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Summary. — It is shown by direct integration how transverse currents can be
looked at as a strict consequence of gauge invariants in the restricted Coulomb
gauge. Some consequences as about “clothed charges” even at the classical level are
also briefly exploited, jointly to a brief touch on the role played by gauge symmetry
vs. Lorentz invariance into the electromagnetic properties of the physical vacuum.
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1. – Introduction

Looking at the immense, upperly unbounded, literature on the classical theory of
electromagnetism since its historical beginning, it is worth noticing how the notion of
“effective source” is intimately linked to the companion concept of “screening”, described
via the introduction of a “dielectric function” so to confer to this last a crucial, funda-
mental role both theoretically and computationally. Said in other words, this means
that “effectiveness of the sources” is essentially viewed as a consequence of charge-charge
interactions (even if mutuated by the field), i.e. it is nothing else than a consequence
of some peculiar aspects of a specific many-body problem. Once more a comment is in
order: electric charges are given for granted, pre-existing, physical entities and no refer-
ence to their being Noether’s topological invariants of given fields, and as such carriers of
their specific intrinsic properties, i.e. dicotomy, quantization, conservation and Lorentz
invariance, is accounted for.
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Perhaps, this is at the very heart of some misunderstandings that are currently en-
countered. More striking is the occurrence that, at the level at which the wave equation
is taken into consideration, the “true” current density, J, appears as the source term
only in the equation for the Maxwell field A in the Lorentz gauge, and A is generally
looked at as a “ghost”, unphysical field. When the so-called “truly physical” fields E and
B are concerned, the source term is different than the “true” J. Such an attitude holds
true in the most authoritative and, rightly, widespread treatises like those of Landau
and Liftshitz, Jackson, Portis, de Groot, and Barut, just to limit to the most renewed
and frequently consulted and quoted [1-6]. In this paper I would like to show how the
problem of the effective source can be directly connected to the deep physical origin
of the electromagnetic theory term founded on the gauge symmetry of the Lagrangian
term [7-14]

(1.1) L := J(r(t), t) · A(r(t), t),

J(r(t), t) being a vector source term representing the “true” current density vector field,
and A(r(t), t) the Maxwell field, i.e. the vector potential (note that explicit time de-
pendence is introduced ab inicio jointly to the t → r(t) Eulerian notation, where r(t) is
piecewise regular curve). This is more convincing when we start from the first pair of
Maxwell’s Equations (ME),

(1.2) curl(E) +
1
c
∂tB = 0, and div(B) = 0,

and we know that this is a good starting point, may be the only one logically consis-
tent and necessary, inasmuch as, due to them being homogeneous equations everywhere,
they can be looked at as equations of constraint from which the potentials A and Φ
are deduced as Lagrangian “coordinates” jointly to their class of indeterminacy. It is
superfluous to remind that they are still homogeneous even when (continuous) media
are introduced so to impose the introduction of four-vector fields jointly to constitutive
equations with related dielectric functions [15-17]. Then, we immediately and unavoid-
ably are faced with the problem that the “Physical Vacuum” is not empty even at the
classical level so we feel that “charge clothing” problems are laten ab inicio, i.e. they
exist despite the formal fact that we are allowed to put the dielectric function equal to
one all together. “ In vacuum, and in the absence of matter, where no difference between
bare and clothed source should be in order due to the absence of any charge to charge
interaction.

So my aim, in this contribution, is to obtain well-known, old, familiar, fundamental
results (without any novelty as about the implied contents) from another point of view.

2. – Transverse current in the Coulomb gauge

When the formal solution (up to a gauge transformation) of the first pair of ME, i.e.

E = −1
c
∂tA − grad(Φ),(2.1)

B = curl(A),(2.2)

are inserted into the second pair of ME, and the transversality condition div(A) = 0
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is accounted for, the fields A and Φ appear to be still coupled, despite their being
“Lagrangian” coordinates, due to the very procedure under which they have been ob-
tained:

�A = −4π

c
J +

1
c
grad(∂tΦ),(2.3)

∇2Φ = −4πρ.(2.4)

Two comments are in order: firstly, Φ is explicitly time dependent, so we are in the
presence of a “generalized” Poisson equation (PE) (compare with the different situation
in the stationary regime where the Lorentz gauge div(A)+ 1

c∂tΦ = 0 degenerates trivially
into the Coulomb gauge), and secondly, in the expression for the field E as a function
of A and Φ, whereas the sign “minus” referred to the term 1

c∂tA is intrinsic, the same
choice as about the sign of grad(Φ) is, at this level, quite arbitrary even if allotted.
Now, let us show as dynamical decoupling can be obtained via an “effective source”—the
“transverse vectorial source Jt”—by inserting in a self-consistent way the PE into the
r.h.s. of eq. (2.3). Accounting for the Green’s function of the PE, we can write

Φ(r, t) =
∫

d3r′
ρ(r′, t)
|r − r′| .(2.5)

Thus, we can deduce that

(2.6) ∂tΦ(r, t) =
∫

d3r′
∂t ρ(r′, t)
|r − r′| = −

∫
d3r′

divr′ [J(r′, t)]
|r − r′| ,

insofar the continuity equation

(2.7) ∂tρ + div(J) = 0

is implied by the second pair of ME.
The second term on the RHS of eq. (2.3) now becomes

1
c
gradr[∂tΦ(r, t)] = −1

c
gradr

∫
d3r′

divr′ [J(r′, t)]
|r − r′|(2.8)

= −1
c
gradr

∫
d3r′

{
divr′

(
J(r′, t)
|r − r′|

)
− J(r′, t)

· gradr′

(
1

|r − r′|

)}
,

= J2(r, t) + J1(r, t).

Let us firstly analyze the term we called J2. Insofar the operator gradr can be
factorized with respect to the integration over d3r′, after the identification u ≡ J(r′, t)
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and v ≡ gradr′(
1

|r−r′| ), we can profit of the vectorial identity

(2.9) grad(u · v) = (v · grad)u + (u · grad)v + v ∧ [curl(u)] + u ∧ [curl(v)],

to obtain

(v · grad)u =
(

gradr′
1

|r − r′| · gradr

)
J(r′, t) = 0(2.10)

(J(r′, t) does not depend on r),

(u · grad)v = (J(r′, t) · gradr)gradr′

(
1

r − r′

)
(2.11)

= −J(r′, t)∇2

(
1

|r − r′|

)
= 4πJ(r′, t)δ(r − r′),

v ∧ [curl(u)] = gradr′

(
1

r − r′

)
∧ [curlr(J(r′, t))] = 0(2.12)

(J(r′, t) does not depend on r)

u ∧ [curl(v)] = J(r′, t) ∧ curlr

[
gradr′

(
1

|r − r′|

)]
= 0.(2.13)

By combining eqs. (2.9)–(2.13), we obtain

(2.14) J2 =
4π

c

∫
d3r′J(r′, t)δ(r − r′) =

4π

c
J(r, t).

The RHS of eq. (2.14) compensates for the first term on the RHS of eq. (2.3).
Let us turn to the term J1. Inasmuch as it looks like the gradient of a divergence, we

can profit of the identity grad(div(v)) = curl(curl(v)) +∇2v in order to write down J1

as the sum of two terms, i.e.

J1 = J11 + J12 = −1
c

∫
d3r′curlr

[
curlr′

(
J(r′, t)
|r − r′|

)]
(2.15)

−1
c

∫
d3r′(curlr · curlr′)

J(r′, t)
|r − r′| .(2.16)

To simplify notations, let us put R = |r− r′|, and prove firstly that J12 = 0. Indeed, the
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integrand in the second piece on the RHS of eq. (2.15) has the structure

(∂x∂x′ + ∂y∂y′ + ∂z∂z′)
[
Jx(r′, t)

R
x̂ +

Jy(r′, t)
R

ŷ +
Jz(r′, t)

R
ẑ
]

(2.17)

= x̂(∂x∂x′ + ∂y∂y′ + ∂z∂z′)
Jx(r′, t)

R

+ŷ(∂x∂x′ + ∂y∂y′ + ∂z∂z′)
Jy(r′, t)

R

+ẑ(∂x∂x′ + ∂y∂y′ + ∂z∂z′)
Jz(r′, t)

R

= x̂
{
∂x

(
R−1∂x′Jx(r′, t) + Jx(r′, t)∂x′R−1

)
+∂y

(
R−1∂y′Jx(r′, t) + Jx(r′, t)∂y′R−1

)
+∂z

(
R−1∂z′Jx(r′, t) + Jx(r′, t)∂z′R−1

)}
+ŷ {as before “mutatis mutandis”}

+ẑ {as before “mutatis mutandis”} .

The coefficients of the unit vectors x̂, ŷ, and ẑ can be rewritten so to obtain

(∂x∂x′ + ∂y∂y′ + ∂z∂z′)
[
Jx(r′, t)

R
x̂ +

Jy(r′, t)
R

ŷ +
Jz(r′, t)

R
ẑ
]

(2.18)

= x̂

⎧⎨
⎩

⎡
⎣(∂xR−1)(∂x′Jx) + R−1(∂x∂x′Jx)︸ ︷︷ ︸

=0

+ (∂xJx)︸ ︷︷ ︸
=0

(∂x′R−1) + Jx∂x∂x′R−1

⎤
⎦

+

⎡
⎣(∂yR−1)(∂y′Jy) + R−1(∂y∂y′Jy)︸ ︷︷ ︸

=0

+ (∂yJy)︸ ︷︷ ︸
=0

(∂y′R−1) + Jy∂y∂y′R−1

⎤
⎦ +

[
. . .

]⎫⎬
⎭

+ŷ {[as before “mutatis mutandis”]} + ẑ {[as before “mutatis mutandis”]}

= x̂
{(

gradrR
−1

)
· (gradrJx) − Jx∇2(R−1)

}
+ŷ

{(
gradrR

−1
)
· (gradrJy) − Jy∇2(R−1)

}
+ẑ

{(
gradrR

−1
)
· (gradrJz) − Jz∇2(R−1)

}
.

Thus, we arrive at the equation

J12 = x̂
∫

d3r′
(
gradrR

−1
)
· (gradrJx) + ŷ

∫
d3r′

(
gradrR

−1
)
· (gradrJy)(2.19)

+ ẑ
∫

d3r′
(
gradrR

−1
)
· (gradrJz) −

∫
d3r′J(r′, t)∇2(R−1).

The fourth term on the RHS of eq. (2.19) is immediately evaluated as being −4πJ(r, t),
whereas for each of the three other terms we can profit of the Green-Gauss-Ostrogardsky
Theorem:

(2.20)
∫

d3r′
[
ϕ∇2ψ + grad(ϕ) · grad(ψ)

]
=

∫
[ϕgrad(ψ)] · ndΣ.
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Moreover, by accounting for the fact that gradr′(R−1) = −gradr(R−1), we can write

−
∫

d3r′
(
gradr(R

−1)
)
· (gradr(Ji)) =

∫
d3r′Ji(r′, t) · ∇2(R−1)(2.21)

= −
∫

Ji(r′, t)
(
gradr(R

−1)
)
ndΣ,

where i = x, y, z, so to arrive, as previously stated, at the result

(2.22) J12 = −4πJ(r, t) + 4πJ(r, t) = 0.

Finally, let us explicitly calculate

J11 =
∫

d3r′curlr
[
curlr′

(
R−1J(r′, t)

)]
(2.23)

=
∫

d3r′curlr
[(

gradr(R
−1)

)
∧ J(r′, t) + R−1 (curlr′ (J(r′, t)))

]
,(2.24)

where the vector identity

(2.25) curl(ψv) = grad(ψ) ∧ v + ψcurl(v)

has been taken into account. To solve, we can use the vector identity

(2.26) curl(a ∧ b) = a div(b) + (b · grad)a − (a · grad)b − b div(a).

Then, the identification a = gradr(R−1), and b = J(r′, t) allows for arriving at the final
result for eq. (2.3), i.e.

(2.27) �A = −4π

c
Jt,

where the gauge-dependent effective source Jt is defined as

(2.28) Jt(r, t) = curlr

∫
d3r′

curlr′ [J(r′, t)]
|r − r′| .

Insofar this “shielded” current field is divergence free, this could imply (at least locally) a
modified or “screened” charge density to preserve (as it must be) the Noether invariance
of the charge. Such an occurrence looks quite surprising due to the fact that we are in a
vacuum; unless vacuum is not so empty as it looks and intuitively assumed or better it
can be filled with “something else” the condensation energy of which is competitive to
the vacuum energy.
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3. – Conclusion and future perspectives

Few comments as conclusions to the ideas and relative calculations previously intro-
duced and described. Firstly, inasmuch as in the Coulomb gauge the fourth Maxwell
equation is not transformed into a wave equation but in an explicitly time-dependent
Poisson equation, the question of causality could be raised for consistency with the rel-
ativity requirement. As shown by Brill and Goodman [18], the transversality of the
solution allows the causality requirement to be completely fulfilled and in our opinion
this fact is of the outmost relevance, particularly from the conceptual point of view.
Indeed, transversality is a direct consequence of gauge symmetry alone and gauge invari-
ance is the primarily class of symmetry of ME and, as is well known, a Lagrangian which
is a homogeneous function of degree one with respect to the velocities (Lagrangian to
which gauge symmetry can be traced back) implies that time cannot be absolute at all in
principle [19, 20]. Note how this attitude shades light on the almost doubtful procedure
to deduce the gauge invariance of the ME after starting their Lorentz symmetry due to
the fact that the gauge group is much larger than the Lorentz group, the latter being
a group of external symmetries whereas the gauge group can lead to both internal and
external symmetries.

Secondly, one could object that the result we arrived at could be obtained, after fol-
lowing a much shorter way, by invoking the well-celebrated Helmholtz theorem referring
to the fact that a general vector field can be decoupled into a transverse (irrotational)
part and a longitudinal (solenoidal) part. The problem in our hands was not a general
mathematical problem: instead it was a well-specified physical problem and we used the
practice of a “self-consistent” search for the solution that is within the best tradition to
find “dielectric functions” in the (linear) response theory.

In conclusion, I feel that if one is addressed to the question: “can we introduce a
minimal coupling, i.e. Lagrangian (1.1) ab inicio and then deduce the first couple of
the ME, the Lorentz force, charge conservation (and so on) as the “equation of motion”
deducible from this Lagrangian?”, we can hopefully look at the positive answer: It is
worth remembering that such an attitude is an invitation to follow the path firstly put
forward by Feynmann, as reported by Dyson [21] and Dirac (cf. ref. [19]) and more
recently discussed by Hojman, Shepley [22] and Peres [23].

Moreover, let us consider how these themes could be looked at as more or less deeply
connected with the items expounded within the context of the Seminar by M. Consoli [24]
and C. Trimarco [25], particularly when superfluidity and superconductivity are viewed
as spontaneously broken symmetry phenomena [26-29], particularly in common solids
and/or fluids where relativistic effects are ignorable insofar largely negligible in most of
the experimental occurrences.

Preliminary results obtained in deriving the first couple of the ME jointly the
Lorentz force and continuity equation as Euler-Lagrange equation associated to the La-
grangian (1.1) alone and the contextual condition of “minimal coupling” regime (i.e. the
corresponding energy being zero) encourage me and I postpone to a forthcoming paper
their publication or, at least, I hope strongly.

∗ ∗ ∗
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their human style and cultural profile would be, perhaps, a truism: nevertheless it is a
pleasure for me to declare. A. Grillo has shown well in this occasion a precious presence



96 G. GIAQUINTA

both for his large culture and his deep and patient friendship. Thank you M. Caruso:
I fell obliged for your courtesy, intelligent cooperation and your generous efforts in the
organization of GCM8.
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