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Summary. — Natural and man-made distributions of tensioactive substance con-
centrations in the sea surface features exhibit self-similarity at all radar reflectivity
levels when illuminated by SAR. This allows the investigation of the traces produced
by vortices and other features in the ocean surface. The man-made oil spills besides
often presenting some linear axis of the pollutant concentration produced by moving
ships also show their artificial production in the sea surface by the reduced range
of scales, which widens as time measured in terms of the local eddy diffusivity dis-
torts the shape of the oil spills. Thanks to this, multifractal analysis of the different
backscattered intensity levels in SAR imagery can be used to distinguish between
natural and man-made sea surface features due to their distinct self-similar prop-
erties. The differences are detected using the multifractal box-counting algorithm
on different sets of SAR images giving also information on the age of the spills.
Different multifractal algorithms are compared presenting the differences in scaling
as a function of some physical generating process such as the locality or the spectral
energy cascade.

PACS 92.10.Sx – Coastal, estuarine, and near shore processes.
PACS 93.85.Bc – Computational methods and data processing, data acquisition
and storage.

1. – Introduction

Most mixing processes in the ocean depend both on advection and diffusion charac-
teristics with energetic inputs at many different scales, the topology of tracers in the
ocean surface probable depends on the local characteristics of the turbulent cascades.
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For example, in the detected vortices in the ocean, local shear will transform slicks in
the surface to align and follow the local flow so the resulting pattern is spiral as shown
by Munk [1]. The mixing processes at large scale produce stirring, which maintains large
gradients of the tracers. But in order to mix at molecular level in an irreversible fashion,
the energy has to cascade to the smallest internal scales (Kolmogorov or Batchelor scales).

An important topological tool, fractal analysis was pioneered by Richardson and
popularized by Mandelbrot. The fractal dimension is a very useful indicator of the
complex environmental flow dynamics [2,3], but it only reflects the self-similar geometry,
not the dynamics of the flow. Because the oceans receive energy inputs at a wide range
of scales, and the non-linear interactions that follow produce turbulent cascades of the
type described by Richardson and Kolmogorov [4-6] (3D) and Kraichnan [7] (2D). The
characteristics of these turbulent cascades, which may be assumed to conserve energy,
energy dissipation, enstrophy, enstrophy dissipation or helicity, will affect the dispersion
of the pollutants as well as the natural tracers in the ocean surface.

The ability of the SAR equipped satellites to monitor a large sea area and the fact
that radar reflections are sensible to either surface tension-actives or pollutants that
change the sea surface roughness make them an important tool in environmental re-
search. Man-made oil/water wash spills dampen the small-scale surface waves, these in
turn are responsible for the radar backscattering from the water surface, and are clearly
visible as dark patches or lines in SAR images (fig. 1) that most times strike out from
the rest of the image. Other types of oceanic and atmospheric phenomena also cause
specific signatures due to changes in the surface capillary waves similar to those due
to oil slicks. These features are advected by the local currents so they are also able
to reveal the structure of the ocean surface [8-10]. It is important to point out that
the detection ability of oceanic surface films by SAR sensors strongly depends on wind
speed: at either very low wind speeds (below approximately 2 m/s) or very high wind
speed (above approximately 10 m/s) oceanic surface films cannot, or may only barely,
be identified [10-13]. On the other hand, the sunshine illumination conditions are not a
limiting factor for the acquisition of SAR images as the cloud cover is transparent for
SAR sensors. The nocturnal conditions are not limiting either because SAR is an active
sensor that radiates its own energy.

These effects allow us to use remote sensing of the ocean surface even to monitor
and police pollution from space. Here we will discuss several techniques that are able
to extract geometrical information from the ocean surface linked in several ways to the
dynamics of a certain area. Multifractal analysis is useful on different accounts as a
quantitative technique to distinguish the origin of several features.

Oceanic and atmospheric flows may be considered as turbulent motions under the
constraints of geometry, stratification and rotation. At large scales these flows tend to
occur mostly along isopycnal surfaces due to the combined effects of the very low aspect
ratio of the flows (the motion is confined to thin layers of fluid) and the existence of stable
density stratification. The effect of the Earth’s rotation is to reduce the vertical shear
in these almost planar flows. The combined effects of these constraints are to produce
approximately two-dimensional turbulent flows termed as geophysical turbulence.

2. – Geophysical turbulence

In a strictly two-dimensional flow with weak dissipation, energy input at a given scale
is transferred to larger scales, because these constraints stop vortex lines being stretched
or twisted. Physically this upscale energy transfer occurs by merging of vortices and leads
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Fig. 1. – a) Example of ERS-2 SAR images (left) with a recent oil spill in the north-western
Mediterranean near Barcelona. b) Multiple spills near Sicily; the image’s box sizes are approx-
imately 100 km.

to the production of coherent structures in the flow that contain most of the energy. This
process generates the appearance of order from chaos [14,15].

This scenario is an appropriate model for geophysical flows which are known to contain
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very energetic vortices mesoscale oceanic eddies and atmospheric highs and lows. This
upscale transfer of energy is inhibited at the Rossby deformation radius:

LR =
N

f
h,

where h is the characteristic scale of the depth of the thermocline, N the Brunt-Väisälä
frequency and f the Coriolis parameter.

The energy limitation is caused by baroclinic instability at larger scales, which ac-
counts for the dominant observed size of geophysical vortices detected in laboratory
experiments on annulus flow, where the flow is driven in a rotating annulus by differ-
ential heating of the lateral walls of the annulus, or by internal heating of the fluid. A
horizontal temperature gradient is established which drives a zonal flow via the “thermal
wind” balance. For certain values of the parameters this flow is unstable to baroclinic
modes that feed on the energy in the temperature or density fields.

Many features have been identified with structures and phenomena observed in sev-
eral experiments, and understanding of atmospheric and ocean dynamics has been sig-
nificantly advanced. The experiments have provided new insights about the dynamics
and have revealed a wide range of nonlinear behaviours.

Experiments performed by Linden et al. [15] showed the effect of mixing from the edge
on a rotating stratified system. When the instability is caused by differential heating or
by buoyancy there seems to be a range of very different dynamic regimes. Work by
Carrillo [16] has revealed the possible complex interactions between lateral (or coastal)
stirring and the rotating-stratified flow dynamics.

The investigation of such strongly non-homogeneous flow, which leads to intermittent
two-dimensional turbulence [17,18] is believed to be very important if correct parameter-
izations of pollutant dispersion (such as Oil spills) in coastal areas are to be made. The
availability of a large-scale flow allows both to measure Eulerian velocities with preci-
sion as well as Lagrangian flows using particle tracking as well as local measurements of
diffusivity by video recording the dispersion of neutral tracers. A possible oil spill predic-
tion technique involves the releasing of hundreds of small and inexpensive tracer (GPS)
Lagrangian buoys near an accident to aid the predictions of coastal currents [12,13].

Recent man-made oil spills in the sea surface are characterized by the low fractal
dimension values (D < 1.2) over the region of low reflectivity in SAR images, on the
other hand, natural oil slicks show a typical parabolic shape with a maximum of D < 1.5.
Most of the SAR images analyzed were obtained during 1996-1998 (near 900 images of
European coastal waters with 300 in the NW Mediterranean Sea area) but SAR and
ASAR images from ENVISAR have also been used. One of the problems in order to
identify oil spills is the possibility of confusion with natural tensioactive spills, which
may be due to plankton, algae or even wind pattern reflections on the ocean surface,
one of the possibilities is to use the scaling properties of the turbulence that advects and
diffuses the tracers [19,20].

3. – Multifractal objects and fractal dimensions

Fractals are geometric entities that present self-similarity and they are often the result
of iterative processes such as turbulence. The self-similarity implies that if we accomplish
observations from different scales the results are similar, although in natural systems it is
enough to have only a certain statistical similarity. These entities have usually anisotropic
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nature and then there may be different scaling laws for the different directions. Examples
of these are the surface topography and the clouds, where the vertical coordinate has a
smaller magnitude than horizontal coordinates due to stratification. Fractal analysis is
a very useful tool to characterize these objects in which an additional possibility is the
calculation of the corresponding fractal dimension along the different coordinates so it
may also reflect the anisotropic scaling [21,22].

3.1. Fractal scalar fields. – The theory applied here links fractal analysis to the turbu-
lence self-similarity [22-24]. Turbulent diffusivities and Richardson’s law applied to the
ocean surface probed by the SAR images will be discussed. If we consider the variance
of a special signal, then

(1) V (λ) = V (0) − S2(λ)
2

= 〈(ρ(x + λ)ρ(x))2〉.

The self-similar character of the signal, that for velocity differences, including inter-
mittency, was popularized in [6, 21] through the use of structure functions may scale
through the Hausdorff dimension H when the limit

(2) lim
λ→0

〈(ρ(x + λ) − ρ(x))〉
λH

converges and then the dependence corresponds to a fractal set, either in space or in the
form of a time series (when the coordinate is time and instead of a wave-number we have
a period).

With the stated conditions, the variance of the signal under study will show a scale
dependence such that V (λ) ≈ λ2H [22-25].

Using λ = 2π/k and the description of the spatial spectral density function, E(k), we
have

(3) E(λ) ≈ λβ

and relating the scalar equivalent to the turbulence energy spectrum as a Fourier trans-
form of the correlation, also directly related to the second-order structure function as

(4) S2(x, λ) = 〈ρ2(x, λ)〉 = V − 1
2

〈
(ρ(x + λ) − ρ(x))2

〉
.

We may write in terms of the spatial equivalent to the turbulent energy density

(5) E(k)α λ

∫ λ

0

ρ2(x) eikx dx ≈ λV

so relating the Euclidean, fractal and Hausdorff dimensions, using (H = E − D) [2]

(6) E(k) ≈ λV ≈ λ2H+1 ≈ λ2E+1−2D.

Thus the relationship between the exponent of the spectral density function and the
maximum fractal dimension may be written as

(7) β = 2E + 1 − 2D



866 A. PLATONOV, A. CARRILLO, A. MATULKA, ETC.

and inversely

(8) D = E +
1 − β

2
.

These relationships may be used to relate the maximum fractal dimension of a spatial
signal to the spectral power slope (including intermittency) of the environment. If the
signal used is the SAR radar intensity D would reflect the ocean surface type of horizontal
turbulent cascade assuming that the tensioactive tracers act in a passive way being
advected by the velocity field.

3.2. Theory of multifractal measurements. – The measurement of multifractals is
mainly the measurement of a statistic distribution which is why the results yield useful
information even if the underlying structure does not show a self-similar or self-affine
behavior as shown by Plotnick et al. [26].

For a monofractal object, as mentioned above, the number n of features of a certain
size δ varies as

(9) n(δ) ∝ δ−D0 ,

where the fractal dimension D0

(10) D0 = lim
δ→0

log n(δ)

log
1
δ

can be measured by counting the number n of boxes needed to cover the object under
investigation for increasing box sizes δ and estimating the slope of a log-log plot.

There are several methods for implementing multifractal analysis; in this section the
moment method [2, 3] is explained. This method uses mainly three functions: τ(q),
called the mass exponent function, α, which is known as the coarse Hölder exponent,
and finally the function f(α), or multifractal spectrum. For a measure (or field) defined
in a two-dimensional support of the L×L pixels image, μ (may be considered as the grey
tone from 0 to 255 in a normal 8 bit image), it could be spatially decomposed in terms
of infinitely many intertwined sets of fractal dimensions. If that is the case, one fractal
dimension cannot characterize all the complexity and several fractal dimensions will be
estimated depending on the position. Applying box-counting “up-scaling” partitioning
process we can get the partition function χ(q, δ) defined as [3]

(11) χ(q, δ) =
n(δ)∑
i=1

μq
i (δ) =

n(δ)∑
i=1

mq
i ,

where m is the mass of the measure, q is the mass exponent, δ is the length size of the
box and n(δ) is the number of boxes in which mi > 0. Based on this, the mass exponent
function (τ(q)) shows how the moments of the measure scale with the box size:

(12) 〈τ(q)〉 = lim
δ→0

log〈χ(q, δ)〉
log(δ)

= lim
δ→0

log
〈∑n(δ)

i=1 mq
i

〉
log(δ)

,
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where 〈 〉 represents the statistical moment of the measure μi(δ) defined on a group of
non-overlapping boxes of the same size partitioning the area studied. Dq are related as
τ(q) = (1 − q)Dq.

This characterization of multifractal measures is the concept of generalized dimensions
Dq, which corresponds to the scaling exponents for the q-th moment of the measure.
Based on the work of Rényi [27] they are defined as

(13) Dq = lim
δ→0

1
1 − q

log
∑n(δ)

i=1 mi
q

log δ
.

The sum in the numerator of eq. (5) is dominated by the highest values of mi for
q > 0, and by the lowest values of mi for q < 0.

The singularity index (α) can be determined by Legendre transformation of the τ(q)
curve [25] as

(14) 〈α(q)〉 =
d〈τ(q)〉

dq
.

The number of cells of size δ with the same α, nα(δ), is related to the cell size as
nα(δ) ∝ δ−f(α), where f(α) is a scaling exponent of the cells with common α. The
parameter f(α) can be calculated as

(15) 〈f(α)〉 = q〈α(q)〉 − 〈τ(q)〉.

Multifractal spectrum (MFS), a graph of α vs. f(α), quantitatively characterizes vari-
ability of the measure studied with asymmetry to the right and left indicating domination
of small and large values, respectively. The width of the MF spectrum indicates overall
variability.

MFA in 2D images involves partitioning the plane into boxes to construct samples
with multiple scales. The box-counting (BC) method combines pixels to form larger
mutually exclusive boxes each containing different sets of pixels. If we have an image of
L×L pixels and a partitioned process is applied with a box size δ × δ, then the number
of boxes with linear size δ(n(δ)) will follow the proportion:

(16) n(δ) ∝
(

L

δ

)2

.

The larger is δ the larger the number of samples needed to carry out a convergent
statistical analysis.

As examples of the image enhancement and of the techniques used to reveal the
structure of the oil slicks and spills detected by the reduction in surface roughness of
the ocean, fig. 2 shows an enhanced SAR image with two typical examples where a
combination of oil spills and natural slicks is present; in fig. 3 the same information given
by the spatial distribution of SAR intensity pixels (about 4 × 104 m2 per pixel) in a 3D
representation, with the third coordinate indicating the actual local value of the SAR
intensity.



868 A. PLATONOV, A. CARRILLO, A. MATULKA, ETC.

Fig. 2. – SAR ERS-2 images of the area near Barcelona 24.08.97, marked squares show the
regions of image enhancement (oil spill (left) and self-similar vertical surface feature (right)) as
shown in fig. 8.

Fig. 3. – Analyzed by DigImage the results of 3D structure of the false colour derived from
intensity of SAR signals that reflect surface roughness: oil spill (left) and self-similar vertical
surface feature (right).
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3.3. Multifractal measurements. – To calculate the fractal dimension, the box-counting
method used produces a coverage of the object as discussed above. For the plane these
boxes will be squares and for an object in space they will be cubes. The distribution of
the boxes is accomplished systematically, the intersection of these with the object carries
the fact that we have N boxes with a non-void intersection, but as they are not exactly
the result of the better coverage possible, the concept of self-similarity may be applied
and thus the basic covering is accomplished repeating the process for many different
possible diminishing observation scales.

When we work with real images they do not have generally some perfectly defined
contours, but we have some wide quite ranges of scalar intensity values to process. If we
group the available data and describe them by a single large set and calculate the fractal
dimension, we then lose the corresponding information due to the intensity variation.

It is also possible to accomplish a segmentation in many intervals that contains each
one a very well-defined intensity range. For each one of these ranges the usual fractal
dimension calculation with the box-counting method will be applied and we will obtain
the corresponding fractal dimension for each intensity level. The result of the process
will be a set of dimension values, function of the intensity, and this measure will not
need to rely on the evaluation of a limit neither to the smallest nor to the largest scales.
An advantage of this straightforward method is that the best fit to calculate D may be
performed choosing freely the scale, the scale interval and the number of pixel values
that will be used.

The fractal dimension D(ρ) is then a function of pixel intensity (we may relate μ to
ρ) and may be calculated using

(17) D(ρ) = − log N(ρ)
log λ

,

where N(ρ) is the number of boxes of size λ needed to cover the SAR contour of inten-
sity ρ.

The box-counting algorithm divides the embedding Euclidean plane in smaller and
smaller boxes (e.g., by dividing the initial length λ0 by n, which is the recurrence level of
the iteration). For each box of size λ0/n it is then decided if the convoluted line, which
is analyzed, is intersecting that box. Finally, N versus λ0/n (i.e. the size of the box e)
in a log-log plot is plotted, and the slope of that curve, within reasonable experimental
limits, gives the fractal dimension. This method of box-counting is used in ImaCalc
software [10] that we applied to detect the self-similar characteristics for different SAR
image grey intensity levels ρ and to identify different sea surface dynamic processes. Each
of the intensity values may reflect different physical processes and lead to a different value
of its fractal dimension, this whole entity can be either fractal or non-fractal but exhibits
a range of values 0–2 for each intensity.

The program ImaCalc [10-13] performs interactively most of the multifractal box-
counting methods as well as the spectral ones. Different regions may be equalized de-
pending on their intensity histogram distribution. Figure 4 shows the dialog box with
the zoom, histogram and a fractal fit. With this application we can define the image
region of interest, select an intensity range to analyze and execute the multifractal char-
acterization process in a simple iterative way. On the right side of fig. 4, other smaller
boxes show the observed dimension values as a grey-level function of the characterized
intervals, which may also be selected.
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Fig. 4. – Example of the use of ImaCalc on a ERS-1 SAR image with surface features showing
a vortex in the Northwest Mediterranean near Barcelona.

Using the traditional energy spectra used in turbulence studies characterized by a
single power law within the inertial sub-range (defined as the range of scales where
production and dissipation of energy, ε are in local balance) we may use a theoretical
relationship between the turbulence spectral slope and the fractal dimension, we are
now able to apply it to a spatial spectrum as described above, and define a global fractal
dimension using directly the spectral analysis on the radial distribution of intensity values
of a SAR image.

With this methodology a unique value is obtained that characterizes the overall spa-
tial fractal dimension of the system. The steps are described as follows [23]: make an
image segmentation to obtain the interest region. (ρmn, m and n are the x-y discrete
coordinates.) Compute the FT (Fourier Transform) to obtain the frequency spectrum
representation. (Iuv, u and v are the frequency discrete coordinates.) Compute the
square of the signal intensity or energy Suv with: Suv = |ρuv|2. Obtain the radial repre-
sentation, as the radial distribution of Suv and finally find the exponent β from Sr = r−β .
Using the radius as an isotropic length scale λ.

With a linear fit from a log-log representation of Sr we may obtain the spatial spectral
value of the set of all SAR image intensities, which we assume is also β and using as the
Euclidean dimension E = 3 and the fractal dimension relationship we have

(18) D =
7 − β

2
.

And thus we also have a global, indirect measure of the average fractal dimension from
the radial spectral energy, note that only if the scalar used corresponds to a velocity com-
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ponent energy will have the correct physical dimension, otherwise the energy spectrum
will just indicate the square of the physical signal used.

4. – Results

The measurement of multifractals is mainly the measurement of a statistic distribution
which is why the results yield useful information even if the underlying structure does not
show a self-similar or self-affine behaviour. For a monofractal object, the number N of
features of a certain size e varies as can be measured by counting the number N of boxes
needed to cover the object under investigation for increasing box sizes e and estimating
the slope of a log-log plot. For multifractal measurements, a probability distribution is
measured. In practice, using the box-counting method, for every box i the probability of
“containing the object”, or in this application, the values of a certain SAR reflectivity, is
also called the partition function, which may be obtained for different moments q which
can vary from −8 to +8. Both methods described above may be used to extract useful
information about the age of the oil spills as well as about other mixing processes in the
oceal surface.

Thus it is possible to define D as described above. The well-known [24-28] multifractal
function f(a) may be seen as the fractal dimension of the set of intervals that corresponds
to a singularity a, and a graph of a vs. f(a) is called the multifractal spectrum of the
measure. A measure is multifractal when its multifractal spectrum exists and has the
shape of an inverted parabola. A generally equivalent way to describe a multifractal
scaling is by considering the scaling laws of the moments of the measure.

In practice, the object density is taken to the respective power of q, summed for
all i, and plotted versus the box size in a log-log coordinate system. From the slope,
which is also called the mass exponent t, the generalized dimensions are estimated as
D(q) = t(q)/(1 − q).

Images can be pre-processed using any image processor, e.g., to convert from
colour/grey images to black-and-white using different types of algorithms, to invert back-
ground and foreground, to extract boundaries. With SAR images from the ocean surface
we cannot rely strictly on theoretical limit for the calculation of the fractal, non-fractal
or multifractal behaviour, because they have a finite size, and we have assigned a fixed
range of values to the different SAR reflectivity intensity. The ranges of scale boundaries
are defined by the image resolution, and we use numerical log/log fits (which tend to
straighten any curve) to obtain the Rényi dimensions.

Generalized dimensions D(q) can be obtained with the method of moments for any
image and box size described.

In order to compare the two multifractal analysis procedures involving either a single
fractal measure for each of the intensity levels (or grouped in sets) with the moment
calculation for the generalized dimensions, we checked the numerical values at each al-
gorithm step. Outside of this scale range, the theoretical values of D(q) (calculated as
the limit when r approaches zero) and the numerical values of D(q) (calculated from the
regression fits) are still very close if we select the range of scale and a grid matching the
theoretical generation pattern. We applied this for a range of oil spill images.

The study of the structured distribution in the space such that at any resolution the
set is the union of similar subsets to the whole will indicate the same fractal dimension for
every intensity value. But the scale factor at different parts of the set is not the same for
most SAR images. If more than one dimension is needed, then the measure considered
is characterized by the union of fractal sets, each one with a different fractal dimension.
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Fig. 5. – Range of functions χ(q, δ) for a recent oil spill (top) and for a weathered one (bottom).

A modified partition function of all images for 0 = q = 10 over box sizes e ranging
from 1 to 512 pixels based on the square of the grey levels has been used. The mass
exponent t is estimated as the slope of the log/log data for the SAR image showing the
results for a recent and a dispersed oil spill for the optimized box size range in figs. 5
and 6.

Figures 5 and 6 show the different results applying the procedure described in sub-
sect. 3.2 for both a recent and a weathered oil spill. Another possibility is to enhance
the discrimination by concentrating on the highest valued pixels assigning them to the
black SAR reflectivity values that correspond to the highest tensioactive concentrations
on the ocean surface. The functions χ(q, δ) are shown against the square or the cube of
the intensity value, which improves the level of discrimination.

Figure 7 shows the comparison of the function D(ρ) for a natural slick, that shows
a smoother parabolic shape (squares) and a recent oil spill (dots) against a normalized
SAR intensity, calculated by averaging over the background intensity values.

5. – Discussion

The SAR images exhibited a large variation of natural features produced by winds,
internal waves, the bathymetric distribution, by thermal or solutal convection by rain,
etc. as all of these produce variations in the sea surface roughness.

The satellite-borne SAR is able to detect oceanic features with a range of scales as
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Fig. 6. – Generalized dimensions (Dq) obtained for a recent oil spill (top), showing the low
values of the fractal dimension. A more weathered and convoluted oil spill (below) shows a
more complex Dq set of functions.

seen in figs. 1 and 2, which shows several eddy structures in the Mediterranean, with
a wide range of length scales. The spatial cross-correlation of the intensity signals may
also give an indication of the length over which such features are correlated. Let ρ(x)
be the intensity of the SAR backscatter at point x and ρ(x + λ) the intensity at a point
separated by a distance λ from the first one. The normalised average

(19) R(λ) =
〈ρ(x)ρ(x + λ)〉

〈ρ(x)2〉

represents the cross-correlation of ρ(x) over the area where the average is taken. Dividing
the average by the variance V = 〈ρ2〉 forces the value of R(0) to be one.

The integral length scale associated to the sea surface roughness correlation is then
defined in the usual way as

(20) λ =
∫ ∞

0

R(λ)dλ



874 A. PLATONOV, A. CARRILLO, A. MATULKA, ETC.

0.4 0.8
.2

1

1. 2

1. 4

1. 6

 0

Fr
ac

ta
l d

im
en

si
on

 D
 (i

)

Normalized SAR intensity i/io
1

Fig. 7. – Multifractal set of dimensions D(μ) obtained for a recent oil spill (dots), showing
the low values between 0.1 and 0.4 of the normalized SAR intensity. A natural spill is more
convoluted (squares) and shows a more uniform parabolic type of D(μ) functions.

Fig. 8. – SAR intensity observations of 4 vortices in the ocean surface in the Mediterranean Sea.
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Fig. 9. – Detected shapes and sizes of the vortices detected during years 1997-1999 in the NW
Mediterranean Sea.

which indicates the spatial scale l where the SAR intensities are well correlated. If
we suppose that the surface currents are responsible (at least partly) for the spatial
distribution of the ocean roughness for two main reasons, first the slope on both sides
of an eddy is very different at producing radar backscatter from a side (as happens with
ERS-1/2 and also ENVISAT), the other reason is that the surface tensioactives natural or
man produced will be advected by the current lines relating the scalar and the vorticity
distribution within the complex mesoscale ocean surface topology. Figure 8 shows an
example of detected vortices using SAR. From the observations of a two-year period it
is possible to map the positions, sizes orientations and shapes of a certain area as shown
in fig. 9 for the region near Barcelona.

There is a very different type of SAR signature where convective cells are formed
in the ocean surface, it is interesting to compare the multifractal appearance of the
different signatures and this is shown for the examples in fig. 10, three vortices and a
convective feature. The only quite different fractal structure is the bottom right one
corresponding to the convective cells, where a clear plateau of a constant value of the
maximum fractal dimension indicates that this measure is the same for the different
intensity values of the SAR images. On the other hand, the vortical structures exhibit
a slightly higher fractal value (1.6) for the higher SAR reflectivity (white) and a linear
increase from the darker features (lines that indicate the eddy structure, mostly due to
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Fig. 10. – Comparison of four features in the ocean surface, a vortex in the top left corner and
an area of convective activity in the right bottom corner, the other two cases have a combination
of both features.

Langmuir convergence lines). It is obvious that the dark features, being elongated and
smoother have a smaller fractal dimension than the background area between the spiral
structures. But the appearance of a linear increase is not clear. The fact that convective
structures take place in all the images and the structures are marked both by darker
(meaning a smooth surface) and white (rougher sea surface areas) zones explains that
at a wider range the maximum fractal dimension (D) is about the same (1.55) as seen
in fig. 11 for convective cells. Figure 12 shows a typical multifractal plot for an ocean
surface feature driven by internal waves, while fig. 13 shows D(ρ) for a weathered oil
spill.

The geometrical-dynamical equivalences described above may be used to check dif-
ferent methodologies of fractal dimension calculations. When the spectra can be written
as a function of an on/off scalar quantity, it is also possible to directly relate the fractal
dimension with the spectra as described above, although there are still several arguments
leading to different relationships [29]. Also the possibility of a small-scale (sub grid or sub
interrogation/pixel region) turbulent diffusion exists. The appearance of a set of scalar
values, such as the SAR radar backscattered reflectivity as a superposition of on/off con-
tours which may not be connected to a set of continuous values makes the geometrical
appearance of the environmental flow much more complicated but more realistic.
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Fig. 11. – Comparison of the multifractal D(ρ) plots for the four features in the ocean surface
shown in fig. 9 a vortex in the top left corner, with a parabolic shape, and an area of convective
activity in the right bottom corner, with a uniform value of D over a wide range of SAR intensity
values, the other two cases have a combination of both features.
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Fig. 12. – Multifractal D(ρ) plot for a region of internal waves detected by SAR, with a parabolic
shape, and a maximum value of D of 1.4.
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Fig. 13. – Multifractal D(ρ) plot for a weathered oil spill detected by SAR, showing a combina-
tion of the parabolic shape, with some skewness and low values at low SAR reflectivity and a
maximum value of D of 1.4.

6. – Conclusions

The use of routine satellite information by SAR or other sensor types may be of
great interest to build a seasonal database of the dynamic conditions of the mesoscale
turbulence in the ocean, after several years of observations the dominant patterns and
the causes for different topological characterisations might be understood better [29,30].

In the simplified conditions described above the maximum size of stable vortices can be
characterized directly by the Rossby deformation radio RD depending on the square root
on the depth on the local thermocline h. There is self-similar scaling at a very large range
of scales and a linear dependence between the RD and the frequency of Brunt-Väisälä in
the condition of a fixed h, this may be used to forecast and to check from satellite routine
observations many of the dynamic characteristics of a certain area. The strong vertical
stratification of the surface water aids the development of the largest vortices. As the
frequency N strongly depends on the seasonal thermal balance, the wave mixing activity
and other local bathimetry induced processes that affect the water column, the range
and spatial distribution of detected vortices is very useful in the predictive behaviour of
a marine zone.

The use of thematic maps that may be updated from combined satellite sensors and
images and validated with space in situ observations may be even used to predict local
diffusion. In such a manner, more sophisticated data analysis such as the evaluation of
integral length scales or local fractal dimensions of the sea surface appearance, together
with the detailed information of the position and sizes of the mesoscale dominant eddies
of size about RD provides useful information on the mesoscale ocean turbulence.

A large collection of more than 900 SAR images obtained from three European coastal
areas (Baltic Sea, North Sea and NW Mediterranean) by the ERS-1 and ERS-2 were
analyzed and compared with other Satellite images. The research was done in the frame-
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work of the CLEAN SEAS European Union project and more information is available
at [13-16].

The use of routine satellite information by SAR or other sensor types may be of
great interest to build a seasonal database of the dynamic conditions of the mesoscale
turbulence in the ocean, after several years of observations the dominant patterns and the
causes for different topological characterisations might be understood. It is important to
characterize the types and structure of the main vortices detected as well as the spectral
cascade processes that take place, these may be investigated by using fractal methods on
images of the area as well as with models of the turbulent cascade and field measurements
of diffusion [30-32].

The different multifractal formalisms can be used to discriminate between different
physical processes that, despite being similar, have different transport mechanisms for
the different scales, or in time. From the comparison of the multifractal plots of the well-
defined SAR detected vortices with those of convective cells, vortices show a maximum
complexity for the low reflectivity values, while convection, probably because the basic
instability happens everywhere at the same time, exhibits almost the same fractal dimen-
sion for a wide range of intermediate SAR reflectivity. The analysis of recent versus more
convoluted oil spills is also interesting both in the formalisms presented in subsect. 3.2
and 3.3. The recent oil spills pave a well-defined spatial and temporal origin, so as time
develops (measured in terms of the turbulence of the area) the fractal measures tend to
be those of the turbulent environment, initially for low SAR reflectivity the generalised
dimensions are low but in time they increase to a limit of 1.5–1.6.
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