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Summary. — Failure of ductile metals occurring as microvoids growth is known
to strongly depend on the stress triaxiality parameter which is a conventional mea-
sure of the first stress invariant normalized with respect to the equivalent von Mises
stress, which in turn is a conventional measure of the second stress invariant. The
triaxiality parameter is usually assumed to not influence the stress-strain behavior
of metals according to the von Mises plasticity. The effects of the Lode angle and
of the stress triaxiality are investigated here with regard to ductile failure and to
the stress-strain behavior. Experimental results and numerical predictions are com-
pared for different metals and different specimen geometries, by investigating about
various failure criteria and a procedure for the post-necking stress-strain character-
ization. Tensile specimens and notched plates are loaded up to failure, then finite
elements simulations are verified by comparison with experimental data. The veri-
fied numerical data are then used to calculate local variables within the volume of
failing specimens; the knowledge of these local variables enables to predict global
and local failure conditions according to the selected failure models.

PACS 62.20.mt – Cracks.
PACS 83.50.-v – Deformation and flow.
PACS 62.20.fk – Ductility; malleability.
PACS 62.20.fq – Plasticity and superplasticity.

1. – Functions and experiments for hardening determination

The elastoplastic characteristic of structural metals, in case of isotropic hardening, is
given by a function relating the pressure-insensitive von Mises stress to the equivalent
plastic strain σeq(εeq) [1-4]. Recent studies [5-9] postulated that a realistic evolution
of the yield surface should include a small (sometimes negligible) dependence on the
hydrostatic stress, and a more pronounced dependence on the third invariant of deviatoric
stress. This idea is supported by experimental results and suggests that the yield surface
is a tapered cylinder with a non-circular cross-section.

c© Società Italiana di Fisica 39



40 D. CORALLO, G. LA ROSA and G. MIRONE

The two terms for characterizing the isotropic hardening are defined as in (1) and (2),
respectively:

σeq =

√
1
2

[(σz − σr)2 + (σz − σϑ)2 + (σϑ − σr)2],(1)

εeq =

√
2
3
[εz

2 + εr
2 + εϑ

2],(2)

z, r, θ, respectively, are the axial, radial and hoop directions in a cylindrical principal
coordinates system, σi is the i-th principal stress and εi are the principal plastic strains.
The relationship between σi and si is based on the definition of the hydrostatic stress
σH :

(3) σH =
σ1 + σ2 + σ3

3
, si = σi − σH .

The elastoplastic material curves are derived from tensile tests on round smooth speci-
mens, by calculating the true stress and true strain defined as in eq. (4) which, in case
of uniaxiality and uniformity of stress, coincide with σeq and εeq:

(4) σtrue =
F

π · a2
= σzavg ∀r,

uniformity and volume conservation allow to derive the true strain:

(5) εtrue = 2 · ln a0
a = εzavg = 2 · εr = 2 · εr;

εeq(r) = εz(r) = 2 · ln a0
a ;

a and a0 being the current and the initial values for the radius of the minimum
cross-section. So σtrue and εtrue, conventionally named true stress and true strain, can
be easily calculated from load-diameter measurements and coincide with σeq and εeq up
to the necking initiation.

When the strain concentrates around the weakest cross-section of the specimen and
necking takes place, the shape of the specimen becomes progressively hourglass-like and
increasing nonuniformity and triaxiality of the stress state occurs, invalidating eqs. (4)
and (5).

Figure 1 from [10] shows the stress distributions along the radial abscissa of the neck
section for a 20MnMoNi55 steel (εN = 0.1), just after necking initiation (εtrue = 0.2) and
at incipient failure (εtrue = 1.1). Estimations from FE analyses and from the MLR model
are almost coincident and well underline how significant departure from uniaxiality may
occur at large post-necking strains. The implicit FE analyses were performed with ax-
isymmetric 8-noded elements under the hypotheses of large strains (updated Lagrangian
formulation) and isotropic hardening, while the extended MLR method presented in [10]
was based on approximate shapes for the distribution of hydrostatic stress along the
neck radius.

This means that now σtrue and εtrue differ from the von Mises stress and the equivalent
plastic strain respectively, so a method is required for calculating σeq and εeq from the
post-necking experimental data [11-15].
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Fig. 1. – Stress distributions for a 20MnMoNi55 steel at different strain levels.

The MLR model presented in [16] is used in this paper for transforming the function
σtrue(εtrue) into an estimation of σeq(εeq) by simply multiplying the true stress times
a material-independent corrective function MLR(εeq − εN ). εN is a material-constant
expressing the value of logarithmic strain at which the necking localization initiates and
the maximum load is achieved; εN is typical of each metal and is also known as the
Considére strain.

(6) σeq(εeq) = σtrue(εtrue) · MLR(εeq − εN );

the corrective function MLR is expressed by the 4th-order polynomial of eq. (7):

(7) MLR(εeq−εN ) = 1−0.6058 · (εeq−εN )2 +0.6317 · (εeq−εN )3−0.2107 · (εeq−εN )4.

This is an approximate function able to translate the experimental σtrue into an es-
timation of σeq, for many ductile steels, aluminium alloys or pure copper undergoing
quasi-static deformations up to 3 × 10−3 s−1.

It was found by best-fitting the results of various numerical analyses validated with
as many experimental tests, and applies in the range of strains up to 100% above the
necking strain εN .

The rationale of this correction method is that the necking is a geometry-driven form
of instability, somehow similar to the buckling, so the material may influence when the
necking initiates (through the strain εN ) but, for a given set of shape and constraints
(round smooth specimens in tension), this instability distorts the spatial distributions of
stresses and strains in a material-independent way.
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Fig. 2. – Round specimens geometry.

The necking strain is usually below 0.3 and the failure strain of smooth specimens
made of ductile metals may lie beyond 1.5; then, a post-necking correction may be
required over more than 80% of the material strain range.

In this work, various sets of specimens from different metals are analyzed according
to table I and fig. 2.

Tensile tests are performed with an Instron 4920 test machine and with a Zwick Z100
test machine. Video sequences are acquired during the tests of smooth and notched round
specimens, and the varying values of the current diameter of the minimum cross-section,
2a, are successively measured by image analysis; then, the current cross-section radius a

Table I. – Materials and specimens dimensions.

Metal Short name Specimen d D R L

(mm) (mm) (mm) (mm)

Stainless-steel AISI 304 AISI 304 Smooth 9 9 - - - 55

R30 6 9 30 55

R15 6 9 15 55

R5 6 9 5 55

R2 6 9 2 55

R20 6 9 20 50

R10 6 9 10 50

ASTM A 284 - FE 370 FE370 Smooth 9 9 - - - 55

R12 6 9 12 55

R6 6 9 6 55

R3 6 9 3 55

PL-R3 - - - -

PL-R2 - - - -
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Fig. 3. – True stress-true strain from smooth specimens and MLR-derived σeq(εeq) curves.

from measurement and the current load F from the testing machine are used to calculate
σtrue and εtrue, according to eqs. (4) and (5).

For each metal, the experimental true stress-true strain data from smooth specimens
is best-fit by polynomials; the resulting function is then used to calculate σeq(εeq) through
the MLR correction according to eq. (6).

The resulting curves expressing either σtrue or σeq are shown in fig. 3 for the smooth
specimens of all the metals tested.

The bifurcation between σtrue and σeq in fig. 3 evidences that necking initiates, while
before its occurrence σeq is perfectly coincident with σtrue, as in eq. (4).

The triaxiality factor TF and the normalized Lode angle θN , both interacting with
the yield surface and with ductile damage, are defined as follows:

TF =
σH

σeq
,(8)

θN = 1 − 2
π
· arccos

[ 27
2 · s1 · s2 · s3

σeq
3

]
,(9)

where σi and si are principal stresses and the principal deviatoric stresses, respectively,
expressed in a coordinate system 1-2-3.

The parameter TF ranges in [−∞,+∞], its characteristic values are 1/3 for uniaxial
tensile stress (σ, 0, 0) with σ > 0, 0 for pure shear (σ,−σ, 0), and −1/3 for uniaxial
compression (σ, 0, 0) with σ < 0.

θN ranges in [−1, 1] and is equal to 1 for stress states of the kind (σA, σB , σB) with σA

and σB > 0, 0 for principal stresses like (σA, σB , (σA + σB)/2), and −1 for (σA, σB , σB)
with σA and σB < 0; the first of these three stress states is typical of the center of ax-
isimmetric geometries loaded in tension and includes the uniaxial tension as a particular
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case when σB = 0, the second is a generic plastic plane strain state and includes the pure
shear as a special case with σA = σB , the third corresponds to axisimmetric compression
and degenerates in uniaxial compression when σB = 0.

Then, TF and θN for smooth tensile round specimens may evolve in two different ways
depending on the strain level and the material point considered: prior to necking, the
uniformity and uniaxiality of the stress state makes TF = 1/3 and θN = 1 wherever in the
specimen, but, after necking initiates, the stress distributions become increasingly non-
uniform inducing variability and non-uniformity also in the distributions of TF and θN .
At the neck center (r = 0) TF may increase well beyond 1/3 but the Lode angle does not
deviate from unity during the entire load history, because here the pre-necking uniaxial
tension and the post-necking axisimmetric tension induce the same value of θN . Instead,
at the outer circumference of the neck section (r = a), the initial pre-necking uniaxial
tension becomes a post-necking biaxial stress state, so that the post-necking evolution
of TF and θN at this material point is completely different from the “axisimmetric”
evolution the same variables experience on the neck center. The stress states at material
points between the neck center and outer radius, 0 < r < a, are intermediate between
those described.

Things change for round notched specimens because now the stress distributions are
non-uniform already before necking initiation. So θN at the center of the minimum
cross-section remains constant and equal to 1 due to axisymmetry, but the initial biaxi-
ality at r = a implies that θN evolves differently than it does for smooth specimens.

In the notch root area of the flat plates, the stress state may tend to plane strain on
the half-thickness plane, so that θN may be close to zero, while TF has a great variability
depending on the strain level and the position of material points along the thickness.

Distributions of θN , TF and other parameters of interest, calculated by FE for all the
specimens tested, will be discussed in the next sections of the paper after the assessment
of accuracy in numerical simulations.

2. – Damage modeling

The first series of failure predictions in this work is based on the Tresca model, by
assuming that a material point fails when the maximum shear stress in a material point
reaches a critical value.

(10) τmax(εeq) ≤ τmax(εf ) = τcr,

where τcr is a material constant and εf is the value of local εeq at failure.
Equation (10) clearly expresses a damage function [17-31] (so the Tresca model is

indicated as a DF-based failure model), in fact, the damage function τmax(εeq) depends on
how the structure is shaped constrained and loaded, and the Tresca model is not capable
of directly giving failure strains without the knowledge of the stress-strain history.

The second model used here derives from a proposal by Bao and Wierzbicki [32,33], is
indicated as the W1 model and assumes that, in the range of positive triaxialities above
1/3, the failure strain can be expressed as in eq. (11):

(11) εf =
Dcr

TFavg(εf )
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with Dcr being a material constant and TFavg being the local stress triaxiality at a
material point, averaged over the strain history up to the current εeq:

(12) TFavg(εeq) =
1

εeq

∫ εeq

0

TF (εeq) · dεeq.

In order to determine TFavg one must know the failure strain appearing in (12): if εf is
already known, there is no need for using any damage model. So for using the W1 model
as a predictive tool, it can be put in a different form:

(13) D(εeq) =
∫ εeq

0

TF (εeq) · dεeq ≤ Dcr.

Local failure occurs when D(εeq) reaches the critical value Dcr, which is a material
constant. Then, as for the Tresca model, W1 failure predictions are carried out by
simulating the load history of a structure by finite elements and seeking when and where
the critical condition is met firstly.

A successive model by Wierzbicki, identified as the W2 model, presented in [5] and
slightly modified in [9], is based on the following equation:

(14) εf = D1(ϑN ) · eD2(ϑN )·TFavg = D1(ϑN ) · eD2(ϑN )·· 1
εf

R

εeqf
0 TF (εeq)·dεeq

.

The effect of TF is included in the exponential relationship, while the effect of the Lode
angle is given by the two functions D1(θN ) and D2(θN ), characteristic of each material.

A damage function can be derived from (14), expressing the ratio of the current local
strain to the right-hand term of (15):

D(εeq) =
εeq

D1(ϑN ) · eD2(ϑN )·· 1ε
R εeq
0 TF (εeq)·dεeq

≤ 1,(15)

D(εf ) = Dcr = 1.

It is a purely conventional damage function representing the ratio between the current
strain and the failure strain for a given TF history, in fact the critical value of D is
material independent.

In model W1 the dependence on θN is not included and the three-dimensional surface
εf (TFavg, θN ) degenerates into a curve εf (TFavg), while, according to the W2 model,
the surface of failure strains may be transformed in a set of curves εf (TFavg), each
parametrized with respect to θN and having two constants substituting the functions D1
and D2.

In fig. 4 are reported two typical curves expressing the failure criteria W1 with Dcr =
0.15 for whatever Lode angle, and the criteria W2 with D1 = 0.4534 and D2 = −0.7788
for θN = 1. These data refer to a 2420 T351 aluminium alloy and are available in [32]
and [9] provided that failure is symmetric with respect to tension and compression.

According to fig. 4, a strain history DC at constant triaxiality up to failure, induces
the same failure condition of a strain path AB at a constant triaxiality lower than before,
followed by a successive loading path BC at a triaxiality great enough that further
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Fig. 4. – Fracture loci curves as a function of TFAVG.

plastic strain before failure is prevented. This corresponds to say that ductile damage
is independent of the strain-triaxiality path, which is not possible for highly dissipative
phenomena like ductile failure.

Then, curves like those in fig. 4 may help in failure predictions only if both triaxiality
and Lode angle are held constant during a load history so that their average values
coincide with initial values, but this is a special case of proportional loading and is quite
a rare occurrence in plastic straining. For the large majority of real strain histories,
TF and θN are subjected to significant variations as plastic strains locally flows and the
shape of the loaded structures is distorted, so the damage models like W1 and W2 have
to be used in the form of conditional inequalities as in eqs. (13) and (15) rather than
being used as limit curves or failure criteria.

In the next sections of the paper the above procedure is to be applied to the W1
model and to the finite elements analyses simulating experimental tests up to complete
failure. Instead the W2 and Tresca models are used only for predicting failure initiation
at a material point rather than the complete breaking of specimens.

3. – Finite elements and failure prediction

Finite elements (FE) simulations of the experimental tests are performed with the
commercial code MSC-MARC. Four-noded axisimmetric elements are used for modeling
the round specimens, while, for the notched plates, 8-noded tetrahedral elements are
used; displacements are imposed at the prescribed nodes for simulating the motion of
the test machine crosshead or loading pins. All the analyses are based on the updated
Lagrangian formulation for large displacements and finite strains, and the additive plas-
ticity procedure is based on the von Mises yield criterion with isotropic hardening only.

The curves σeq(εeq) in fig. 3 are used for defining the stress-strain behavior of the
various metals in the FE simulations. A preliminary assessment of the accuracy of the
FE analyses and damage models is made from a macroscopic point of view by comparing
experimental and numerical true stress-true strain curves or load-displacement curves,
and true strain at failure εF .

The true strain εF is the mean value of the current distribution of εeq above the neck
section at the instant when failure initiaties at a single element; instead εf is the peak
local value of the same strain distribution at the same instant of each test.
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AISI304 - True curves (ref [22])
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Fig. 5. – True stress-true strain curves for AISI304 with failure estimations.

Then a second assessment of the accuracy of failure models is made by comparing the
local values of εf and TF from the various damage models with the same values calculated
from the analyses stopped at the analysis step corresponding to experimental failure.

Results for each material are presented separately and a common discussion for the
whole set of experiments will made in the conclusions.

3.1. AISI 304 . – The prediction of failure for the AISI304 steel is made by assuming
for each specimen that the critical true strain εF is that of the last point at the end of
the descending branch of the experimental true curves, as it was made in [34] for this
metal. The following parameters are then obtained: Dcr = 1, D1 = 3.8, D2 = −1.4,
τcr = 588 MPa, and the corresponding results are shown in figs. 5 and 6.

While the agreement between the two Wierzbicki models and experimental data is
good in terms of the local variables of fig. 6, a certain overestimation of the true strain at
failure initiation is found in fig. 5, where the W1 and W2 predictions for εF are closer to
complete failure than to failure initiation. This occurs because the experimental values
of εF used for determining the material constants correspond to the fracture almost
completely propagated through the resisting section rather than corresponding to the
peak of true stress which indicates fracture initiation.

Due to the low number of experimental points available in the final stages of the
tensile tests, the real true stress peak and the real failure initiation are determined with
a certain approximation, in fact failure may occur at whatever strain within the strain
interval extending for about 0.05 or 0.1 between the recorded peaks of true stress and
the final points of the true curves.

Frequently, the descending branch of an experimental true curve is either not de-
tectable or is only roughly described by very few stress-strain points due to the rapidity
of the crack propagation process. Approximations may arise in the latter cases, due to
possible ambiguities in the choice of the data for calibrating the damage models.
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AISI304 - Local failure strain (ref [22])
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Fig. 6. – Local failure strain for AISI304 as a function of local average triaxiality.

The notches tested for this metal are not sharp enough, so failure initiates always at
the neck center and the local-scale parameters follow the usual trend: TFavg increases
and εf decreases as the notch severity increases, while the angle θN remains equal to 1
during the entire test due to axisymmetry of stress and has no influence on the whole
failure initiation.

3.2. FE370 . – For this metal the experimental failure strains εF are determined as the
peak points of each stress strain curve before the descending branch of the curve, and the
corresponding material parameters for damage are Dcr = 0.64, D1 = 2.5, D2 = −1.4,
τcr = 341 MPa.

For this metal, the results for the round specimens are shown in fig. 7 while those for
the notched plates are reported in fig. 8, where only the numerical curves simulating the
W1 damage evolution are presented.

The simulated true stress-true strain data from round tensile bars are quite close
to experimental data and a maximum discrepancy of 5% is found between the average
experimental data and the numerical data. Quite larger is the numerical error found in
the load displacement curves for the notched plates, in fact the simulated curve for R2
plates underestimates the load of more than 15%.

Instead, the failure prediction in terms of local strain εf of fig. 9 is quite accurate
for both round specimens and flat plates. To investigate about this aspect, the damage-
related parameters, TF and θN , are calculated at the material points where failure initi-
ates. According to the FE simulations and, for the round specimens, to the experimental
confirmation given by the cup-cone shape of the fracture surface, failure starts at the
neck center for the round specimens and just below the external surface in the area of
the notch root for the notched plates, as visible in fig. 10.

As visible in fig. 11, the triaxiality varies during the entire straining history by in-
creasing at the center of necking of round bars and by decreasing at the failure initiation
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FE370 - True curves
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Fig. 7. – True stress-true strain curves for FE370 with failure estimations.
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Fig. 8. – Load vs. notch opening curves for the notched plates of FE370.
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FE370 - Local failure strain

0

0.5

1

1.5

2

2.5

0.3 0.5 0.7 0.9 1.1 1.3

TFAvg

εεεεf

W1
W2
EXP
Tresca failure

SMOOTH

PL-R2

PL-R3

R12
R3

R6

 

Fig. 9. – Local failure strain for FE370 as a function of local average triaxiality.

site of notched bars, but the overall range of TF variability is the same for both bars
and plates. On the contrary, the θN angle evolves in definitely different ways in fact, at
the neck center of bars it is always = 1 because of the axisimmetry of the stress state,
while at failure sites of plates it is again constant but its value is lower (for plate R3) and
much lower (plate R2) than it is for bars. Further investigation is useful for confirming
the results presented but, according to this set of experiments and simulations, it seems
that the Lode angle influences strongly the stress-strain characterization (see fig. 7) but
does not play a great role on the failure phenomena, as indicates in fig. 8 where failure
curves W1 and W2 simulate in a resonable way all failure points from round bars as well
as the points from.

Fig. 10. – Fracture initiation and distribution of W1 damage.
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FE370   - History of TF at failure nodes 
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Fig. 11. – Triaxiality and Lode angle for FE370 as a function of local equivalent plastic strain.

4. – Conclusions

The modelling of ductile damage according to different theories is performed in this
paper with reference to round bars with and without notch, other than to flat plate
notched specimens.

For characterizing the stress-strain behaviour of elastoplastic metals at large strains
the approximate MLR method is adopted, consisting of a corrective function for the true
stress which applies to various ferrous, aluminium-based and copper-based ductile alloys
undergoing monotonic loading at very low strain rates.
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Finite-elements simulations are run without any damage model and with a subroutine
able to eliminate elements when the W1 critical damage is reached. The results of FE
simulations in terms of stress-strain data are poorly accurate for notched plates while they
are satisfactory for the reproduction of round specimens. Instead the damage prediction,
in terms of local failure strain and local history-averaged TF , is satisfactory for all the
specimens tested.

The logarithmic strains at failure are slightly less accurate than local values are, and
both W1 and W2 models exhibit very similar predictions in the range of triaxialities and
Lode angle values investigated.

The known effect of stress triaxiality on reducing local failure strains is confirmed,
but the expected role of the Lode angle which should reduce the failure strain as plane
strain approaches, is not found by the data above.

In theory fracture propagation can be easily simulated by FE but the mesh-
dependence issues coupled to the need of gradually deleting elements deserves more
efforts to determine the right mesh size for every model.

The overall accuracy of both Wierzbicki models is satisfactory in the range of triaxi-
ality and Lode angle investigated in this paper.
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