
DOI 10.1393/ncc/i2009-10368-9

Colloquia: CSFI 2008

IL NUOVO CIMENTO Vol. 32 C, N. 2 Marzo-Aprile 2009

Large-scale computing with Quantum ESPRESSO

P. Giannozzi(1)(2) and C. Cavazzoni(3)

(1) CNR-INFM DEMOCRITOS National Simulation Center - 34100 Trieste, Italy

(2) Dipartimento di Fisica, Università di Udine - Via delle Scienze 208, I-33100 Udine, Italy

(3) CINECA - via Magnanelli 6/3, 40033 Casalecchio di Reno, Bologna, Italy

(ricevuto il 15 Maggio 2009; pubblicato online il 3 Agosto 2009)

Summary. — This paper gives a short introduction to Quantum ESPRESSO: a
distribution of software for atomistic simulations in condensed-matter physics, chem-
ical physics, materials science, and to its usage in large-scale parallel computing.

PACS 01.50.hv – Computer software and software reviews.
PACS 31.15.es – Applications of density-functional theory.

1. – Introduction

Quantum ESPRESSO (QE) starts in 2002 as a DEMOCRITOS initiative, in collabo-
ration with SISSA, CINECA and with research groups in Princeton University, MIT, EPF
Lausanne [1]. The name “ESPRESSO” stands for opEn Source Package for Research
in Electronic Structure, Simulation, and Optimization, while “Quantum” stresses its
scope: first-principle (i.e. based on the electronic structure) calculations within Density-
Functional Theory (DFT) in a plane-wave (PW) pseudopotential (PP) approach. Build-
ing upon pre-existing codes, QE is evolving into a distribution, open to external contri-
butions: QE is released under the terms of the General Public License (GPL).

Different categories of scientists may find QE useful for their research work:

– Those interested in methodological and algorithmic improvements who need a way
to implement new developments and quickly reach the scientific community, with-
out the hassle of maintaining “home-made” special-purpose codes.

– Those interested in applications rather than in development who need cutting-edge
software tools, without the hassle of maintaining their own software.

– The increasing number of non-specialists (e.g., experimentalists) who want to use
numerical simulations to better understand their results; they need a set of robust
and easy-to-use software tools that do not require a long training.

c© Società Italiana di Fisica 49



50 P. GIANNOZZI and C. CAVAZZONI

QE was conceived as a service to the scientific community at large, including non-
specialists, and has the ambition to satisfy all of the above-mentioned categories of
scientists. This imposes conflicting requirements: the software has to be powerful, fast
and highly optimized, but at the same time easy to use and highly portable; it is thus
necessary complex, but it has to be at the same time easy to understand and to modify,
presenting a low barrier to new developers. QE offer no “ideological” ultimate answer,
but a practical approach, inspired by experience:

– QE is a distribution, to which more packages can be added, without conforming to
strict “coding rules” that represent a high barrier to potential contributors.

– Non-monolithic approach: QE is not a single code that does everything, but a
series of smaller codes, each performing a well-specified task or group of tasks,
lightly integrated and communicating between them with data directories. QE
uses a hybrid format for data exchange in which a formatted XML-like file coexists
with files containing large binary records in a data directory.

– Language. Fortran-95 was chosen because it provides an easy transition path from
Fortran77, powerful and useful array constructs, a smooth path to modern pro-
gramming paradigms (encapsulation, object-based programming).

The core components of QE are PWscf [2] and CP [3, 4]. The former performs self-
consistent calculations (including structural optimization and molecular dynamics on the
Born-Oppenheimer surface) in crystals, while the latter performs Car-Parrinello Molecu-
lar Dynamics (CP-MD) in cells with Periodic Boundary Conditions. Other important and
well-established components are: PHonon, a set of codes for linear-response calculations;
PostProc, utilities for visualization and data postprocessing; atomic, for pseudopotential
generation and testing; PWcond, for ballistic conductance calculations.

More recent additions and extensions include: GIPAW, for chemical shifts and EPR
factor calculations; Wannier90, Wannier-function package; XSPECTRA, calculating X-ray
spectra. For further and more updated information on the capabilities of QE, we refer to
the main page of the QE wiki: http://www.quantum-espresso.org/wiki/index.php/
Main Page.

2. – Parallel computing with Quantum ESPRESSO

QE is parallelized using the Message-Passing paradigm, via calls to standard MPI
(Message Passing Interface) library routines. Five parallelization levels are present, al-
lowing some form of effective execution on all kinds of parallel machines. The different
levels are organized as a hierarchy of processor groups, identified by different MPI com-
municators. In this hierarchy, groups implementing coarser-grained parallelizations are
split into groups implementing finer-grained parallelizations. Table I contains a summary
of the five levels. In the following we give a short description of each of them.

Image parallelization. Implemented by dividing processors into nimage groups, each
taking care of one or more images, i.e. a point in the configuration space, used by the
NEB (Nudged Elastic Band) method.

Pool parallelization. Implemented by further dividing each group of processors into
npool pools of processors, each taking care of one or more k-points.

In both cases, good scalability of CPU time (but no scalability for RAM) can be
achieved with a modest amount of communication among processors. These two ap-
proaches are well suited for cheap hardware (e.g., PC clusters with Gigabit Ethernet).



LARGE-SCALE COMPUTING WITH QUANTUM ESPRESSO 51

Table I. – Summary of parallelization levels in QE.

Group Distributed quantities Communications Performances

image NEB images very low linear CPU scaling,
fair to good load balancing;
does not distribute RAM

pool k-points low almost linear CPU scaling,
fair to good load balancing;
does not distribute RAM

plane-wave PW, G-vector coefficients, high good CPU scaling,
R-space FFT arrays good load balancing,

distributes most RAM

task FFT on electron states high improves load balancing
linear algebra subspace Hamiltonians very high improves scaling,

and constraints matrices distributes more RAM

They are useful however only for calculations using more than one k-point, or for NEB
or similar calculations, thus leaving out important cases like typical CP-MD simulations.

Plane-wave parallelization. Performed over r- and G-space grids. The data: columns
of PW coefficients in G-space, planes of real-space values in r-space, is distributed across
the nPW processors of each pool. A parallel 3-dimensional Fast Fourier Transform (FFT)
is performed over such distributed data. Our implementation [3,4] covers the case of mul-
tiple G-space and r-space grids, required by modern (ultrasoft) PP. Very good scalability
for both CPU and RAM can be achieved, but communication is heavy: fast communi-
cation hardware is needed for good performances.

The three well-established parallelization levels above described allow good CPU and
memory scalability up to several tens of processors (the total number of MPI processes
is N = nimage × npool × nPW) for systems including several tens to hundreds atoms.
In order to effectively solve larger systems (order of 500 and more atoms) on massively
parallel machines, two further parallelization levels have been recently added.

Task-group parallelization. When the number of processors in a pool, nPW, exceeds
the number Nz of planes in r-space for electron states, plane-wave parallelization does not
scale well any longer. The solution is to subdivide each pool into ntask task groups [5].
Each task group, composed of nFFT = nPW/ntask processors, takes care of different
groups of electron states to be Fourier-transformed, while each FFT is parallelized inside
a task group. Ideally, nFFT = Nz/k where k is an integer; typically, an optimal choice
for ntask yields k = 2–8.

Linear-algebra parallelization. Subspace diagonalization (PWscf) or iterative or-
thonormalization (CP) require linear algebra operations (diagonalizations and multipli-
cations) on square Nb × Nb matrices, where Nb is the number of electron states (or a
small multiple of it). For large systems (Nb ∼ several thousands) this becomes a serious
bottleneck, so both CPU and RAM have to be distributed. The Linear algebra group
is a subset of each pool, forming a square grid of n2

diag ≤ nPW processors. All involved
matrices are distributed across this grid; all matrix operations are performed in paral-
lel, using Cannon’s parallel matrix-matrix multiplication and SCALAPACK (or custom)
parallel diagonalization routines. The choice of a square grid is natural since all involved
matrices are square and this grid yields optimal performances. If n2

diag �= nPW, some
processors in the pool will be idle. This is not really a waste of resources because the



52 P. GIANNOZZI and C. CAVAZZONI

Table II. – CPU time (s) per electronic time step (CP code) on an IBM Blue Gene/P (BG/P)
and a SGI Altix for a fragment of an Aβ-peptide in water containing 838 atoms and 2311

electrons in a 22.1 × 22.9 × 19.9 Å
3

cell, as a function of nFFT × ntask.

Machine 32 × 1 64 × 1 128 × 1 32 × 4 256 × 1 32 × 8 64 × 4 64 × 8

BG/P 321.7 162.6 92.1 65.9 57.7 42.3 41.2 28.4
Altix 118.7 63.0 38.9 31.0 31.4 21.3 23.1

linear-algebra group operates only on linear-algebra operations, whereas the computation
of the matrix elements—a much more demanding task—is performed in parallel on all
processors. Moreover, the optimal number of processors to be used for the linear algebra
group depends upon the size of the matrices, and it can be smaller (even much smaller)
than the number of processors in each pool.

The different processor groups described above are identified by a hierarchy of MPI
communicators. The world communicator include all processors and is split into nimage

image communicators, which in turn are split into into npool pool communicators. Each
pool communicator is finally split into ntask task communicators, while at the same
time, a suitable subset of the processors of the pool is included in the linear algebra
communicator. Task groups and linear algebra group are both obtained from the same
pool but they are independent: one is not obtained from the other.

With a judicious usage of the available parallelization levels, simulations on systems
containing several hundreds of atoms have become quite standard (see table II for an
example). Excellent scalability on up to 4800 processors has been demonstrated in a
system of 1500 atoms, even in a case where coarse-grained parallelization does not help.

Parallelism in QE is evolving to keep the pace with current technological trends in
the high-performance and technical computing world. The push towards the increase in
the number of cores inside a single CPU is likely to continue and CPU with up to 12-24
cores will be common in the near future. It will be extremely important to distribute
the work inside a CPU in an optimal way in order to take advantage of the multicore
architecture. MPI does not seem able to efficiently manage the load both among CPUs
and inside a single CPU. For this reason QE developers are now working to mix MPI
with a multi-threads paradigm (OpenMP) to manage computation inside a CPU and
leave MPI to manage communications between different CPUs. A version of QE that
supports a mixed MPI-OpenMP parallelism will be available during 2009.

∗ ∗ ∗
We acknowledge contributions to Quantum ESPRESSO from more people than we

can mention here. We thank V. Minicozzi for providing the Aβ-peptide test.

REFERENCES

[1] Scandolo S., Giannozzi P., Cavazzoni C., de Gironcoli S., Pasquarello A. and
Baroni S., Z. Kristallogr., 220 (2005) 574.

[2] Dal Corso A., A Pseudopotential Plane Waves Program (PWscf) and some case studies,
in Quantum-Mechanical Ab-initio Calculation of the Properties of Crystalline Materials,
Lect. Notes Chem., edited by Pisani C., Vol. 67 (Springer, Berlin) 1996.

[3] Cavazzoni C. and Chiarotti G., Comput. Phys. Commun., 123 (1999) 56.
[4] Giannozzi P., de Angelis F. and Car R., J. Chem. Phys., 120 (2005) 5903.
[5] Hutter J. and Curioni A., Chem. Phys. Chem., 6 (2005) 1788.


