
DOI 10.1393/ncc/i2009-10366-y

Colloquia: CSFI 2008

IL NUOVO CIMENTO Vol. 32 C, N. 2 Marzo-Aprile 2009

Network approaches to Genome-Wide Association studies

D. Remondini(1)(∗), E. Verondini(1), F. Lescai(3), I. Zironi(1)
and G. Castellani(2)
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Summary. — In the framework of large-scale genotypic studies (describing the
distribution of allele frequencies inside human genome) we characterize the Link-
age Disequilibrium (LD) matrix as a network of relationships between alleles. We
propose a suitable matrix discretization threshold, after a characterization of the
distribution of noisy values inside LD matrix. We compare the main network pa-
rameters of a real LD matrix with two null models (Erdos-Renyi random network
and a rewiring of the original network), in order to highlight the peculiar features
of the LD network. We conclude stating the need of adequate computing tools for
handling the high-dimensional data coming from Genome-Wide genotyping datasets.

PACS 87.18.Vf – Systems biology.
PACS 87.18.Wd – Genomics.
PACS 87.19.xk – Genetic diseases.

1. – Description

In the framework of genotypic studies, a mainstream topic is the quantitative charac-
terization of the relative allele frequencies inside genome. These studies have been applied
to characterize the evolution of human populations [1, 2], by looking at how patterns of
allele frequencies are distributed geographically. More recently, these studies have been
extended to the characterization of whole human genomes over large amounts of samples,
characterizing specific populations (e.g., Africans or Caucasians, see www.hapmap.org)
or groups with specific stratification (e.g., people sharing the same pathology [3]). These
data are allowing the study of the so-called complex trait diseases, in which the pathol-
ogy (and its degree of severity) is a phenotypic trait due to a combination of several
genetic factors (possibly hidden inside single-nucleotide mutations) that are not harmful
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if found singularly. The challenge is open, but a great effort must be undertaken, both
from an experimental point of view, and also for the mathematical and informatics tools
necessary for the storage and treatment of the huge amounts of high-dimensional data
obtained from such experiments.

The topic of Genome-Wide Association studies is referred to the characterization of
specific allelic profiles that can be associated to a particular pathology, in comparison with
a background allelic frequency obtained from healthy samples, considering a sampling
over the whole chromosomic set. Such studies produce data with a dimensionality in the
order of 4·105 (corresponding to about 20 single-nucleotide samplings per gene) or larger.
These studies concentrate on Single-Nucleotide Polymorphisms (SNPs), that may lead
to changes in the aminoacidic sequence in the proteins encoded in genes, or to changes
in binding affinity for transcription factors in the non-coding regions surrounding genes,
thus altering genes functionality to a different extent.

A typical measurement of deviations of SNP frequency from random recombination
is Linkage Disequilibrium (D′):

(1) D′
AB =

PAB − PA · PB

Dmax
,

in which A and B are two (of the possible four) alleles at two different chromosomal
locations. It is a measurement of co-occurence of SNPs in couples, in which Dmax is a
normalization constant that sets the maximum/minimum LD values to +1/−1. The sign
is usually not important, the information is encoded in significant deviations from zero.
In general, for statistical purposes, only high values of LD are considered (|LD| � 1), and
low values (|LD| < 0.25) are considered as noise, leaving a large gray zone unexplored.

We aim at characterizing LD matrices with a network-based approach, applying a
suitable discretization that removes the noisy (unreliable) values. Considering a low-
dimensional sample dataset (number of nodes N � 1000 SNPs), the most common
network parameters are considered, and the relative distributions are compared with
two null models, a random network (in the Erdos-Renyi sense) with the same average
connectivity as the original matrix, and a matrix obtained by original link reshuffling,
that instead preserves single-node connectivity degree [4].

2. – Analysis

As a first step, we estimate the region of noisy values (to be removed) by looking at
the probability density of the LD coefficients. We consider the range of values ≤ 0.3, in
which the distribution is clearly Gaussian (figure not shown), for estimating the noise
parameters (essentially σ). Thus, we obtain a (symmetric unweighted) adjacency matrix
A by setting to zero the LD matrix values below 3σ = 0.385, and setting to 1 the
remaining. The main network parameters (connectivity degree K, betweenness centrality
BC, clustering coefficient C, average nearest-neighbour connectivity KNN ) for each node
are calculated, and the relative probability density functions are compared with two null
models: a random network R with the same average connectivity of A, and a more
structured matrix, the rewired network W, obtained by randomly reshuffling the links in
A, thus preserving single-node connectivity degree.

Concerning network parameters, average clustering results much higher in A and W
(CA = 0.415 and CW = 0.4, respectively) as compared to the completely randomized
counterpart (CR = 0.1563, as expected from random graph theory [5]: CER = 〈K〉/N =
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Fig. 1. – Plot of BC vs. K (left panel) and KNN vs. K (right panel). Full circles: A; crosses: W .
The “small clouds” in both plots (with diamonds as markers) represent the R node parameters.

0.1562 in our case), reflecting a higher level of interconnectivity between nodes. Also
the BC and KNN values (plotted in fig. 1 vs. K values) are more widely distributed
as compared to R network values: the real network is more heterogeneous, reflecting a
higher level of hierarchy among nodes.

The LD network peculiar structure appears more markedly in the plot of the joint
distribution of KNN and K (fig. 1, right). In a purely random network, nearest-neighbour
connectivity is independent from node connectivity [5]; for the LD matrix the situation
is that of a dissassortative network, meaning that few highly connected nodes (hubs) are
more preferentially connected with less connected nodes. Disassortativity is conserved
also after rewiring, and this can be explained by a probabilistic argument: since the less
connected nodes are much more than the hubs, and such distribution is preserved by the
rewiring algorithm used, the same situation remains the most probable to occur. Some
differences can be observed nonetheless: as compared to the rewired network, there is
a “branch” of nodes (in the plot) with more connected nearest neighbours and another
with less connected ones. This can be due to a stratification of connectivity as a function
of node distance, reflecting the metric structure inside the genome: close nodes in the
network are referred to close SNPs in the chromosomes, thus it is more likely that they are
in strong LD as compared to more distant SNPs. As can be seen in fig. 2 such structure
is present in A, but is completely destroyed by rewiring in W , becoming indistinguishable
from the random matrix R.

3. – Discussion: scaling up to GWA studies

In this paper we have shown the starting point for the characterization of LD matrices
as networks, with the limitation of considering a small subset of elements (about a factor
of 100 smaller) as compared to a whole genome study. Some of the most common network
features have been studied, that allow to easily recover the main structural properties
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Fig. 2. – Plot of average connectivity as a function of node distance, for the first 50 neighbours.
Full circles: A; crosses: W ; diamonds: R.

of LD matrices, such as high heterogeneity reflecting node hierarchy, and the presence
of a metrics due to spatial relationships of SNPs inside genes and chromosomes. The
computational effort required for dealing with whole genome datasets is relevant, since
most of the centrality measures require algorithms that scale with the number of nodes
as N3. Moreover, more complex algorithms that search for community structures, i.e.
network modules of strictly connected nodes, explode exponentially with the number of
nodes. Thus new strategies (or possibly new algorithms) are required, and high-speed
computing over parallel architectures may represent a necessity for such a task.
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