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Summary. — A critical issue in the development of coherent X-ray sources as
FEL and SR facilities is the generation of high peak brilliance electron beams. De-
tailed simulations of such “dense” systems require self-interaction effects to be care-
fully accounted for in diverse dynamical conditions ranging from low energies where
quasi-static space charge effects dominate, to the highly relativistic regimes of the
kind encountered, e.g., in magnetic compressors, where acceleration fields prevail
and retarded effects cannot be neglected. In principia prima Monte Carlo codes
the electron beam is usually modelled as a collection of mutually interacting ob-
jects, whose number is bounded because of practical computer limitations. As a
consequence suitable techniques must be devised to achieve stability and suppress
numerical artifacts. In this paper a covariant approach to self-fields regularization
is described, in the context of TREDI simulation code, a fully 3D Monte Carlo ac-
counting for electron beam self-interaction by means of Lienard-Wiechert retarded
potentials.

PACS 52.59.Sa – Space-charge-dominated beams.
PACS 52.59.-f – Intense particle beams and radiation sources.
PACS 41.60.Ap – Synchrotron radiation.

1. – Introduction

A critical issue in the development of coherent high brilliance X-ray sources is the
generation of high brilliance (high current/low emittance) electron beams. Study of
such “dense” systems was the original motivation for the development of TREDI [1],
a fully 3D Monte Carlo devoted to simulation of non axi-symmetric beam dynamics in
RF photo-injectors by direct integration of trajectories while accounting for self-fields
through Lienard-Wiechert [2] potentials. From the primal version, TREDI has now
evolved to a full-fledged tool with a complete set of insertion devices that can be used,
e.g., for start-to-end simulations of emittance growth in magnetic beam compressors due
radiative/acceleration fields (Coherent Synchrotron Radiation).
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Principia prima Monte Carlo codes like TREDI usually model the beam as a collection
of “macroparticles”, whose number is bounded because of practical computer limitations.
Therefore, in all practical cases, each macroparticle mimics a fairly large number of real
electrons. As a consequence, whenever self fields cannot be neglected, suitable techniques
must be devised to cancel numerical artifacts [3] like, e.g., the unphysical hard collisions
due to the huge electromagnetic fields that develop whenever macroparticles approach
each other. While this is the typical case at low energies where short-range space charge
effects dominate, other regimes exist—those occurring inside magnetic compressors, for
example—where long-range radiation/acceleration fields prevail. In this respect, it is
worth remarking that self-interaction must only smoothed off, not be cleared out (avove
all, dominant contributions. . . ). The variety of conditions faced by the electron beam
during the acceleration, the different nature of self-interactions involved command a
broader understanding of the concept itself of “proximity”, and call for a unified, alter-
native approach to the regularization problem. The procedure adopted in TREDI to
achieve regularization of velocity (Coulomb) fields to be summarized in the next section,
with a some notes devoted to the work in progress on the code and concluding remarks.

2. – Smoothing of EM fields

The smoothing of EM self-fields adopted in TREDI is based on the concept of form
factor, i.e. assumption that dynamical objects are extended rather than point-like charge
distributions (see, e.g. [4]). While this approach has proven very effective in quantum
electrodynamics, where examples abound, is far less common in classical electromag-
netism, essentially for lack of applications, except perhaps for the rare efforts aimed at
a theory free from divergencies [5]. For this reason, while in quantum electrodynamics
it has been framed in a covariant fashion, it is not surprising that the solid classical
paradigm this idea is based upon—Gauss’ theorem—is invariably left aside as a concept
fully compliant with special relativity.

In the classical context considered here, a covariant approach has at least two valu-
able properties: consistency, for the regularization procedure depends uniquely on self-
interaction, i.e. smoothing turns to be naturally independent of the dynamical regime
of the beam in the laboratory frame (which is not a covariant concept); ease of use, as
the calculation can be actually carried out without transforming dynamical variables to
the beam rest frame (granted for the sake of argument that it exists for a many-body
system, as in numerical codes based on solution of Poisson’s PDE [6]).

The covariant smoothing is based upon the separation of the EM fields produced by
a moving charge q into a “velocity” and an “acceleration” term [2]

(1) E =

velocity term︷ ︸︸ ︷
q

[
n − β

γ2 (1 − n · β)3 R2

]
ret

+

acceleration term︷ ︸︸ ︷
q

c

⎡⎣n ×
[
(n − β) × β̇

]
(1 − n · β)3R

⎤⎦
ret

B = n × E

can be cast as well in a manifestly covariant form:

(2) Fμν =

velocity term︷ ︸︸ ︷
q

[
1

S3(V )
Tμν(V )

]
ret

+

acceleration term︷ ︸︸ ︷
q

[
1

S2(V )

{
Tμν(W ) − S(W )

S(V )
Tμν(V )

}]
ret

.
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Here V = (γ, γ
−→
β ) is the source 4-velocity (hereupon c = 1) and W ≡ dV/dτ the

4-acceleration (i.e. the derivative of V w.r.t. proper time τ). The subscript “ret” means
fields are produced by the source at “retarded” time, i.e. when crossing the past light
cone of the observer. In (1) R is the retarded distance, so that (R,Rn) (n is the versor
from source to observer) is the space-time time separation between the emission and
absorption events (note that (R,Rn)2ret = 0). The symbols S and Tμν denote a scalar
(0-form) and a tensor (2-form) function, respectively, defined as follows:

(3) S(U) = (x − r) · U =⇒ S(V ) ≡ γR(1 − n · β),
Tμν(U) = (x − r)μUν − (x − r)νUμ =⇒ T i0(V ) ≡ γR(n − β).

It is clear that S(V ) → 0 for R → 0 or β ≈ n, or both. The Coulomb term genuinely
diverges at short distances, because of its R−2 scaling. Acceleration field diverges as
well, yet more gently because of its R−1 behaviour. On the other hand, even though
1 − n · β cannot strictly vanish, for relativistic particles and β nearly parallel to n, it
can go so close to that condition to make the acceleration fields to experience a growth
by many orders of magnitude. This “collinear blazing” can extend at large distances
from the radiating charge because of the slow field’s fall off (≈ R−1, as compared to the
≈ R−2 behaviour of the Coulomb term). Note that β ≈ n implies γ � 1 as well (β ≈ 1),
meaning that Coulomb fields are strongly suppressed w.r.t. acceleration terms.

The previous remarks show that kinematical circumstances at which the blowing of
velocity and acceleration fields occur are inherently different. This must be taken into
account when devising a procedure to regularize EM fields produced by macroparticles
in a Monte Carlo simulation. What seems most sensible in this respect is to put (in
a covariant fashion!) in front of Fμν

V “regularizing” terms so that Fμν
V , Fμν

A → 0 for
R → 0. Regularization of Fμν

A for β ≈ n is much more difficult, basically for lack of such
a compelling physical motivation as Gauss’ theorem, and will not be discussed here. In
both cases preserving the tensor structure of the fields requires multiplication either by
a Lorentz scalar or a 2nd-rank tensor to be partially saturated with r.h.s. of (2). For
R → 0 the simplest and physically cogent choice is to introduce an “effective” charge (a
Lorentz scalar!) qeff(R) such that

(4) qeff(R)/S3(V ) → 0 for R → 0.

It is easily seen from (2) that (4) implies regularization of Fμν
V and, a fortiori, of Fμν

A .
A covariant expression for the effective charge fulfilling the (4) can be devised assum-

ing the macroparticle in its rest frame to be described by the static charge density:

(5) ρ(R) =
q√

det σ̂
· F

[
RT · σ̂−1 · R

]
,

where R is the 3-distance between emitter and observer, σ̂ is a symmetric, definite
positive, 3 × 3 matrix so that the argument of the scalar form factor F (usually chosen
to be concave) is a quadratic form of

−→
R ’s components. Now, charge density is the

time component of the charge density 4-vector J which depends, in general, both on
space and time coordinates. Moreover, signals propagate at the speed of light, and
retard condition must be fulfilled also for a still charge distribution, even though in this
case only the geometry (i.e. space location) of the observer matters and time delays
are irrelevant. These prerequisites and covariance of (5) can be consistently fulfilled
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postulating heuristically that the argument of F to be the completely saturated product
(i.e. a Lorentz scalar) RT · Σ̂−1 ·R where R is the full 4-distance connecting field emitter
and observer, while Σ̂−1 is a symmetric 4-D tensor with space components equal to σ̂−1

and vanishing (in macroparticle’s rest frame) time components (Σ̂−1
0i = Σ̂−1

0i = 0 i, j =
1 . . . 3). It is easily shown [7] that in the lab frame the following relation holds:
(6)

Σ̂′−1 =

(
βT σ̂′−1 −βT σ̂′−1

−σ̂′−1β σ̂′−1

)
, with

⎧⎨⎩
σ̂′−1 = Â · σ̂−1 · Â,

Â = 1̂ +
γ2

1 + γ
β ⊗ βT .

As a final consistency check, observe that det σ̂′ = γ−2 det σ̂, implying that casting (5)
in the lab frame correctly reproduces the transformation properties of charge density:

(7) ρ′(R) =
q√

det σ̂′
· F

[
R′T · Σ̂′−1 · R′

]
= γ · q√

det σ̂
F

[
RT · Σ̂−1 · R

]
= γρ(x).

A functional effective charge based on previous concepts is practically implemented in
TREDI via the choice F(z) = (2π)−3 exp[−z/2] (other options are possible, though) as

(8) qeff =
∫
R2(x)≤R2

O

ρ(x)dx = q

[
erf

(
RO√

2

)
−

√
2
π
· RO · exp

[
−R2

O

2

]]

(see App. A in ref. [7] for details) where R2(x) is the Lorentz scalar xT · σ̂−1 · x, while
R2

O is the same quantity evaluated for the observer. It is easily seen that qeff ∝ R3
O for

RO 
 1, thus fulfilling short-range regularization requirements.
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