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Summary. — A detailed analysis of the flow structure resulting from the com-
bination of turbulence and internal waves is carried out and visualized by means
of the Schlieren method on waves in a strongly stratified fluid at the Laboratory
of the IPM in Moscow. The joint appearance of the more regular internal wave
oscillations and the small-scale turbulence that is confined vertically to the Ozmi-
dov length scale favours the use of a simple geometrical analysis to investigate their
time-space span and evolution. This provides useful information on the collapse
of internal wave breaking processes in the ocean and the atmosphere. The mea-
surements were performed under a variety of linear stratifications and different grid
forcing scales, combining the grid wake and velocity shear. A numerical simulation
using LES on the passage of a single bar in a linearly stratified fluid medium has
been compared with the experiments identifying the different influences of the envi-
ronmental agents on the actual effective vertical diffusion of the wakes. The equation
of state, which connects the density and salinity, is assumed to be linear, with the
coefficient of the salt contraction being included into the definition of salinity or
heat. The characteristic internal waves as well as the entire beam width are related
to the diameter of the bar, the Richardson number and the peak-to-peak value of
oscillations. The ultimate frequency of the infinitesimal periodic internal waves is
limited by the maximum buoyancy frequency relating the decrease in the vertical
scale with the anisotropy of the velocity turbulent r.m.s. velocity.

PACS 47.55.Hd – Stratified flows.
PACS 47.27.-i – Turbulent flows.
PACS 47.20.Ft – Instability of shear flows (e.g., Kelvin-Helmholtz).
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1. – Introduction

The collapse and relaminarization of turbulence in a stratified flow is an important
subject in the atmospheric and ocean sciences because most of the vertical fluxes are
going to be unsteady and after a sharp peak of local mixing there will be long peri-
ods of decaying turbulence and these will eventually dominate the estimates of turbu-
lent diffusion, especially those that generate irreversible molecular mixing. The coupled
ocean-atmospheric boundary layer is often stratified both under the water surface by
thermoclines or haloclines, and the lower part of the atmosphere, which is characterized
by a strong interaction with the ocean surface may also be stratified. Large-scale atmo-
spheric models rely on small-scale parameterisation of vertical mixing, and the ability
to identify the local processes, which determine mixing, is very important in order to
increase the accuracy of forecasting. Strongly stratified regions often reduce drastically
the vertical transport due to the considerably amount of energy which is used in produc-
ing internal waves, so there is need to take into account the changing mixing efficiency
of the process produced by waves. The dynamics of density interfaces is controlled by
the mixing due to many different processes. Also, benthic boundary layer results from
mixing near the bottom of the sea. These processes merge near coastal regions, where
tides often produce fronts. Sometimes exchanges between two different masses of water
are locally controlled by interfacial mixing. The same is true in estuaries and river basins
where fresh river water is mixed with all seawater. The decay of stratified wakes is of
great relevance for many processes ranging from pollution control to climate-related re-
search like the CO2 vertical exchange. In region of intense shear and density gradients,
the interaction of internal waves with the small-scale structure of the turbulence is not
well known, but the measurements of vertical mixing are fundamental for climate and
weather forecasting.

Vertical overturns, produced by turbulence in density stratified fluids, can be quan-
tified by the Thorpe displacements dT , the maximum displacement length (dT )max and
the Thorpe scale LT [1, 2].

We may also define a length scale related to the vertical stratification Λ as

(1) ρ(z) = ρ0 exp[−z/Λ], Λ = |d ln ρ/dz|−1.

So that the Brunt-Väisälä frequency is then

(2) N =
√

g/Λ, N2 =
g

ρ

∣∣∣∣dρ

dz

∣∣∣∣ .

Sharp density interfaces eventually become linearly stratified as mixing occurs, we will
compare the results of numerical and laboratory experiments investigating the role of
internal waves in the dynamics of the collapse and relaminarization of the turbulence
in stratified flows. The non-linear relationship between the fluxes and the gradients of
density and velocity have been known to produce the Phillips-Posmentier effect [3-6]
where local mixing in a stratified fluid sharpens density interfaces instead of smoothing
them, [7,8] presented laboratory experiments on grid turbulence aimed at measuring the
mixing efficiency and although it was argued that internal waves were relevant, only now,
thanks to Schlieren measurements, their role is clear. Next we describe the numerical
model used and the LES small-scale turbulence parametrization. In sect. 3 the numerical
results are presented. In sect. 4 the experiments are described and the main results are
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Fig. 1. – Numerical domain of size Lx, Ly, Lz, with a linear density profile.

highlighted, finally the stratified turbulence and the internal wave-vortex interaction is
explained and the conclusions presented.

2. – Numerical method

The equations solved in the numerical model were the Navier-Stokes stratified-rotating
ones with the Boussinesq approximation, which in terms of the buoyancy, b, may be
expressed as

ρ(b)
(

∂u
∂t

+ (u∇)u
)

= −∇P + ∇(μ(b)∇u) + ρ(b)(g − 2Ω × u),

∂b

∂t
+ (u∇)b = ∇(κS(b)∇b),(3)

div u = 0, ρ = ρ(b)

with the usual symbols, μ(b) and κS(b) being the profiles of viscosity and solute diffusivity
in terms of the total buoyancy b produced both by heat and or salt [9-12]. The rotation
effects were ignored, considering that their role is not important for small-scale mixing.
The numerical domain modelled the passage of a bar (horizontal or vertical) in a linearly
stratified water tank, as seen in fig. 1 [13, 14]. The bar of side db is set at a speed Ub,
and that produces a wake in the stably stratified fluid.

The scale (LT )r.m.s. = LT discussed in [1,15] characterizes the vertical displacements
of a stable density profile. By setting the buoyancy forces equal to the inertial forces,
Ozmidov [7] derived a length scale LO which would describe the largest possible over-
turning turbulent scale allowed by buoyancy as

(4) LO =
√

ε

N3
,

where ε is the kinetic energy dissipation rate and N the Brunt-Väisälä frequency. This
relation is helpful to estimate mixing, at least that associated with patches of high tur-
bulent activity [6, 16]. The Thorpe scale is nearly equal to the Ozmidov scale, LO and
they will set a limit on the vertical displacements on the lee of the bar wake.
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The Richardson number, (Ri), measures the relative importance of buoyancy forces
which usually act so as to stabilize the flow, and velocity fluctuations which tend to
destabilize it. A bulk initial Richardson number (equivalent to the inverse square of
the Froude number, Fx) can be defined as Rib = F−2

x = g′D
Ub

, g′ being the reduced
gravity g′ = Δρ

ρ g for a sharp density interface, but we may define Δρ = (dρ/dz)db.
The Richardson number can be defined in various ways and we will give appropriate
definitions for each of the experimental situations investigated. The authors in [5, 6]
defined a bulk Richardson number in terms of local parameters as

(5) Rib =
gΔρl

ρu′2 ,

where Δρ is the buoyancy jump across a density interface, u′ is the turbulent velocity
and l is an integral length scale of the turbulence defined as the area under the cross-
correlation coefficient curve for the parallel velocity components. In general

(6) l =
∫ ∞

0

R(δ)dδ,

where δ is the distance between the density or velocity probes and R(δ) is the cross-
correlation coefficient defined as

(7) R(δ) =
u′

i(x)u′
i(x + δ)

u′2 .

In the model equations, which consider that the buoyancy is due to a combination of salt
and heat is slightly more general, but cabelling has not been considered because a linear
equation of state is used.

The values of the eddy diffusivity were explicitly separated in laminar and turbulent
ones, both for momentum, salt and temperature, so the set of 5 equations for velocity
components, vi, average salinity and average temperature are

∂vi

∂t
= −vj

∂vi

∂xj
− 1

ρ0

∂P d

∂xi
− (1 − δi3)

g

ρ0

∫ z

0

∂ρ

∂xi
(x, y, z′)dz′ + 2

∂

∂xj

[
(ν + νt) T ij

]
,(8)

∂S

∂t
= −vj

∂S

∂xj
+

∂

∂xj

[
(κ + κt)

∂S

∂xj

]
,

∂T

∂t
= −vj

∂T

∂xj
+

∂

∂xj

[
(κT + κTt)

∂T

∂xj

]
,

with Tij the turbulent stress tensor and the lower index “t” indicating the turbulent
viscosity or diffusivities.

The numerical method used was a time marching of three-steps Runge-Kutta scheme,
with third-order accuracy in the spatial discretization and second-order centered finite
differences.

The LES used a Smagorinski turbulent viscosity as

(9) vt(x, y, z, t) = (Csδ)2
∣∣∣(SijSji)1/2

∣∣∣ ,
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Fig. 2. – Values of the horizontal and vertical velocities (above) as well as the sideways vorticity
(below).

with the length scale related to the numerical mesh δ = 3
√

δxδyδz. The relationship
between the turbulent diffusivity and the turbulent viscosity is modelled empirically
through a variable turbulent Schmidt number, Sct, as κt = νt

Sct
. For low Richardson

numbers a linear relationship may be used but because Sct, that may be related to a
mixing efficiency, varies in a strong non-linear fashion as demonstrated by Linden [5] and
Redondo et al. [8, 16].

3. – Numerical results

There is an increase of vertical displacements as the bar starts to move and a com-
bination of small-scale turbulence and internal waves is produced behind the grid bar.
Figures 2 and 3 show such process. The results are presented as centreline vertical planes
normalized in x, the direction of the bar with its size as x/db. The top figures in fig. 2
represent the horizontal and vertical components of the velocity normalized with the
velocity of the bar: u/Ub, and w/Ub. The lower figure in fig. 2 represents the value of
the spanwise vorticity normalized as: Ωdb/Ub.

Observing fig. 2 for an intermediate-to-low Richardson number of Ri = 0.05 the
trapped wave structure may be identified, the growth of the wake is monotonic between
60 to 120 x/db. The size of the vortices is also seen to grow with distance (or time) from
the grid bar passage.

In fig. 3 a comparison of the vorticity contours for three different Richarson numbers
numerical experiments is presented. The shape of the wakes may be outlined from the
spanwise vorticity in the wakes of the three different numerical experiments with initial
numbers Ri0 = 0.015 (top), Ri0 = 0.1 (centre), and Ri0 = 0.25 (bottom). The Reynolds
number is Re = 880, for all the experiments. The bar size is db = 2 cm, and its velocity
Ub = 4.4 cm/s. Clearly the higher the Richardson number, the stronger the collapse. The
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Fig. 3. – Comparison of the spanwise vorticity in the wakes of three different numerical exper-
iments with initial numbers Ri0 = 0.015 (top), Ri0 = 0.1 (centre), Ri0 = 0.25 (bottom). The
Reynolds number is Re = 880. The bar size is db = 2 cm, and its velocity Ub = 4.4 cm/s.

waves observed are not so regular as in fig. 2 and after a region of growth of the wake, a
decrease occurs. At the same time there is a decrease in the amplitude of oscillations of
the vertical and horizontal velocities as well of their derivatives. Figure 4 also represents
the velocity and the velocity derivatives in time. The damped oscillations observed are
typical of the passage of an internal wave disturbance. This behavior can also be observed
in fig. 5, which is similar to the two top plots in fig. 3 and represents the horizontal and
vertical velocities, but with the fundamental difference that this time the bar is vertical
instead of horizontal. Alternate signs on the velocities in zig-zag shape are typical and
their vertical extent if forced by the turbulence collapse at scales larger than the Ozmidov
(or Thorpe) length scale.

The observed collapse and relaminarization of the stratified flow is related, but not
identical for vertical and horizontal bars as a comparison of figs. 3 and 5 shows, and this
is important when comparing with experimental results, where mostly square grids are
used [16-18].

Video digitizing and image analysis is a very promising technique nowadays for ex-
tended quantitative measurements at different scales both in space and time. Advanced
fluid dynamics analysis from ImaCalc and DigiFlow programs as well as Eulerian density
conductivity data will be used to further investigate the role of stratification on the strat-
ified flow decay and relaminarization. The differences in stratification both in the LES
simulations and in the laboratory experiments are parametrized with the local Richard-
son number as defined by [5, 16]. The clearest effect is that vertical (and horizontal)
effective diffusivities vary over more than a decade. These measurements are reflected in
the entrainment as discussed below in the discussion.
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Fig. 4. – Variations behind the single horizontal grid bar of the velocity and its spatial local
derivatives, which indicate the structure of the wake, Ub = 4.4 cm/s is the mean bar velocity.

Figure 6 represents the normalized thickness of the wake for a single horizontal bar
being displaced at uniform speed in the linearly stratified fluid. Five different Richardson
numbers are compared, showing an initial vertical growth of the wake followed by a
collapse of the normalized wake size behind the bar passage. The times Nt, where the
start of the collapse takes place, are between 1.5 and 5 Nt. The increase of the wake
size follows a common power law with power 1.3, but the behavior of the collapse in
time depends on the Richardson number. The collapse takes place sooner the higher the
Richardson number, but when the Brunt-Väisälä frequency is used to non-dimensionalize
the data the behavior is not so clear. On the other hand, fig. 6 shows that when the
Ozmidov scale has been reached collapse starts independently of the local Richardson
number. Quite interesting in the numerical simulations is the clear role of internal wave
propagation that should reduce the mixing efficiency in general, but probably in a non-
linear fashion as discussed by [5,16,19,20].

More results concerning the LES may be found in [20-22]. Considering the temporal
evolution of the near wake width for Richardson numbers less than 1/4 the wake grows
following a t1/3 law as for a homogeneous flow. Then the collapse occurs when the wake
width is maximum of about the Ozmidov scale. After that the wake width decreases up
to a constant value with strong internal wave activity.
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Fig. 5. – Structure of the collapse of the wake produced by a single vertical bar, here the local
Ozmidov scale prevents vertical displacements. Top: vertical velocity, bottom: local vertical
vorticity normalized by Ub/db.

The parameter NBVt is used to normalize the maximum wake width Hm. The be-
havior depends on Ri0 [20, 21] in the following fashion: for values of the local initial
Richardson number Ri0 < 1/9Hm/NBVt varies in the range 1.5-2.5. For 1/9 < Ri0 <
1/4Hm/NBVt varies between 3 and 5 and for more strongly stratified flows, Ri0 > 1/4,
the wake width is constant. This is another indication that the internal wave radiation
of energy is much more important than previously thought [1, 5].

Fig. 6. – Collapse of the wake size behind the bar after the passage of a horizontal bar vs. time
normalized with the Brunt-Väisälä frequency, Nt. The actual start of the collapse takes place
between 1.5 and 5 Nt.
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Fig. 7. – Detail of the synthetic Shlieren set-up at DAMTP, Cambridge.

4. – Experimental method and results

A series of experiments on the mixing structure of a sheared and grid stirred den-
sity interface were performed by [16], and more recent experiments including new mea-
surements with a three-dimensional ADV sonic velocity and micro-density conductivity
measurements have been done at DAMTP in Cambridge. The scale-to-scale transfer
and the structure functions are examined and from these the intermittency parameters.
The estimates of turbulent diffusivity could also be measured using neutrally buoyant
Pliolite particles without significant external forces. Some two point correlations and
time lag calculations are used to investigate the time and spatial integral length scales
obtained from both Lagrangian and Eulerian correlations and functions, and we compare
these results with both theoretical and experimental ones. The results presented here
will complement the LES numerical simulations presented above to further investigate
the collapse of a wake in a stratified (linear) flow and the wave field induced. This has
been able to be measured using the IPM laboratory facilities in Moscow.

In sect. 3 we have defined the Thorpe scale, from measured displacements of the
density profiles [15] as

(10) (LT )r.m.s. =
〈
d2

T (z)
〉1/2

.

The measurements on the maximum width of mixing grids of various sizes (mostly square)
have been done by means of laser-induced fluorescente LIF and also by Schlieren both at
DAMTP at Cambridge University and in Moscow. In fig. 7 the used synthetic Schlieren
system is explained.

A detailed analysis of the flow structure resulting from the combination of turbulence
and internal waves is visualized by means of real optical Schlieren of wakes in a strongly
stratified fluid at the Laboratory of the IPM in Moscow. The joint appearance of the
more regular internal wave oscillations and the small-scale turbulence that is confined
vertically to the Ozmidov length scale favors also the use of multiscale-fractal analysis,
but here we will limit to show the evidence for internal wave dissipation.

The experimental stratified shear flume used in Cambridge is shown in fig. 8 and the
facility used in Moscow is shown in fig. 9. The visualizations shown, together with the
LES numerical experiments, are only partial approximations to some of the type of real
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Fig. 8. – Race track type of shear-stratified tank designed by [16] used for the LIF visualizations
and the conductivity measurements on grid collapse. Above: general view, below: details of the
disk pump.

Fig. 9. – Large stratified tank used at IPM in Moscow, described in [17, 18, 31]. Experimental
apparatus used for the internal wave measurements in this paper.
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Fig. 10. – Image of the internal wave radiation with synthetic Schlieren.

complex features detected in environmental flows [23-25], such as intermittency related to
non-homogeneity and stratification. Their time-space span and location provides useful
information in the interpretation of internal wave breaking processes in the ocean and
the atmosphere.

In both Cambridge and Moscow, the image registration was carried out by photo
and video cameras having a spatial resolution better than 0.1 mm. The images obtained
were digitized to a personal computer and then transformed and processed by means
of ImaCalc and DigiFlow that allowed to obtain successive-frame photographic images
and to measure the geometric characteristics of the flow components. Also they allow to
make complex time and spatial quantitative measurements.

After the tank had been filled with the stratified solution and had been held for
24 h in order to decay all stratification non-homogeneities arising in filling in with the
two-tank method, the buoyancy frequency was determined. Then, the grid or bar set
up and the contact electric-conductivity sensors introduced measuring profiles and point
Eulerian measures in time. To measure internal waves, the Schlieren system was used,
and oscillation frequencies in the range N = 0.43–1.1 allow a variety of Richardson
numbers also modified by the speed of the horizontal bar or grid. After the registration
and measurement cycle were completed, the tank was let to rest and the new experiment
started 1 to 2 h after ceasing of the motion and the decay of all disturbances in the tank,
which had been registered by optical and conductivity probes.

The process of mixing across a density interface in zero mean flow may be used as a
benchmark of sub-grid parametrization of turbulence models. It is important to predict
whether a certain density interface subject to strong turbulence is going to be eroded
and the gradients will weaken or, on the contrary, the gradients will increase at certain
positions and a layered system will appear. Oscillating grid experiments have been used
often [26,27] in the context of the evaluation of entrainment through heat and salt sharp
interfaces. The entrainment laws for heat, sugar and salt have been also compared and
their respective small-scale vertical and horizontal scales investigated both with grid
wakes or/and with shear following [28-31].

The internal wave patterns shown by Schlieren are very revealing when they try to
interpret the mixing efficiency measurements of [16] as well as the LES results shown in
sect. 3. Figures 10 and 11 show examples of the synthetic and optical Schlieren with the
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Fig. 11. – Image of the internal wave collapse in a very strongly stratified flow (experiment
performed at Moscow Institute of Problems in Mechanics).

much better resolution of the second one. The type of dispersion relation as deduced
by [30] shows clearly the non-linear interaction between the waves:

(11)
[(

ω + iκsk
2
) (

ω + iνk2
)
k2 − N2

(
k2

x + k2
y

)] (
ω + iνk2

)
= 0.

Figure 12 shows a sequence of color enhanced images of the wake after a bar, the radiation
of internal waves is apparent. It may be appreciated that the length scale of the internal
waves slowly decreases outside the mixing and collapsing region. Inside this region that
confirming the LES numerical experiments is smaller than the Ozdidov scale, we can also
appreciate that the striations (fossil type of turbulence) are finer and finer in time. As
the Batchelor scale is still much smaller, no further irreversible molecular mixing seems
to take place. Density profiles of this area show a fractal structure [32-34].

From a video sequence of images such as those shown in fig. 12, a horizontal line
in time and a vertical line in time near the centre of the image are shown in figs. 13
and 14. Here the full extent of the wake growth following a 1/3 power law as in the LES
simulations is followed by the collapse of the core of the linearly stratified wake. What is
observed, but not modelled correctly in the LES simulation, is the non-linear complexity
of the internal wave field. For example, wave pairing and non-linear interactions are seen
in regions with a really high Richardson and a very low Reynolds numbers. This will be
discussed later when other results are presented in a (Ri,Re) parameter space. In order
to do this, it is useful to revert to other visualization technique, LIF, that may be used to
trace the different types of instability occurring at a sharp density interface. Even being
quite sharp, the initial interfaces set up in the stratified-shear re-circulating tank, the
internal mixing eventually produces a linear region inside the interfacial region that has a
thickness λ. The thickness follows a similar power law with the Richardson number in grid
strirred experiments and in shear-stratified mixing experiments, which was defined by [26]

(12)
λ



= cRi−a.
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Fig. 12. – Sequence of Schlieren images of the flow visualization of the decay of the turbulence
at a linear density interface. The collapsed inner region is clearly distinguished among the outer
internal wave field.
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Fig. 13. – Time series of a vertical line during 100 s at 50 Hz of the passage of a horizontal bar in
a linear stratification. Red and blue show the crests and troughs of the internal waves (density
derivative).

The LIF visualizations show for a wide range of experiments, which are the dominant
types of instabilities that correspond to different values of the local Reynolds number and
the local Richardson number, for example in fig. 15 three types of patterns are shown
when fluoresceine is used to mark one side (the dense salty one) of the interface: fig. 15a)
shows an internal wave travelling trapped along the sharp interface, fig. 15b) shows the
beginning of a Kelvin-Helmholtz billow and fig. 15c) shows some Holmboe-type streaks
being lifted.

Fig. 14. – Time sequence (at 50 Hz) of Schlieren flow visualization of a horizontal line of the
decay of the turbulence at a linear density stratification.
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Fig. 15. – LIF images of different instabilities at a sharp density interface. a) High Ri, low Re,
internal wave, b) medium Ri, high Re, Kelvin-Helmholtz Billow, c) medium Ri, medium Re,
Holmboe instability.

In fig. 16 the time sequence of the appearance of several Holmboe instabilities dur-
ing a shear stratified evolution of a density interface is shown. These instabilities are
characterized by their cusps. As the Reynolds number is larger and the Richardson num-
ber smaller, the local Ozmidov (and Thorpe) scale is larger and the cusps are able to
fully overturn, leading to a full Kelvin-Helmholtz billow [1]. As the Richardson number
decreases, the cusps are elongated further and eventually Kelvin-Helmholtz instability
develops. Figure 17 shows the roll up sequence of such a case.

5. – Discussion

As shown in sect. 4 for all experiments, both in bar and grid wakes, and in shear-
generated mixing of a density interface, the maximum extent of the interfaces gets smaller
as the local Richardson number increases, following eq. (12) we can add the new experi-
ments with Schlieren to those by LIF of a sharp density [16,26,27].
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Fig. 16. – Laser-induced fluorescence flow visualization of the effect of the shear-generated
turbulence at a sharp density interface. The intermediate Ri, Re of the experiment has the
conditions for Holmboe instability development.

In the oscillating grid experiments [16], it was set to oscillate with fixed frequency and
stroke at the beginning of the experiment and the velocity of advance of the interface Ve

was measured by looking at a shadowgraph or by video recording of LIF. The turbulent
parameters Ri and Re are derived from previous measurements of the integral turbulence
scale from eq. (6) as a function of the distance between the grid center and the interface
z as: 
 = 0.1z and the turbulent velocity u′ decays inversely proportional to the distance
z. There are several mechanisms that produce mixing across the density interface, and
there is also a dependence of the Prandtl number on the entrainment law.

In fig. 18 the dependence between the thickness of a density interface and the local
Richardson number is presented confirming the validity of eq. (12) with possible different
values for c and a. For most of the data the best fit is a = 2/3.

Figure 19 shows another type of visualization, pearlescence tracers, of the evolution
of a sharp density interface after the passage of a grid. Here as with the Schlieren
visualizations the internal waves are more apparent. When using shadowgraph, the
internal waves are not apparent due to the fact that the second derivative of the density
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Fig. 17. – LIF flow visualization of the formation of a Kelvin-Helmholtz billow.

Fig. 18. – Non-dimensional thickness of a density interface subject to oscillating grid turbulence
on one side of the interface adapted from [16]. Different symbols correspond to different grid
frequencies.
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Fig. 19. – Pearlescence flow visualization of the decay of the turbulence at a sharp density
interface. The collapse times measured in terms of the Brunt-Väisälä frequency are a) N ,
b) 2N , c) 5N , d) 10N ; Ri = 30.
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field is what is actually visualized. So some earlier misguided ideas about the decay of a
density interface or stratified flow were due to limited measurements.

For oscillating grid experiments Turner [35] proposed that the entrainment velocity
Ue defined as Ue = dD/dt, where D is the depth of the turbulent layer, is given by a
simple law of the form

(13) E ∝ Ri−n

and found that the value of n in the entrainment equation was 3/2 when the stratification
was due to salt, and 5/3 when was due to sugar, but the density-stratification resulted
from a temperature gradient, the value of n was found to be close to 1. Turner also
suggested that viscosity differences cannot be used to explain the different values of n, and
proposed that the differences in V e that occur when using salt and heat as the stratifying
agents can only be explained by consideration of the molecular diffusion of mass and heat
as defined by the appropriate diffusivity κ, and proposed that the entrainment velocity
would be a function of both the Richardson number and the Peclet number Pe = u′l

κ .
Turner initially suggested that E ∝ Ri−1, which he found for temperature stratification
was the basic entrainment law, but he also found E ∝ Ri−3/2, for salt stratification,
showing the influence of the molecular diffusivity on turbulent transport.

The entrainment measured in the grid stirred experiments [16] as a function of the
Richardson number confirms Turner’s [35] results showing power law dependence with
n = 3/2 for large range of Ri values. It is apparent that there are more than 3 decades of
variation in the values of entrainment which are reflected in a similar range of variation for
the mixing efficiency. For salty interfaces the relationship between the mixing efficiency
and the local Richardson number (Ri) is a function of entrainment as

(14) η = ERi = Ri1−n = Ri−1/2.

For heat stratified experiments, on the other hand, the mixing efficiency does not seem
to depend on Richardson number as shown in [16] in the case of steady input (for ex-
ample in the grid stirred experiments). Other effects, such as the proximity of a bound-
ary layer were shown to affect the results [26]. See in fig. 20 a compilation of experi-
ments. The mixing across a density interface may be evaluated by a general entrainment
law [16,26,35] as

(15) E =
Ue

u′ = c(Pr) · Ri−n(Ri,Pr).

A compilation of results as a function of the local Reynolds and Richardson’s numbers
is shown in fig. 21, the results for each experiment [16] (fig. 21 (right)) is only a small
region of the possible parametric map. Note that the results would fit better if the
local values of the parameters instead of their bulk values are known, the dots and
open circles correspond to the experiments of Koop and Browand [29] and Van Atta et
al. [10, 28].

The experiments shown in figs. 15-17 correspond to values of the Reynolds number
5000 and of the Richardson number between 2 and 20. Most of the experiments fit in
the overall instability frame when local values are used, but these are often difficult to
evaluate.
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Fig. 20. – Direct measurements of entrainment as a function of the local Richardson number for
these experiments the interface remains sharp. Open circles [35], closed circles [16], crosses [26]
are experiments near a flat boundary.

Fig. 21. – Parameter space of a stratified non-rotating flow from Redondo [10]. A general
instability map with dots and circles as the experiments of [29, 30] (left). Zoom of the right
upper region (right) of the parameter space (Re, Ri) where the symbols correspond to different
dominant instabilities: o—no turbulence; w—internal waves; h—Holmboe waves; k—Kelvin-
Helmholtz billows (right).

6. – Conclusions

The entrainment is a complex power function of the local Richardson number, and
the value of the empirical exponent n(Ri, Pr) is compared with previous results. The
relationship between the flux Richardson number and the gradient or local one and the
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ways in which the interface extracts energy from the turbulence source via internal waves
is a complex non-linear function. Internal gravity (or buoyancy) waves are characteristic
of the stable boundary layer and contribute to its transport processes, both directly, and
indirectly via internal wave-induced turbulence. These processes are able to control en-
trainment across strong density interfaces as those defined by Turner [35]. A comparison
of the range of entrainment values from laboratory experiments with those occurring in
nature, both in the atmosphere and in the ocean, shows the importance of modelling
correctly the integral length scales of the environmental turbulence.

Internal wave measurements in laboratory experiments on a linearly stratified tank
match rather well the LES numerical results of the collapse of a bar wake, but also
show the complexity of the non-linear internal waves. The initial growth of the wakes is
quite well understood, but the subsequent collapse and in particular, how the internal
waves affect mixing efficiency, is not resolved yet. Results of performed experiments with
Schlieren observations of flow fields generated by oscillating and uniformly moving obsta-
cles of different conditions are still necessary. Only in very controlled situations such as
the re-circulating shear-stratified flume it is possible to identify the individual instabili-
ties that lead to turbulent mixing. From a statistical point of view the non-homogeneity
of the processes leads also to intermittency [36-38], but due to the improvement of image
analysis techniques, now it is possible to evaluate multifractal and spectral indicators
of the mixing processes. Even simple measurements like the thickness of the mixing
layer as a function of local conditions leads to important new data as seen in eqs. (12)
and (15).

Remote-sensing instruments have revealed very important features of environmental
flows and their evolution. For local or global studies it is necessary to evaluate vertical
mixing as these are supposed to eventually control climate change. A combination of all
methods: analytical, numerical, field observations and laboratory modelling are needed.
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