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Summary. — This paper offers a conceptually straightforward method for the
calculation of stresses in polarisable media based on the notion of a drive form and
its property of being closed in spacetimes with symmetry. After an outline of the
notation required to exploit the powerful exterior calculus of differential forms, a dis-
cussion of the relation between Killing isometries and conservation laws for smooth
and distributional drive forms is given. Instantaneous forces on isolated spacetime
domains and regions with interfaces are defined, based on manifestly covariant equa-
tions of motion. The remaining sections apply these notions to media that sustain
electromagnetic stresses, with emphasis on homogeneous magnetoelectric material.
An explicit calculation of the average pressure exerted by a monochromatic wave
normally incident on a homogeneous, magnetoelectric slab in vacuo is presented and
the concluding section summarizes how this pressure depends on the parameters in
the magnetoelectric tensors for the medium.

PACS 02.40.Hw – Classical differential geometry.
PACS 03.50.De – Classical electromagnetism, Maxwell equations.
PACS 41.20.-q – Applied classical electromagnetism.
PACS 41.20.Jb – Electromagnetic wave propagation; radiowave propagation.
PACS 46.05.+b – General theory of continuum mechanics of solids.

1. – Introduction

The calculation of stresses in material media has extensive application in modern
science. The balance laws of continuum mechanics offer an established framework for
such calculations for matter subject to a wide class of constitutive properties that at-
tempt to accommodate interaction with the environment in terms of phenomenological
relations [1, 2]. Such relations are not always easily accessible via experiment, since
the response of matter to internal and external interactions can be very complex. If
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one formulates these interactions in the language of forces derived from stress-energy-
momentum tensors, then it is sometimes non-trivial to determine experimentally an
appropriate tensor that can be associated with a particular class of interactions on a
macroscopic scale [3-8]. This problem has led to numerous debates over the last century
about how best to formulate the transmission of electromagnetic forces in polarisable
media. Since the electromagnetic interaction is fundamentally relativistic in nature, the
problem is compounded if one insists on a relativistically (covariant) theoretical formu-
lation to compare with experiment in the laboratory. Judged by the large literature on
this subject, there is no universal consensus on how best to calculate forces in polarisable
media and hence the needed experimental input into the subject has been of uncertain
value in the past. However, modern technology—with the refined experimental proce-
dures now available—offers the possibility that the appropriate constitutive relations for
certain classes of polarisable matter can be determined experimentally [9] over a broad
range of field intensities, frequencies and geometric configurations. Furthermore, new
materials with novel constitutive properties are being fabricated [10] and their response
to time-varying electromagnetic fields also offers new potential for technological advances.
With these points in mind, this paper offers a conceptually straightforward method for
the calculation of stresses in polarisable media, based on the notion of a drive form and
its property of being closed in spacetimes with symmetry. Section 2 outlines the nota-
tion required to exploit the powerful exterior calculus of differential forms that is used
throughout the article. Sections 3 and 4 relate the isometries to conservation laws for
smooth and distributional drive forms. Sections 5 and 6 discuss equations of motion in
spacetime and how they may be used to define instantaneous forces on isolated domains,
while sect. 7 deals with forces on domains with interfaces. The remaining sections apply
these notions to media that sustain electromagnetic stresses, with emphasis in sect. 11
on homogeneous, magnetoelectric material. In sects. 12–14, an explicit calculation of the
average pressure exerted by a monochromatic, electromagnetic wave on a homogeneous,
magnetoelectric slab in vacuo is presented and the discussion in sect. 15 summarises how
this pressure depends on the parameters of the magnetoelectric tensors for the medium.

2. – Notation

The formulation below exploits the geometric language of exterior differential forms
and vector fields on a manifold M [11]. Such a language is ideally suited to accommodate
local changes of coordinates that can be used to simplify the description of boundary value
problems and naturally encapsulates intrinsic global properties of domains with different
physical properties. It also makes available the powerful exterior calculus that facilitates
the integration of forms over domains described as the images of chain maps and permits
a clear formulation of notions such as energy, momentum, angular momentum, force and
torque, by fundamentally relating them to isometries of spacetime. In this framework, a
p-form α belongs to SΛpM , the space of sections of the bundle of exterior p-forms over M ,
while vector fields X belong to STM , the space of sections of the tangent bundle over M .
On a manifold with metric tensor g, we denote g(X,−) by X̃ ∈ SΛ1M and conversely

set ˜̃
X = X for all X. In the following, a notational distinction between smooth (C∞)

forms on some regular domain and those with possible singularities or discontinuities
is useful. Smooth forms with compact support on spacetime will be referred to as test
forms [12] and distinguished below by a superposed hat. Manifolds with dimension
n will be assumed orientable and endowed with a preferred n-form induced from the
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metric tensor field g. One then has [11] the linear Hodge operator � that maps p-forms
to (n − p)-forms on M . If g has signature tg, one may write

(2.1) g =
n∑

i=1

ei ⊗ ej ηij ,

where ηij = diag(±1,±1, . . . ± 1) and

(2.2) �1 = e1 ∧ e2 ∧ . . . ∧ en,

with tg = det(ηij) and {ei} a set of basis 1-forms in SΛ1M . The natural dual basis
{Xi} is defined so that ei(Xj) = δi

j and the contraction operator with respect to X is
denoted iX . Covariant differentiation is performed with respect to the metric compatible
Levi-Civita connection ∇, whilst Lie differentiation is denoted L.

3. – Isometries and drive forms

The notion of a drive form arises from the theory of gravitation in spacetimes M with
isometries. In Einstein’s theory of gravitation, the metric g of spacetime is determined
by the tensor field equation

Ein = T ,

where Ein ∈ ST 2M denotes the degree 2 symmetric divergence-free Einstein tensor field.
Hence T must be a symmetric divergence-free degree 2 tensor field:

∇ · T = 0.

The tensor T is regarded as a source of gravitational curvature(1). If K is a Killing
vector field generating a spacetime symmetry and � is the Lorentzian Hodge operator
associated with g, then by definition

LKg = 0

and it follows that the drive 3-form

τK ≡ �(T (K,−))

is closed on some domain Ij of M :

d τK = 0.

If the spacetime admits a set of Killing vector fields {Ki ∈ ST Ij}, one has a conservation
law for each Ki in every regular spacetime domain Ij [11,13]. These may be supplemented
with (tensor or spinor) field equations

EIj
(
g,ΦIj

α

)
= 0,

(1) The tensor T has dimensions of [MLT−2] (force) constructed from the SI dimensions [M ],
[L], [T ], [Q], where [Q] has the unit of the Coulomb in the MKS system.
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for all piecewise smooth (tensor or spinor) fields ΦIj
α that interact with each other and

gravity. These field equations may induce compatibility conditions and further (non-
Killing) conservation laws

dJ Ij (ΦIj
α ) = 0

(e.g., electric charge-current conservation). In phenomenological models, some of the
field equations may be replaced by fixed background fields and source currents, together
with consistent constitutive relations between these fields and currents.

An observer field is associated with an arbitrary unit future-pointing timelike
4-velocity vector field U ∈ STM . The field U may be used to describe an observer
frame on spacetime and its integral curves model idealized observers. The drive form τK

associated with any K admits a unique orthogonal decomposition with respect to any
observer frame U :

τK = JU
K ∧ Ũ + ρU

K ,

where the spatial forms ρU
K ∈ SΛ3M and JU

K ∈ SΛ2M satisfy iUρU
K = iUJU

K = 0. In a
local region, the conservation law d τK = 0 implies, in terms of the K-current JU

K , the
continuity relation in the frame U :

d JU
K + LUτK = 0.

If K is a spacelike translational Killing vector field and U a unit time-like (future-
pointing) 4-vector observer field(2), then

JU
K ≡ −iUτK

is the linear momentum current (stress) 2-form in the frame U and

ρU
K ≡ −(iU � τK) � Ũ

is the associated linear momentum density 3-form in the frame U . If K is a spacelike
rotational Killing vector field generating SO(3) group isometries, then JU

K is an angular-
momentum current (torque stress) 2-form and ρU

K is the associated angular-momentum
density 3-form in the frame U . If K is a timelike translational Killing vector field, then JU

K

is an energy current (power) 2-form and ρU
K is the associated energy density 3-form in the

frame U . In the following, attention is restricted to translational spacelike Killing vectors
of flat spacetime and the computation of integrals of JU

K for a particular contribution
to τK associated with electromagnetic fields in homogeneous but anisotropic media of a
particular kind. It will be argued that this formulation leads to a natural definition of
integrated static forces in media with discontinuous material behavior and highlights the
need for care in giving a practical definition of integrated force in media in the presence
of time-varying fields.

(2) The frame is inertial if ∇U = 0.
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4. – Distributional drive forms

To accommodate media with singular time-dependent sources of stress (e.g, at surface
interfaces or lines in space), introduce the distributional Killing 3-form τK

D on spacetime
and its distributional source KK

D satisfying the distributional equation

d τK
D[β̂] = KK

D[β̂],(4.1)

for all test 4-forms β̂ [12] on spacetime. Consider a compact medium at time t, with
spatial volume determined by the image of the spacelike t-parameterised immersion Σ3

t :
W3 ⊂ R

3 → M , evolving for a finite interval of time. Denote its immersed history in
spacetime by the region I1. Let I2 be a compact region of spacetime outside this medium
history. It follows from (4.1) that if τK

I1 is the regular drive form in region I1 and τK
I2

is the regular drive form in region I2, then

d τK
I1 = 0 in I1,(4.2)

d τK
I2 = 0 in I2(4.3)

and Σ3
s
� (

τK
I1 − τK

I2 + KK

)
= 0,(4.4)

at an evolving interface defined by the timelike, t-parameterised immersion Σ3
s : S2 ⊂

R
3 → M between I1 and I2 with a smooth interface drive form KK on its image. The

history of these images in spacetime is indicated schematically in fig. 1.

5. – Equation of motion for a smooth domain

The notion of force (and torque) is implicit in the balance laws of classical New-
tonian continuum mechanics. In the presence of time-varying fields, it is natural to
associate energy, momentum and angular momentum with such fields in order to main-
tain the conservation of these quantities for closed systems. The only sensible approach
to defining force (and torque) density in such circumstances, where the balance law arises
from the divergence of a total drive form for the system, is with respect to a particular
splitting of this divergence. For systems without mechanical constraint, one assigns a
smooth 4-velocity V (and angular velocity) field to each smooth domain to describe the
motion. The jumps in these fields at interfaces between domains must be computed
from (4.2)–(4.4) above. The 4-acceleration field A of each domain (and possibly its rate
of change) will appear in one or more components of the split and the remaining terms in
the divergence are often identified with total force (or torque) densities for the domain.
However, unless one prescribes how to practically identify component contributions to
the total force (for example by cancelling some of them by externally applied mechanical
constraints), there is no natural way to identify a canonical split of the divergence of the
total drive form. In those situations where the interaction of matter and fields is station-
ary or static, one can appeal to static experiments with non-moving media to try and
give an unambiguous definition to material body forces. For electromagnetic interactions
with polarisable media, comparison with experiment is difficult, since the choice of drive
form is very model dependent for many materials. However modern technology—with
the refined experimental procedures now available—offers the possibility that the appro-
priate constitutive relation for certain types of matter can be determined experimentally
over an extended parameter range [10].
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Fig. 1. – The partition of spacetime M by the history of a compact medium (with boundary
Σ3

s ∪Σ3
t0 ∪Σ3

t), evolving with 4-velocity V . The timelike vector field U defines a frame, N is
a unit, spacelike vector field and K is a Killing vector field.

To illustrate these general remarks, consider an uncharged (unbounded) medium con-
taining a fixed number of constituents, with number density N ∈ SΛ0M and mass density
ρ = m0N , m0 > 0, in Minkowski spacetime with mass conservation d (ρ � Ṽ ) = 0. Write

τK = τK
V + τK

field,

where V is the (future-pointing) unit, time-like 4-velocity field of the medium and K a
Killing vector field. For a simple medium with a smooth mass density, suppose

τK
V ≡ c0

2 ρg(V,K) � Ṽ ,

with c0 the speed of light in vacuo, then

d τK = 0

yields the local equation of motion [11] for the field V :

c0
2 ρÃ(K) = fK ,

where fK ≡ �d τK
field and the 4-acceleration 1-form Ã ≡ ∇V Ṽ . If ∇V = 0, then Ã = 0

and the motion of the medium is geodesic. The medium is then static in the frame where
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U = V . Contracting the local equation of motion

c0
2 ρÃ(K) � 1 + d τK

field = 0

with the observer field U and integrating over the volume Σ3
t yields

Ṗmech U
K

[
Σ3

t

]
= fU

K

[
Σ3

t

]
,

where

Ṗmech U
K

[
Σ3

t

]
≡

∫
Σ3

t

μU Ã(K).

Here the mass 3-form

μU ≡ −c0
2ρ � Ũ

and the total instantaneous integrated K-drive component on Σ3
t at time t in the U

frame is

fU
K

[
Σ3

t

]
≡

∫
Σ3

t

iU d τK
field.

6. – The general integrated force form on a regular domain Ij ⊂ M

In Minkowski spacetime, one has a global basis of parallel unit space-like translational
Killing vector fields (K1,K2,K3) on Σ3

t. In local Cartesian coordinates {t, x, y, z}, with
g = −c0

2dt ⊗ dt + dx ⊗ dx + dy ⊗ dy + dz ⊗ dz:

K1 =
∂

∂x
, K2 =

∂

∂y
, K3 =

∂

∂z
.

One can then define the instantaneous integrated force 1-form on Σ3
t at time t in the U

frame to be

(6.1) fU
[
Σ3

t

]
≡

3∑
j=1

fU
Kj

[
Σ3

t

]
K̃j .

Then, if N is any unit space-like vector field on Σ3
t, the instantaneous integrated force

component in the direction N acting on Σ3
t is

fU
[
Σ3

t

]
(N) =

3∑
j=1

fU
Kj

[
Σ3

t

]
K̃j(N).(6.2)

In an arbitrary (possibly non-inertial) frame U and domain Ij ⊂ M

iUd τK
field Ij = d σK

U field Ij + LUτK
field Ij ,



212 R. W. TUCKER and T. J. WALTON

where

(6.3) σK
U field Ij ≡ −iUτK

field Ij

is the total Cauchy stress 2-form(3). If one identifies an electromagnetic K-drive τK
EMIj

in τK
field Ij , such that

τK
field Ij = τK

EMIj + τK
rem Ij

and

σK
U field Ij = σK

U EMIj + σK
U rem Ij ,

one then has

Ṗmech U
K

Ij
[
Σ3

t

]
+ ṖEM U

K
Ij

[
Σ3

t

]
+ Ṗ rem U

K
Ij

[
Σ3

t

]
= fEM U

K
Ij

[
Σ3

t

]
+ f rem U

K
Ij

[
Σ3

t

]
,

where

Ṗ rem U
K

Ij
[
Σ3

t

]
≡ −

∫
Σ3

t

LUτK
rem Ij ,

ṖEM U
K

Ij
[
Σ3

t

]
≡ −

∫
Σ3

t

LUτK
EMIj

denote integrated rates of change associated with field momenta in τK
rem Ij and τK

EMIj

respectively, and

f rem U
K

Ij
[
Σ3

t

]
≡

∫
Σ3

t

d σK
U rem Ij ,

fEM U
K

Ij
[
Σ3

t

]
≡

∫
Σ3

t

d σK
U EMIj

denote integrated forces associated with stresses in τK
rem Ij and τK

EMIj , respectively.

7. – The general integrated force form in an irregular static domain composed
of different media

Suppose Σ3
t =

∑
j Ij with σK

U field Ij the Cauchy stress 2-form for domain Ij in
a Minkowski spacetime with frame U = 1

c0

∂
∂t . In general, τK

field must contain (time
dependent) constraining forces to maintain the overall equilibrium condition

i ∂
∂t

d τfield
K = 0

from stresses in each sub-domain Ij of Σ3
t. In the (possibly constrained) static case,

(3) This follows from the Cartan identity: LX = iXd + diX for any X ∈ STM .
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LUτK = 0 and each 2-form

i ∂
∂t

d τK
field Ij = dσK

U field Ij

contributes an integrated reaction force on Σ3
t from domain Ij .

In general, each 4-velocity V Ij ∈ STIj must be determined from the jump conditions
for τK

field Ij . In the static case, one has all ∇V Ij = 0 with V Ij = U , and one may define
the net integrated K-force for Σ3

t in the frame U :

fU
K

[
Σ3

t

]
≡

∑
j

∫
Σ3

Ij

i ∂
∂t

d τ
field Ij

K =
∑

j

∫
Σ3

Ij

d σ
U fieldIj

K =
∑

j

∫
∂Σ3

Ij

σ
U fieldIj

K .

There may be additional sources of stress with support on submanifolds of M . Singular
sources of stress in the electromagnetic field include charges, currents and their multi-
poles, with support on points, lines Σ1 or surfaces Σ2 in space [7]. If the integrals on
the right below are finite, the most general integrated force can then be written so as to
include such distributional sources:

fU
K

[
Σ3

t

]
≡

∑
j

∫
∂Σ3

Ij

σ
U fieldIj

K +
∑

j

∫
Σ2

Ij

κ
U fieldIj

K +
∑

j

∫
Σ1

Ij

γ
U fieldIj

K ,

in terms of line stress 1-forms γK and surface stress 2-forms κK .
A number of sources of interfacial stress depend on the local mean curvature normal

of the interface. For example, if the history of the interface ∂ Ij is the spacetime hyper-

surface f = 0 with unit spacelike normal N =
fd f
|d f | , then the scalar (Tr H) is defined

by

d iN iU � 1 = (Tr H) iU � 1

and η ≡ (Tr H)N is the mean curvature normal. Surface tension at an arbitrary interface
depends on η and the local surface tension scalar field γ, yielding the particular interface
forces: ∫

Σ2
Ij

=∂Σ3
Ij

κ
U fieldIj

K =
∫

Σ2
Ij

(γ iK η̃ + iK d γ) iN iU � 1∫
Σ1

Ij

γ
U fieldIj

K =
∫

Σ1
Ij

=∂Σ2
Ij

γ iN iU iK � 1.

8. – Electromagnetic fields in spacetime

Maxwell’s equations for an electromagnetic field in an arbitrary medium can be writ-
ten as

dF = 0 and d � G = j,(8.1)



214 R. W. TUCKER and T. J. WALTON

where F ∈ SΛ2M is the Maxwell 2-form, G ∈ SΛ2M is the excitation 2-form and
j ∈ SΛ3M is the 3-form electric current source(4). To close this system, “electromag-
netic constitutive relations” relating G and j to F are necessary. The functional tensor
relations

G = Z[F ]

and

j = Z1[F ]

are typical for idealized material without electrostriction losses.
The electric 4-current j describes both (mobile) electric charge and effective (Ohmic)

currents in a conducting medium. The electric field e ∈ SΛ1M and magnetic induction
field b ∈ SΛ1M associated with F are defined with respect to an observer field U by

e = iUF and c0 b = iU � F.(8.2)

Thus, iUe = iUb = 0 and with g(U,U) = −1,

F = e ∧ Ũ − �
(
c0 b ∧ Ũ

)
.(8.3)

Likewise the displacement field d ∈ SΛ1M and the magnetic field h ∈ SΛ1M associated
with G are defined with respect to U by

d = iUG and
h

c0
= iU � G.(8.4)

Thus,

G = d ∧ Ũ − �

(
h

c0
∧ Ũ

)
,(8.5)

with iUd = iUh = 0. The spatial 1-forms e, b, d, h are fields on a general spacetime
defined with respect to the frame U , which may be non-inertial if dŨ 
= 0.

9. – Time-dependent Maxwell systems in space

In the following, attention is restricted to fields on Minkowski spacetime. This can
be globally foliated by 3-dimensional spacelike hyperplanes. The Minkowski metric on
spacetime induces a metric with Euclidean signature on each spacetime hyperplane. Fur-
thermore, each hyperplane contains events that are deemed simultaneous with respect
to a clock attached to any integral curve of a future-pointing, unit, time-like vector field

(4) All electromagnetic tensors in this article have dimensions constructed from the SI dimen-
sions [M ], [L], [T ], [Q] where [Q] has the unit of the Coulomb in the MKS system. We adopt
[g] = [L2], [G] = [j] = [Q], [F ] = [Q]/[ε0] where the permittivity of free space ε0 has the di-
mensions [Q2 T 2M−1 L−3] and c0 = 1√

ε0μ0
denotes the speed of light in vacuo. Note that, with

[g] = [L2], for p-forms α in n dimensions one has [�α] = [α][Ln−2p].
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U = 1
c0

∂
∂t defining an inertial observer on Minkowski spacetime and the spacetime Hodge

map � induces a Euclidean Hodge map # on each hyperplane by the relation

�1 = c0 dt ∧ #1 = #1 ∧ Ũ .

The spacetime Maxwell system can now be reduced to a family of parameterised exterior
systems on R

3. Each member is an exterior system involving forms on R
3 depending

parametrically on some time coordinate t associated with U . Let the (3 + 1) split of the
4-current 3-form with respect to the foliation be

j = −J ∧ dt + ρ#1,

with i ∂
∂t

J = 0. Then, from (8.1),

(9.1) d j = 0

yields

(9.2) d̂J + ρ̇#1 = 0.

Here, and below, an over-dot denotes (Lie) differentiation with respect to the parameter
t (α̇ ≡ L ∂

∂t
α for all α) and d̂ denotes exterior differentiation on R

3 such that

d ≡ d̂ + dt ∧ L ∂
∂t

.

It is convenient to introduce on each spacetime hyperplane the (Euclidean Hodge) dual
forms:

E ≡ #e, D ≡ #d

B ≡ #b, H ≡ #h, j ≡ #J ,

so that the (3 + 1) split of the spacetime covariant Maxwell equations (8.1) with respect
to Ũ = −c0 dt becomes

d̂e = −Ḃ,(9.3)

d̂B = 0,(9.4)

d̂h = J + Ḋ,(9.5)

d̂D = ρ#1.(9.6)

All p-forms (p ≥ 0) in these equations are independent of dt, but have components that
may depend parametrically on t.
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10. – Electromagnetic constitutive tensors for linear media

Attention will now be turned to integrated electromagnetic forces on a class of polar-
isable media. This requires a discussion of a class of electromagnetic constitutive tensors
for linear media. In general, the excitation tensor G is a functional of the Maxwell field
tensor F and properties of the medium

G = Z[F, . . .].

Such a functional induces, in general, non-linear and non-local relations between d, h
and e, b. Electrostriction and magnetostriction arise from the dependence of Z on the
elastic deformation tensor of the medium. For general linear continua, one may define a
collection of constitutive tensor fields Z(r) on spacetime by the relation

G = ΣN
r=0Z

(r)[∇ rF, . . .],

in terms of the spacetime connection (covariant derivative) ∇.
In idealized (non-dispersive) simple media, one adopts the simplified local relation

G = Z(F ),

for some degree 4 constitutive tensor field Z and in the vacuum G = ε0F . Regular
linear isotropic media are described by a bulk 4-velocity field V , a relative permittivity
scalar field εr and a non-vanishing relative permeability scalar field μr. In this case, the
structure of Z follows from

G

ε0
= εr iV F ∧ Ṽ − μ−1

r �
(
iV � F ∧ Ṽ

)
=

(
εr −

1
μr

)
iV F ∧ Ṽ +

1
μr

F.

In a comoving frame with U = V , this becomes

d = ε0εr e and h = (μ0μr)−1b.

To discuss linear (non-dispersive, lossless), inhomogeneous, anisotropic media, it is con-
venient to describe Z in a particular basis associated with the medium. Since Z is a
tensor that maps 2-forms to 2-forms, in any spacetime local frame {e0, e1, e2, e3}, one
may write

1
2
Gabe

a ∧ eb =
1
4
Zcd

abFcde
a ∧ eb,

where

Zcd
ab = −Zcd

ba = −Zdc
ab = Zdc

ba.

Thus, Z can be described in terms of spatial rank 3 tensors on spacetime, relating
observed electric and magnetic fields in some frame U , with

d = ζde(e) + ζdb(b),
h = ζhe(e) + ζhb(b).
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In such a frame, the medium is said to exhibit magneto-electric properties in general.
If ζdb and ζhe are non-zero in the co-moving frame of the medium, it is called mag-
netoelectric. If ζdb and ζhe are zero in the co-moving frame of the medium, it is called
non-magnetoelectric. The spatial tensors ζdb and ζhe may be non-zero in a non-comoving
frame for a non-magnetoelectric medium. Due to the behaviour of electric and magnetic
fields under Lorentz transformations, all materials exhibit magnetoelectric properties
in some frame. Thermodynamic and time symmetry conditions impose the relation
Z = Z† [14] or

ζde† = ζde, ζhb† = ζhb and ζdb† = −ζhe

in all spacetime frames, where the adjoint T † of a tensor T which maps p-forms to p-forms
is defined by

α ∧ �T (β) = β ∧ �T †(α) for all α, β ∈ SΛpM.

11. – Homogeneous dispersive magnetoelectric media

In dispersive media, constitutive relations between the spatial fields e, b, d, h are non-
local in spacetime. If the medium is spatially homogenous, so that it has no preferred
spatial origin, then it is possible to Fourier transform the fields with respect to space and
time, and work with transformed local constitutive relations.

For any real valued p-form α, define its complex valued Fourier transform α̌k,ω by

(11.1) α =
∫ ∞

−∞
dω

∫ ∞

−∞
dk α̌k,ω exp[i(k · r − ωt)],

where k ∈ R
3. Then the source free Maxwell system reduces to

K ∧ ěk,ω = ωB̌k,ω(11.2)

K ∧ ȟk,ω = −ωĎk,ω,(11.3)

where the real propagation wave 1-form K ≡ k·dr ∈ SΛ1M . The remaining transformed
Maxwell equations K∧B̌k,ω = 0 and K∧Ďk,ω = 0 follow trivially from (11.2) and (11.3)
when ω 
= 0. It also follows trivially that ěk,ω ∧ B̌k,ω = 0 (i.e. ěk,ω is perpendicular to
b̌k,ω). Similarly, B̌k,ω ∧ K = 0 and Ďk,ω ∧ K = 0.

We assume that the magnetoelectric constitutive relations take the form

ďk,ω = ζ̌de
k,ω(ěk,ω) + ζ̌db

k,ω(b̌k,ω),(11.4)

ȟk,ω = ζ̌he
k,ω(ěk,ω) + ζ̌hb

k,ω(b̌k,ω).(11.5)

These will (by convolution) give rise to non-local spacetime constitutive relations. We
also maintain the above symmetry properties on the magnetoelectric tensors ζ̌de

k,ω, ζ̌db
k,ω,

ζ̌he
k,ω, ζ̌hb

k,ω. Substituting (11.4) and (11.5) in (11.2) and (11.3) yields a degenerate 1-form
linear eigen-equation for ěk,ω:

ω2ζ̌de
k,ω(ěk,ω) + ωζ̌db

k,ω

(
#

(
K ∧ ěk,ω

))
+ ω#

(
K ∧ ζ̌he

k,ω(ěk,ω)
)

(11.6)

+ #
(
K ∧ ζ̌hb

k,ω

(
#

(
K ∧ ěk,ω

)))
= 0.
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The field b̌k,ω then follows from (11.2), (up to a scaling) and ďk,ω, ȟk,ω from (11.4), (11.5),
respectively. Equation (11.6) may be written as

(11.7) Ďk,ω(ěk,ω) = 0,

defining the 1 − 1 tensor Ďk,ω. For non-trivial solutions ěk,ω, the determinant of the
matrix Ďk,ω representing Ďk,ω must vanish:

(11.8) det(Ďk,ω) = 0.

Note that, in general, the roots of this dispersion relation are not invariant under the
transformation K → −K. If one writes k = k̂|k| in terms of the Euclidean norm |k|,
and introduces the refractive index N = |k| c0

ω > 0 and k̂ in place of k, then solutions
propagating in the direction described by k̂ with angular frequency ω > 0 correspond
to roots of (11.8) (labelled r) that may be expressed in the form Nr = Fr(k̂, ω). Thus,
there can be a set of distinct characteristic waves each with its unique refractive index
that depends on the propagation direction k̂ and frequency ω. When the characteristic
equation (11.8) is a quadratic polynomial in N 2 and has two distinct roots that describe
two distinct propagating modes for a given ω, the medium is termed birefringent. Roots
N 2

r such that Nr(k̂, ω) 
= Nr(−k̂, ω) imply that harmonic plane waves propagating in
the opposite directions ±k̂ have different wave speeds.

Each eigen-wave will have a uniquely defined polarisation obtained by solving the
independent equations in (11.7) for ěr

k,ω, up to normalisation. Since ěr
k,ω is complex, it

is convenient to introduce the eigen-wave normalisation by writing

ěr
k,ω = ěr

k,ω ňr
k,ω,

in terms of the complex 0-form ěr
k,ω and complex polarisation 1-form ňr

k,ω, normalised
to satisfy

(11.9) ňr
k,ω ∧ #ňr

k,ω = #1

for each r. If one applies # ěr
k,ω ∧# to (11.6), making use of the symmetries between the

real magnetoelectric tensors ζ̌de
k,ω, ζ̌db

k,ω, ζ̌he
k,ω, ζ̌hb

k,ω, and evaluates it with the eigen-wave
ěr

k,ω, one obtains the real 0-form dispersion relation for the characteristic mode r:

ω2#
(
ňr

k,ω ∧ #ζ̌de
k,ω(ňr

k,ω)
)

+ ω #
(
ňr

k,ω ∧ #ζ̌db
k,ω

(
#

(
K ∧ ňr

k,ω

)))
+ω #

(
ňr

k,ω ∧ K ∧ ζ̌he
k,ω(ňr

k,ω)
)

+ #
(
ňr

k,ω ∧ K ∧ ζ̌hb
k,ω

(
#

(
K ∧ ňr

k,ω

)))
= 0,

where K = ω
c0

N k̂ · dr in terms of N and k̂.

12. – Electromagnetic stress-energy-momentum tensors

There has been intense debate over many decades about the appropriate choice of
electromagnetic stress-energy-momentum tensor that transmits forces in a (moving) po-
larisable medium [15]. In 1909, Abraham introduced the symmetric electromagnetic
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stress-energy-momentum tensor T EM for a medium with 4-velocity V :

2 T EM = −iaF ⊗ iaG − iaG ⊗ iaF − �(F ∧ �G)g + Ṽ ⊗ s + s ⊗ Ṽ ,

where ia ≡ iXa
, ia ≡ gab ib in any vector basis {Xa} and

s = �

(
1
c0

eV ∧ hV ∧ Ṽ − c0 dV ∧ bV ∧ Ṽ

)
,

where eV = iV F, c0 bV = iV � F, dV = iV G and
hV

c0
= iV � G,

are fields defined relative to the motion of the medium, so that

F = eV ∧ Ṽ − �
(
c0 bV ∧ Ṽ

)
,

G = dV ∧ Ṽ − �

(
hV

c0
∧ Ṽ

)
with

G = Z(F ).

For any Killing field K the drive form associated with Abraham’s electromagnetic stress-
energy-momentum tensor is

(12.1) τEM
K =

1
2

(
F ∧ iK � G − iKG ∧ �F + s(K) � Ṽ + Ṽ (K) � s

)
.

It follows from (6.3), (8.3) and (8.5) that

JU
K ≡ σU

K =
1
2

(e(K)#d + d(K)#e + h(K)#b + b(K)#h)(12.2)

−1
2
# (e ∧ #d + b ∧ #h) #K̃ +

1
2
Ũ(K)

(
1
c0

e ∧ h + c0 d ∧ b

)
+

1
2
iU

(
K̃ ∧ iV � s

)
− Ṽ (K)iU � s

and

ρU
K = −1

2
Ũ(K) (b ∧ #h + e ∧ #d) +

1
2

(
1
c0

e ∧ h + c0 d ∧ b

)
∧ K̃⊥(12.3)

−1
2
iU

(
K̃ ∧ Ũ ∧ iV � s

)
+ Ṽ (K) iU (� s ∧ Ũ),

where K⊥ ≡ K + Ũ(K)U .
By contrast, Minkowski (1908) introduced the non-symmetric electromagnetic stress-

energy-momentum tensor T EM where

(12.4) T EM = −iaF ⊗ iaG − 1
2

� (F ∧ �G)g,
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which exhibits no explicit dependence on the medium 4-velocity V . The corresponding
drive form is

τEM
K =

1
2

(F ∧ iK � G − iKF ∧ �G)

and (6.3), (8.3) and (8.5) yield in this case

JU
K ≡ σU

K = h(K)#b + e(K)#d +
1
c0

Ũ(K)e ∧ h(12.5)

−1
2
# (e ∧ #d + b ∧ #h) #K̃

and

(12.6) ρU
K = c0 d ∧ b ∧ K̃⊥ − 1

2
Ũ(K) (e ∧ #d + b ∧ #h) .

More recently other choices for an electromagnetic stress-energy-momentum tensor
have been proposed which in themselves simply imply different constitutive relations [16]
with respect to a particular total stress-energy-momentum tensor. In [17,18], it has been
argued that different choices of the electromagnetic stress-energy-momentum tensor for
linear polarisable media are equivalent to different choices of Z and a different partition of
the total stress-energy-momentum tensor for the computation of so-called pondermotive
forces that arise from the divergence of terms in its decomposition. Furthermore, it was
shown how particular choices of the dependence of Z on the gravitational interaction led,
via a covariant variational formulation, to either the Abraham tensor or a symmetrized
version of that proposed by Minkowski.

In the following, we illustrate how the general theory of drive forms outlined above
offers a natural tool to discuss the computation of particular electromagnetic forces for
materials that exhibit magnetoelectric properties (at rest) in the laboratory, for a par-
ticular choice of electromagnetic drive form. This is an essential step in any program
that attempts to confront experimental measurements of such forces with theoretical
prediction.

To facilitate this calculation, an electromagnetic drive form associated with the tensor
obtained by symmetrizing (12.4) will be chosen:

(12.7) τK
EM =

1
2
(F ∧ iK � G − iKG ∧ �F ).

It follows from (6.3), (8.3) and (8.5) that with this drive-form

JU
K ≡ σU

K =
1
2

(e(K)#d + d(K)#e + h(K)#b + b(K)#h)(12.8)

−1
2
# (e ∧ #d + b ∧ #h) #K̃ +

1
2
Ũ(K)

(
1
c0

e ∧ h + c0 d ∧ b

)
and

(12.9) ρU
K =

1
2

(
1
c0

e ∧ h + c0 d ∧ b

)
∧ K̃⊥ − 1

2
Ũ(K) (e ∧ #d + b ∧ #h) .
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For a medium at rest in the laboratory, U = V = 1
c0

∂t. Furthermore, if Ũ(K) = 0,
the 2-forms (12.2) and (12.8) coincide, so the following analysis does not discriminate
between the choice of tensors (12.1) and (12.7). However, in this case the instantaneous
densities (12.3) and (12.9) are different. But, for the polarised monochromatic plane
waves discussed below, the time-averaged tensors based on (12.6) and (12.9) also coincide.

If the fields are all differentiable in the medium described by (12.7), one readily obtains

d τEM
K =

1
2

(iKdG ∧ �F + iKG ∧ d � F − F ∧ iKd � G)

= F ∧ �iKd

(
Π
2

)
−

(
F +

(
Π
2ε0

))
∧ iK j + G ∧ iK d �

(
Π
2ε0

)
,

where

dF = 0, d � G = j, G = ε0F + Π, ε0 d � F = j − d � Π.

Thus, non-zero bulk integrated static electromagnetic forces from such fields require
dΠ 
= 0, d � Π 
= 0 (magnetisation or electrical polarisation inhomogeneities) or j 
= 0
(non-zero local source current or charge density). For a neutral homogeneous material
therefore, we consider a medium whose electromagnetic properties change discontinuously
at some interface.

13. – The magnetoelectric slab

In terms of the rank 3 identity tensor Id in space, consider an infinitely extended
slab(5) of magnetoelectric material with

ζ̌de
k,ω = εk,ω Id,(13.1)

ζ̌hb
k,ω = μ−1

k,ω Id.(13.2)

The slab has width L and parallel interfaces (with the vacuum) at x = 0 and x = L. It
is oriented in the laboratory frame {∂x, ∂y, ∂z}, so that ζ̌db

k,ω takes the particular form

(13.3) ζ̌db
k,ω = β1,k,ω dz ⊗ ∂y + β2,k,ω dy ⊗ ∂z,

In this frame, the modes associated with the branch (13.6) of the dispersion relation
below will be polarised in the direction ∂z and those associated with the branch (13.7)
will be polarised in the direction ∂y. The matrix representing ζ̌db

k,ω takes the form

(13.4)
[
ζ̌db

k,ω

]
≡

⎛⎝0 0 0
0 0 β1,k,ω

0 β2,k,ω 0

⎞⎠ .

(5) Such a medium has been considered by Hehl and Obukhov in their classical analysis of the
Feigel effect [19].
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Incident, E

Reflected, EEI y
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Transmitted, EEIIy
R

Reflected, EEII y
L

Transmitted, EEIII y
R

x = 0 x = L

I II III

ε0, μ0 ε0, μ0εk,ω, μk,ω, ζ̌db
k,ω

Fig. 2. – Geometry of the magnetoelectric slab and the electric field amplitudes in the three
regions.

It follows that

ζ̌he
k,ω = −β2,k,ω dz ⊗ ∂y − β1,k,ω dy ⊗ ∂z.(13.5)

With this choice of orientation of the slab, the spatial region 0 < x < L will be denoted
II and the region with x > L denoted III (see fig. 2). The electromagnetic fields induced
in its interior by a plane monochromatic wave normally incident from the right (in region
I, x < 0) propagating in the direction ∂x with polarisation in the direction ∂y can now
be readily determined.

From (11.8), the dispersion relation associated with one polarised eigen-mode of ěk,ω

is

(13.6) εk,ωμk,ωω2 − k2 − 2β1,k,ωkω = 0,

while that associated with the other polarised eigen-mode of ěk,ω is

(13.7) εk,ωμk,ωω2 − k2 + 2β2,k,ωkω = 0.

Each relation can describe propagating modes with angular frequency ω > 0 moving in
a direction determined by sign(k) ∂x with phase speed |ω/k|. Since this ratio depends
on the values of β1,k,ω or β2,k,ω, it may exceed the speed of light in vacuo. In principle,
such modes can contribute to the synthesis of wave packets. However, in the following,
we restrict to monochromatic incident waves and work with constitutive parameters that
inhibit super-luminal waves, with real constants εk,ω ≡ ε > 0, μk,ω ≡ μ > 0, β1,k,ω ≡ β1,
β2,k,ω ≡ β2. For an incident wave with complex amplitude E , no loss of generality arises
by taking ω > 0 and writing the solution ěk,ω:

ěI y
k,ω = E

(
exp

[
ikIy

R x − iω t
]

dy + EI y
L exp

[
ikIy

L x − iω t
]

dy
)

,(13.8)
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ěII y
k,ω = E

(
EII y

R exp
[
ikIIy

R x − iω t
]

dy + EII y
L exp

[
ikIIy

L x − iω t
]

dy
)

,(13.9)

ěIII y
k,ω = EEIII y

R exp
[
ikIIIy

R x − iω t
]

dy(13.10)

where kIIy
R denotes a real root of the dispersion relation (13.7) associated with the po-

larisation eigenvector ∂y with sign(kIIy
R ) > 0, describing a polarised right-moving wave

in the slab (region II). Similarly, kIIy
L denotes a real root of the dispersion relation as-

sociated with the polarisation eigenvector ∂y with sign(kIIy
L ) < 0, describing a polarised

left-moving wave in the slab (region II). In general, these wave numbers are different. In
the vacuum regions, kIy

R = −kIy
L = kIIIy

R = ω/c0 .
If Ω∗

0 (Ω∗
L) denotes the pull-back of forms to the interface x = 0 (x = L), the interface

boundary conditions [20] are

Ω∗
0

(
ěI y

k,ω − ěII y
k,ω

)
= Ω∗

L

(
ěII y

k,ω − ěIII y
k,ω

)
= 0,(13.11)

Ω∗
0

(
ȟI y

k,ω − ȟII y
k,ω

)
= Ω∗

L

(
ȟII y

k,ω − ȟIII y
k,ω

)
= 0,(13.12)

Ω∗
0

(
B̌I y

k,ω − B̌II y
k,ω

)
= Ω∗

L

(
B̌II y

k,ω − B̌III y
k,ω

)
= 0,(13.13)

Ω∗
0

(
ĎI y

k,ω − ĎII y
k,ω

)
= Ω∗

L

(
ĎII y

k,ω − ĎIII y
k,ω

)
= 0,(13.14)

yielding the linear system for the dimensionless complex amplitudes EI y
L , EII y

R , EII y
L ,

EIII y
R :

1 + EI y
L = EII y

R + EII y
L ,(

kIIy
R

μω
− β2

)
EII y

R +

(
kIIy

L

μω
− β2

)
EII y

L =
1

μ0ω

(
kIy

R + EI y
L kIy

L

)
,

EII y
R exp

[
ikIIy

R L
]

+ EII y
L exp

[
ikIIy

L L
]

= EIII y
R exp

[
ikIII

R L
]
,(

kIIy
R

μω
−β2

)
EII y

R exp
[
ikIIy

R L
]
+

(
kIIy

L

μω
−β2

)
EII y

L exp
[
ikIIy

L L
]
=

kIIIy
R EIII y

R

μ0ω
exp

[
ikIIIy

R L
]
.

This system of equations has the solution

EI y
L =

Γ y
−

Γ y
+

,

EII y
L =

μ
(
kIy

L − kIy
R

) (
μμ0β2ω + kIII

R μ − μ0k
IIy
R

)
exp

[
ikIIy

R L
]

Γ y
+

,

EII y
R =

μ
(
kIy

R − kIy
L

) (
μμ0β2ω + kIII

R μ − μ0k
IIy
L

)
exp

[
ikIIy

L L
]

Γ y
+

,

EIII y
R =

μμ0

(
kIy

R − kIy
L

) (
kIIy

R − kIIy
L

)
exp

[
i
(
kIIy

R + kIIy
L − kIII

R

)
L

]
Γ y

+

,

(13.15)
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z z

x

Ω0 ΩL
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I II III

Fig. 3. – Geometry of the 2-chain Ω used to calculate the time-averaged integrated pressure on
the magnetoelectric slab.

where it is convenient to introduce

Γ y
± =

(
exp

[
ikIIy

R L
]
− exp

[
ikIIy

L L
]) [

kIy
± μ2

(
μ0β2ω + kIIIy

R

)
±μμ2

0β2ω
(
β2μω − kIIy

R − kIIy
L

)
+ μ0

(
β2ωμ2kIIIy

R + μ0k
IIy
R kIIy

L

)]
±

(
kIIy

R exp
[
ikIIy

L L
]
− kIIy

L exp
[
ikIIy

R L
])

μμ0k
IIIy
R

+
(
kIIy

L exp
[
ikIIy

L L
]
− kIIy

L exp
[
ikIIy

L L
])

μμ0k
Iy
±

with

kIy
+ = kIy

R and kIy
− = kIy

L .

With the electric field amplitudes determined, the complete set of polarised fields
{ě y

k,ω, b̌ y
k,ω, ď y

k,ω, ȟ y
k,ω} in each region is determined. For completeness, these fields are

given in the Appendix.

14. – Average pressure on the magnetoelectric slab

To calculate the average pressure on the sides of the magnetoelectric slab, one inte-
grates the Maxwell-Cauchy stress 2-form over the 2-chain (surface) Ω = Ω0+Ω1+ΩL+Ω2

indicated schematically in fig. 3. The image of Ω is the boundary of a box of height H,
width W and length L, with faces Ω0 and ΩL in regions I and III respectively, parallel
to the surfaces of the slab. Integrating over a box with faces wholly within II would give
zero total force, since region II is homogeneous. Since the fields are independent of z,
contributions to the integral from the oriented chains Ω1 and Ω2 cancel.
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The above fields yield a net pressure on II that fluctuates with time, with a non-zero
average. If A(r, t) is a scalar field, its average over any time interval T is

〈A〉(r) ≡ 1
T

∫ T

0

A(r, t)dt.

Hence, if B(r, t) is another scalar field,

〈AB〉(r) ≡ 1
T

∫ T

0

A(r, t)B(r, t)dt.

Furthermore, if

A = Re (A(r) exp[−iωt]) ∈ SΛpM,

B = Re (B(r) exp[−iωt]) ∈ SΛqM,

where A, B are complex, then

A ∧ B =
1
2

Re (A ∧ B exp[−2iωt]) +
1
2

Re(A ∧ B),

so

(14.1) 〈A ∧ B〉(r) =
1
2

Re(A ∧ B),

if we take T = 2π
ω . Thus, (12.8) gives

〈σU
K〉(r) =

1
4

Re
(
ě y

k,ω(K)#ď y
k,ω + ď y

k,ω(K)#ě y
k,ω + ȟ y

k,ω(K)#b̌ y
k,ω + b̌ y

k,ω(K)#ȟ y
k,ω

)
−1

4
#Re

(
ě y

k,ω ∧ #ď y
k,ω + b̌ y

k,ω ∧ #ȟ y
k,ω

)
#K̃

+
1
4
Ũ(K)Re

(
1
c0

ě y
k,ω ∧ ȟ y

k,ω + c0 ď y
k,ω ∧ b̌ y

k,ω

)
.

Furthermore, with U = 1
c0

∂t and K = ∂x, the x-component of the time-averaged
Maxwell-Cauchy stress 2-form is

〈σ∂x
〉(r) =

1
4

Re
(
ě y

k,ω(∂x)#ď y
k,ω + ď y

k,ω(∂x)#ě y
k,ω + ȟ y

k,ω(∂x)#b̌ y
k,ω + b̌ y

k,ω(∂x)#ȟ y
k,ω

)
−1

4
#Re

(
ě y

k,ω ∧ #ď y
k,ω + b̌ y

k,ω ∧ #ȟ y
k,ω

)
#dx,

which reduces to

(14.2) 〈σ∂x
〉(r) = −1

4
#Re

(
ě y

k,ω ∧ #ď y
k,ω + b̌ y

k,ω ∧ #ȟ y
k,ω

)
dy ∧ dz.
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The time-averaged integrated force is given by(6)

〈
fNET

∂x
[Ω]

〉
=

∫
Ω0

〈
σI

∂x

〉
−

∫
ΩL

〈
σIII

∂x

〉
.

Denote the time-averaged stress forms due to the fields in regions I and III by

〈
σI

∂x

〉
= αI dy ∧ dz, αI = −1

4
#Re

(
ěI y

k,ω ∧ #ďI y
k,ω + b̌I y

k,ω ∧ #ȟI y
k,ω

)
〈
σIII

∂x

〉
= αIII dy ∧ dz, αIII = −1

4
#Re

(
ěIII y

k,ω ∧ #ďIII y
k,ω + b̌III y

k,ω ∧ #ȟIII y
k,ω

)
Thus, the time-averaged net force on the magnetoelectric medium contained in the region
bounded by Ω is

〈
fNET

∂x
[Ω]

〉
=

(
Ω∗

0α
I − Ω∗

LαIII
) ∫ W

0

∫ H

0

dydz =
(
Ω∗

0α
I − Ω∗

LαIII
)
A,

where A = WH and the time-average integrated pressure 〈px[Ω]〉 ≡ 〈fNET
∂x

[Ω]〉
A . Calculat-

ing the pull-backs of

αI = −|E|2
4

[
ε0

(
1 + 2Re

(
EI y

L exp
[
i
[
kIy

R − kIy
L

]
x
])

+
∣∣∣EI y

L

∣∣∣2)
+

1
μ0ω2

((
kIy

R

)2

+ 2kIy
R kIy

L Re
(
EI y

L exp
[
i
[
kIy

R − kIy
L

]
x
])

+ (kIy
L )2

∣∣∣EI y
L

∣∣∣2)]
,

αIII = −

∣∣∣EEIII y
R

∣∣∣2
4

⎛⎜⎝ε0 +

(
kIIIy

R

)2

μ0ω2

⎞⎟⎠
yields

Ω∗
0α

I = −ε0|E|2
2

(
1 +

∣∣∣EI y
L

∣∣∣2) , Ω∗
LαIII = −

ε0

∣∣∣EEIII y
R

∣∣∣2
2

,

since kIy
R = −kIy

L = kIIIy
R = ω

c0
. Since the time-averaged body force 〈LUρU

K〉 = 0 for ρU
K

given by (12.3), (12.6) and (12.9), it follows that the average pressure on the magneto-
electric slab is given in terms of the solution (13.15) by

(14.3) 〈px[Ω]〉 =
ε0|E|2

2

(∣∣∣EIII y
R

∣∣∣2 − ∣∣∣EI y
L

∣∣∣2 − 1
)

.

(6) The minus sign occurs due to the opposite orientation of the opposite faces of Ω.
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15. – Conclusion

The magnitude and sign of 〈px[Ω]〉 depends on ε ≡ εrε0, μ ≡ μrμ0, β1 and β2, where
c0 = 1√

ε0μ0
. As noted above, the wave numbers kIIy

L , kIIy
R that follow from the dispersion

relation determine the nature of the propagating wave in region II. For the case under
discussion here, where the parameters εr, μr, β1, β2 are constant, it is of interest to write
the dispersion relations in terms of the dimensionless ratio of the wave speeds w ≡ v

v0
,

where v = ω
k , v0 = 1√

εμ and the dimensionless parameters b1 ≡ −β1/
√

εμ, b2 ≡ β2/
√

εμ:

w2 + 2b1w − 1 = 0,

w2 + 2b2w − 1 = 0.

Then the sub-luminal condition | v
c0

| < 1 implies |w| <
√

εrμr. The relation between w
and either b1 and b2 can then be seen from the relation of the two branches of the loci
where the expression w2 + 2bw − 1 vanishes in the (w, b)-plane. For ω > 0, values of w
in the upper (lower) half plane correspond to left (right) moving waves. Furthermore,
propagating sub-luminal monochromatic waves will only occur in II for real b, yielding
real values of w in the range −√

εrμr < w <
√

εrμr. It is clear from these considerations
that the relative sign between β1 and β2 can have a significant effect on the behavior
of the propagating modes in the region II and hence on the nature of the force on the
magnetoelectric slab.

The authors feel that the approach adopted in this paper for the calculation of static,
time-averaged and instantaneous forces, offers a conceptually unambiguous method of
considerable generality. Once one decides on the drive form appropriate for any subsys-
tem in interaction with external fields, it has immediate application to moving media
(in arbitrary relativistic or non-relativistic motion) and can be extended to matter with
material losses. Work is in progress to extend the methodology to inhomogeneous media
with more general constitutive properties and this will be reported elsewhere.
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the Cockcroft Institute for supporting this research.

Appendix

Electromagnetic fields in the three regions

For a y-polarised harmonic electromagnetic wave with angular frequency ω > 0,
incident normally from the left on a fixed magnetoelectric slab, the electric field solutions
in the three regions are given by (13.8)–(13.10). For completeness, the remaining fields
in these three regions are given here. The magnetic induction fields follow from (11.2):

b̌I y
k,ω =

E kIy
R

ω
exp

[
ikIy

R x − iω t
]

dz +
E kIy

L EI y
L

ω
exp

[
ikIy

L x − iω t
]

dz,

b̌II y
k,ω =

E kIIy
R EII y

R

ω
exp

[
ikIIy

R x − iω t
]

dz +
E kIIy

L EII y
L

ω
exp

[
ikIIy

L x − iω t
]

dz,

b̌III y
k,ω =

E kIIIy
R EIII y

R

ω
exp

[
ikIIIy

R x − iω t
]

dz.
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The electric displacement 1-forms in regions I and III are given by the vacuum constitutive
relation ď y

k,ω = ε0ě
y
k,ω, whereas the electric displacement 1-form in region II is given by

the constitutive relation (11.4), with the spatial tensors ζ̌de
k,ω and ζ̌db

k,ω given by (13.1)
and (13.3), respectively:

ďI y
k,ω = E ε0 exp

[
ikIy

R x − iω t
]

dy + E ε0E
I y
L exp

[
ikIy

L x − iω t
]

dy,

ďII y
k,ω = E

(
ε +

β2k
IIy
R

ω

)
EII y

R exp
[
ikIIy

R x − iω t
]

dy

+E
(

ε +
β2k

IIy
L

ω

)
EII y

L exp
[
ikIIy

L x − iω t
]

dy

ďIII y
k,ω = E ε0E

III y
R exp

[
ikIIIy

R x − iω t
]
dy.

Similarly, the magnetic 1-forms in the regions I and III are given by the vacuum con-
stitutive relation ȟ y

k,ω = μ−1
0 b̌ y

k,ω, whereas in region II, the magnetoelectric constitutive
relation (11.5), with the spatial tensors ζ̌hb

k,ω and ζ̌he
k,ω given by (13.2) and (13.5) respec-

tively yield

ȟI y
k,ω =

E kIy
R

μ0ω
exp

[
ikIy

R x − iω t
]

dz +
E kIy

L EI y
L

μ0ω
exp

[
ikIy

L x − iω t
]

dz,

ȟII y
k,ω = E

(
kIIy

R

μω
− β2

)
EII y

R exp
[
ikIIy

R x − iω t
]

dz

+E
(

kIIy
L

μω
− β2

)
EII y

L exp
[
ikIIy

L x − iω t
]

dz,

ȟIII y
k,ω =

E kIIIy
R EIII y

R

μ0ω
exp

[
ikIIIy

R x − iω t
]

dz.
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