2
E

1/2
V2 k̂ ·

⇀

∇×
(

⇀

u1 −
⇀

u2

)
+

Dzi

Dt
.

respectively. In terms of the geostrophic stream functions ψ1 and ψ2, such that
⇀

u1 =
k̂ ×

⇀

∇ψ1 and
⇀

u2 = k̂ ×
⇀

∇ψ2, eqs. (4.16) and (4.17) take, respectively, the form

(4.18) w(z1) =
1
2
E

1/2
V1 ∇2(ψ1 − ψ2) +

Dzi

Dt

and

(4.19) w(z2) =
1
2
E

1/2
V2 ∇2(ψ1 − ψ2) +

Dzi

Dt
.

Note that in the absence of frictional dissipation, (4.18) and (4.19) become

w(z1) = w(z2) =
Dzi

Dt

in accordance with the kinematics of an impermeable interface between two fluids. We
recall [4] that

(4.20) zi =
f0UL

g′H
(ψ2 − ψ1),

where U , L and H are characteristic of the scale of the model and g′ is the reduced
gravity. We stress that Dzi

Dt is a nondimensional quantity, so the explicit form of the
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nondimensional Lagrangian derivative D
Dt must be determined. Starting from the dimen-

sional Lagrangian derivative D
Dt∗

, we have

(4.21)
D

Dt∗
=

∂

∂t∗
+

⇀

u∗ ·
⇀

∇∗ =
1
T

∂

∂t
+

U

L

⇀

u ·
⇀

∇ =
U

L

(
L

UT

∂

∂t
+

⇀

u ·
⇀

∇
)

and, in (4.21), we identify the nondimensional Lagrangian derivative with

(4.22)
D
Dt

=
L

UT

∂

∂t
+

⇀

u ·
⇀

∇.

In the case in which the local time scale T = (β0L)−1, (4.22) becomes

(4.23)
D
Dt

=
β0L

2

U

∂

∂t
+

⇀

u ·
⇀

∇.

Finally, putting together (4.20) and (4.23), we obtain

(4.24)
Dzi

Dt
=

β0L

f0
F

[
∂

∂t
(ψ2 − ψ1) +

(
δI

L

)2
⇀

u ·
⇀

∇(ψ2 − ψ1)

]
,

where the Froude number F = f2
0 L2

gH and the inertial boundary layer thickness δI =
(U/β0)1/2.

5. – The dissipation at the interface in the quasi-geostrophic vorticity
dynamics

Consider first the upper geostrophic layer included between the rigid lid, in which,
by definition the vertical velocity is zero, and the depth z1 where (4.18) holds. The
dimensional vorticity equation is

(5.1)
∂ς1
∂t

+
⇀

u1 ·
⇀

∇(ς1 + β0y) + f0w1∗/H1 = 0,

where ς1 is the relative vorticity, ς1 + f0 + β0y is the total vorticity, w1∗ = UH1w1/L is
the dimensional vertical velocity at the depth z1 and H1 is the thickness of the upper
geostrophic layer. The nondimensional version derived from (5.1), written in terms of
the geostrophic stream functions ψ1 and w1 given by (4.18), has the form

(5.2)
1

f0T

∂

∂t
∇2ψ1 +

U

f0L
J(ψ1,∇2ψ1) +

β0L

f0

∂ψ1

∂x
+

E
1/2
V1

2
∇2(ψ1 − ψ2) +

Dzi

Dt
= 0.

Under the assumption of the local time scale T = (β0L)−1 and using (4.24), eq. (5.2)
can be written in the final form

(5.3)
∂

∂t

(
∇2ψ1+F1(ψ2−ψ1)

)
+(δI/L)2J(ψ1,∇2ψ1+F1ψ2)+

∂ψ1

∂x
+

δV1

L
∇2(ψ1−ψ2)=0,

where the Froude number F1 = f2
0 L2

g′H1
and δV1

L = f0E
1/2
V1

2β0L .
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In the same way, starting from (4.19) one obtains the vorticity equation of the lower
layer that is

(5.4)
∂

∂t

(
∇2ψ2−F2(ψ2−ψ1)

)
+(δI/L)2J(ψ2,∇2ψ2+F2ψ1)+

∂ψ2

∂x
+

δV2

L
∇2(ψ2−ψ1)=0,

where F2 = f2
0 L2

g′Hi
is the Froude number of the lower layer and f0E

1/2
V2

2β0L = δV2
L .

To summarise, the dissipative mechanism arising at the interface between the layers
enters into the quasi-geostrophic vorticity equations (5.3) and (5.4) through the terms
δVi

L ∇2(ψi − ψj) with (i, j) = (1, 2) for the upper layer and (i, j) = (2, 1) for the lower
one.

6. – Application to coupled Rossby waves

To show an application of the two-layer model of sect. 5, here the inertial behaviour
of coupled Rossby waves, governed by (5.3) and (5.4), is considered under the following
simplifying assumptions:

– The dynamics is linear, that is ( δI

L )2 is negligibly small.

– The layers have the same thickness, so F1 = F2 ≡ F .

– The sublayers have the same thickness so δS1
L = δS2

L ≡ r.

Therefore the vorticity equation for the upper layer, derived from (5.3), is

(6.1)
∂

∂t

(
∇2ψ1 + F (ψ2 − ψ1)

)
+

∂ψ1

∂x
= r∇2(ψ2 − ψ1)

and that for the lower layer, derived from (5.4), is

(6.2)
∂

∂t

(
∇2ψ2 − F (ψ2 − ψ1)

)
+

∂ψ2

∂x
= −r∇2(ψ2 − ψ1).

Because of linearity, trial wavelike solutions of the kind

(6.3) Φ1 = A1 exp[i(kx + ny − σt)]

and

(6.4) Φ2 = A2 exp[i(kx + ny − σt)]

are considered. Then

(6.5) ψ1 = Re{Φ1}

and

(6.6) ψ2 = Re{Φ2}
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satisfy the same equations (6.1) and (6.2) and constitute the physical stream functions of
the model. In (6.3) and (6.4) the amplitudes A1 and A2 are constant while the frequency
σ is determined by substituting (6.3) and (6.4) in (6.1) and (6.2), respectively. The result
is given by solving the system of algebraic equations

(6.7)

{(
iσ(k2 + n2) + iσF + ik − r(k2 + n2)

)
A1 +

(
−iσF + r(k2 + n2)

)
A2 = 0,(

−iσF + r(k2 + n2)
)
A1 +

(
iσ(k2 + n2) + iσF + ik − r(k2 + n2)

)
A2 = 0.

Nontrivial solutions of (6.7) demand

det
(

iσ(k2 + n2) + iσF + ik − r(k2 + n2) −iσF + r(k2 + n2)
−iσF + r(k2 + n2) iσ(k2 + n2) + iσF + ik − r(k2 + n2)

)
= 0,

whence σ is singled out from

(6.8) iσ(k2 + n2) + iσF + ik − r(k2 + n2) = −iσF + r(k2 + n2)

or from

(6.9) iσ(k2 + n2) + iσF + ik − r(k2 + n2) = iσF − r(k2 + n2).

Hence, the admissible dispersion relations are found to be

(6.10) σ = − k

k2 + n2 + 2F
− 2i

r(k2 + n2)
k2 + n2 + 2F

and

(6.11) σ = − k

k2 + n2
.

The real part of σ shows that Rossby waves are concerned. Dispersion relation (6.10)
implies

(6.12) A1 + A2 = 0,

while (6.11) implies

(6.13) A1 − A2 = 0.

Therefore, in case (6.10), the stream functions (6.5) and (6.6) are given by

(6.14) ψ1 = A1 exp
[
−2

r(k2 + n2)
k2 + n2 + 2F

t

]
cos

(
kx + ny − k

k2 + n2 + 2F
t

)

and

(6.15) ψ2 = −ψ1,



FRICTIONAL DISSIPATION AT THE INTERFACE OF A TWO-LAYER ETC. 337

respectively. The time decay of the waves in both the layers is provided by the exponential
factor appearing in (6.14). Note that the decay rate depends on the wave numbers and
thus on the wavelength, as discussed in [4] for the single-layer flow.

On the other hand, in case (6.11) stream functions (6.5) and (6.6) coincide and are
given by

(6.16) ψ1 = ψ2 = A1 cos
(

kx + ny − k

k2 + n2
t

)
.

Hence, ∇2(ψ2 − ψ1) is trivially zero, so the system does not decay in time.

7. – Conclusions

The main result of this paper consists in the derivation of eqs. (4.18) and (4.19), which
are mostly postulated, along the same line adopted to infer the Ekman pumping in the
classical theory of Ekman’s boundary layers. However, unlike the latter case, a definite
boundary condition for the flow close to the interface does not seem to be deducible, so an
assumption ad hoc, that is (4.14) and (4.15), has been introduced to achieve (4.18), (4.19).
Finally, an application to quasi-geostrophic coupled Rossby waves has explained the role
of this kind of dissipation in the framework of a very simple baroclinic model.
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