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Summary. — We present the PLUTO code for the solution of high-Mach num-
ber flows in 1, 2 and 3 spatial dimensions and different systems of coordinates.
The code is suitable for astrophysical gas dynamics and embeds different hy-
drodynamic modules and algorithms to properly describe Newtonian, relativistic,
MHD, or relativistic MHD fluids. The modular structure exploits a general frame-
work for integrating a system of conservation laws, built on modern Godunov-type
shock-capturing schemes. The code is freely distributed under the GNU public li-
cense and it is available for download to the astrophysical community at the URL
http://plutocode.to.astro.it.

PACS 47.11.-j – Computational methods in fluid dynamics.
PACS 47.40.-x – Compressible flows; shock waves.
PACS 47.65.-d – Magnetohydrodynamics and electrohydrodynamics.
PACS 95.30.Qd – Magnetohydrodynamics and plasmas.

1. – Description

Modeling of astrophysical flows has prompted the search for efficient and accurate
numerical methods. There is now a strong consensus that the so-called high-resolution
shock-capturing (HRSC) schemes provide the necessary tools in developing stable and ro-
bust fluid dynamical codes. These schemes are based on a three-step sequence consisting
of a piecewise polynomial reconstruction inside each cell, a Riemann solver between dis-
continous states at zone interfaces and a final update where averaged conserved variables
are evolved to the next time level.

Since this sequence of steps is quite general for several systems of conservation laws, we
have built a multi-physics, multi-algorithm, high-resolution code, PLUTO [1]. The code
is particularly suitable for the simulation of time-dependent highly supersonic flows in the
presence of strong discontinuities. The modularity allows to solve different equations, i.e.,
classical, relativistic unmagnetized, and magnetized flows. The advantage offered by a
multiphysics, multisolver code is to supply the user with the most appropriate algorithms
and, at the same time, provide inter-scheme comparison for a better verification of the
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simulation results. PLUTO is entirely written in the C programming language and
can run on either single processor or parallel machines, the latter functionality being
implemented through the message passing interface (MPI) library.

Finally, user-friendliness has been one of the main goals during the development of
PLUTO. A simple user interface based on the Python scripting language is available to
setup a physical problem in a quick and self-explanatory way. The interface is conceived
to minimize the coding efforts left to the user, allowing to specify all problem-dependent
attributes and algorithms, such as number of dimensions, geometry, physics module,
reconstruction method, time stepping integration and so forth.

The code together with its documentation is freely distributed and it is available at
the Web site http://plutocode.to.astro.it.

2. – Method of solution

PLUTO is designed to solve an arbitrary system of conservation laws,

(1)
∂U
∂t

+ ∇ · T = S ,

where U is a state vector of conservative quantities, T is a rank-2 flux tensor and S
defines the source terms. The explicit form of U, T and S depends on the underlying
physics being adopted. At the time of this writing, PLUTO supports four independent
physics modules, appropriate to describe Newtonian hydro- and magnetohydro-dynamics
(HD and MHD) together with their respective relativistic extensions (RHD and RMHD).

For any particular physics module, the conservation law (1) is discretized on a logically
rectangular mesh defined by grid coordinates x1

i , x2
j and x3

k, where i, j and k span the
entire domain. Grids can be static or adaptive, the latter functionality being provided
by the Chombo library available at http://seesar.lbl.gov/ANAG/chombo/.

In one dimension, the building block of a conservative shock-capturing scheme reads

(2) Un+1 = Un + Δt

d=d′′∑

d=d′

Fd
+ − Fd

−
Δxd

,

where Un is the known solution in a given cell (i, j, k) at t = tn, d labels the directional
sweep and Fd

± are the fluxes computed at the zone faces orthogonal to the xd axis.
In a dimensionally split method, one simply has d′ = d′′ and the solution consists of
sequentially solving one-dimensional problems using eq. (2). On the contrary, in a fully
unsplit scheme d′ = 1 and d′′ = 3 (in three dimensions) and flux contributions are
simultaneously taken from all directions.

Flux computation follows the solution of one-dimensional Riemann problems between
discontinuous left and right states at zone interfaces. A number of Riemann solvers is
available, such as the Harten-Lax-van Leer (HLL, [2]), HLLC (see [3] and references
therein), the Roe scheme [4,5] and nonlinear two-shock solvers [6, 7].

Left and right states feeding the Riemann solver are provided by suitable piecewise
polynomial reconstruction inside each cell. Spurious oscillations are avoided by enforcing
monotonicity constraints in proximity of steep gradients or discontinuities, see [6,1] and
references therein. Besides linear (2nd) order reconstruction, other available options
include the piecewise parabolic reconstructions [7] and the 5th-order finite-difference
WENO scheme of [8].
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Fig. 1. – Double Mach reflection of a strong shock. Results are shown at t = 0.2 on a grid with
spacing 1/Δx = 960.

Time stepping can be done using i) method of lines or ii) single step, edge-extrapolated
schemes. In the method of lines, spatial discretization is considered separately from
the temporal evolution which is left continuous in time. In this framework eq. (1) is
discretized as a regular ODE and either the 2nd- or 3rd-order Total Variation Diminishing
(TVD) Runge-Kutta schemes of [9]. On the other hand, single-step methods achieve
second-order temporal accuracy by computing the fluxes in eq. (2) at tn + Δt/2 and the
input states to the Riemann solver are estimated using Taylor expansion. This yields the
well-known MUSCL-Hancock scheme [6]. A more sophisticated approach is employed,
for instance, in the characteristic tracing scheme originally described in the PPM scheme
of [10]. The dimensionally unsplit version of this strategy leads to the corner transport
upwind (CTU) method of [11]. In this case, an extra correction term accounting for
transverse contribution is required. This is the preferred time marching scheme when
adaptive mesh refinement is employed, since it requires only one boundary call between
adjacent blocks.

3. – Code benchmarks

The PLUTO code has been successfully tested on the most severe benchmarks and a
number of test problems are given along with the code distribution, see [7, 1] for a com-
prehensive review. Most tests were specifically designed to deal with highly supersonic
flows in the presence of strong discontinuities.

In fig. 1 we show, for example, the density distribution for the double Mach reflection
problem [12] at t = 0.2 computed with the fifth-order WENO scheme and the third-order
Runge Kutta scheme. After the reflection, a complicated flow structure develops with
two curved reflected shocks propagating at directions almost orthogonal to each other
and a tangential discontinuity separating them. At the wall, a pressure gradient sets up
a denser fluid jet propagating along the wall. Kelvin-Helmholtz instability patterns may
be identified with the “rolls” developing at the slip line.

A second illustrative example consists in the MHD rotor problem, a rapidly spinning
cylinder with higher density embedded in a static background medium with uniform
pressure, threaded by a constant horizontal magnetic field, [1]. The left panel in fig. 2
shows density and magnetic pressure contours computed with linear interpolation and
Powell’s eight wave scheme [13] to control the ∇ · B = 0 condition. Results are shown
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Fig. 2. – Left: density logarithm for the rotor problem at t = 0.15. The refined grid patches are
enclosed by boxes of different gray shades. Right: interaction of a strong magentized shock with
a cloud at t = 0.06. Magnetic field lines are over-plotted. The grid has resolution 1/Δx = 400.

at t = 0.15 on a 32 × 32 Cartesian grid with 5 levels of refinement. As the disk rotates,
strong torsional Alfvèn waves form and propagate outward carrying angular momentum
from the disk to the ambient.

Last, we show the interaction of a strong magnetized shock with a higher density
cloud, right panel in fig. 2. This problem is thoroughly discussed in [14]. In this case the
constrained method has been used to evolve the magnetic field and the HLLD scheme
of [15] to compute the solution to the Riemann problem. Piecewise parabolic interpola-
tion is used. After the impact, a fast bow shock propagates into the shocked material
and a reverse shock is transmitted back into the cloud. By t = 0.06 the cloud is entirely
wrapped by the incident shock and it becomes a mushroom-shaped shell.

REFERENCES

[1] Mignone A., Massaglia S., Bodo G., et al., Astrophys. J. Suppl., 170 (2007) 228.
[2] Harten A., Lax P. D. and van Leer B., SIAM Rev., 25 (1983) 61.
[3] Mignone A. and Bodo G., Mon. Not. R. Astron. Soc., 368 (2006) 1040.
[4] Roe P. L., Annu. Rev. Fluid Mech., 18 (1986) 337.
[5] Cargo P. and Gallice G., J. Comput. Phys., 136 (1997) 446.
[6] Toro E., Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer) 1999.
[7] Mignone A., Plewa T. and Bodo G., Astrophys. J. Suppl., 160 (2005) 199.
[8] Jiang G.-S. and Shu C.-W., J. Comput. Phys., 126 (1996) 202.
[9] Gottlieb S. and Shu C.-W., Math. Comput., 67 (1998) 73.

[10] Colella P. and Woodward P. R., J. Comput. Phys., 54 (1984) 174.
[11] Saltzman J., J. Comput. Phys., 115 (1994) 153.
[12] Woodward P. R. and Colella P., J. Comput. Phys, 54 (1984) 115.
[13] Powell K. G., Roe P. L., Linde T. J., Gombosi T. I. and de Zeeuw D. L., J. Comput.

Phys., 153 (1999) 284.
[14] Dai W. and Woodward P. R., Astrophys. J., 436 (1994) 776.
[15] Miyoshi T. and Kusano K., J. Comput. Phys., 208 (2005) 315.


