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Summary. — The postseismic response of a viscoelastic Earth can be computed
analytically with a normal-mode approach, based on the application of propagator
methods. This framework suffers from many limitations, mostly connected with the
solution of the secular equation, whose degree scales with the number of viscoelas-
tic layers so that only low-resolution models can be practically solved. Recently, a
viable alternative to the normal-mode approach has been proposed, based on the
Post-Widder inversion formula. This method allows to overcome some of the intrin-
sic limitations of the normal-mode approach, so that Earth models with arbitrary
radial resolution can be employed and general linear non-Maxwell rheologies can be
implemented. In this work, we test the robustness of the method against a stan-
dard normal-mode approach in order to optimize computation performance while
ensuring the solution stability. As an application, we address the issue of finding
the minimum number of layers with distinct elastic properties needed to accurately
describe the postseismic relaxation of a realistic Earth model.

PACS 91.10.Kg – Crustal movements and deformation.
PACS 91.30.Px – Earthquakes.
PACS 91.32.-m – Rheology of the Earth.

1. – Introduction

Besides transient phenomena related to seismic wave propagation, earthquakes induce
a series of permanent effects, which can be detected with modern instrumental techniques.
Among these, one of the most studied is the permanent coseismic deformation field, which
for exceptionally large events can be still of the order of millimeter at thousands of kilo-
meters from the epicenter [1]. This permanent deformation field evolves with time due to
the relaxation of ductile astenospheric layers, giving a continous postseismic deformation
whose features are directly related to the physical properties of the involved layers. A
precise modelistic estimate of deformation patterns induced by a seismic event on global
scale is therefore a valuable tool to investigate coseismic and postseismic deformations,
allowing to obtain information on the characteristics of the seismic event and on the
physics of the Earth’s interior.
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Estimating deformation effects induced by giant earthquakes clearly requires the use
of spherical Earth models, taking into account self-gravitation. This class of models has
been developed theoretically in the last decade [2-4] within the normal-mode framework
(hereafter NM), which was originally introduced by Peltier [5]. The main shortcoming
of this approach is the solution of the “secular equation”, whose polynomial degree
scales with rheological model complexity; as a consequence, only coarse models can be
employed in order to avoid numerical instabilities. Moreover, the introduction of realistic
rheological laws results in algebraic complexities that can be (eventually) tackled only
with the aid of symbolic manipulators, so that in practice only a simple Maxwell law can
be modeled.

To overcome these limitations, several workarounds have been proposed in the lit-
erature [6-8] either by invoking purely numerical stages in the solution scheme or by
introducing a priori assumptions on some characteristics of the solution. Recently, a
new solution scheme based on the application of the “Post-Widder formula” [9, 10] has
been proposed [11]; with this method, the structure of the NM formalism is preserved but
the explicit solution of the secular equation is not needed, so that stratification models
with arbitrary layering resolution can be employed. At the same time, the Post-Widder
algorithm (hereafter PW) permits a straightforward implementantion of general (possibly
transient) linear rheological laws in addition to the Maxwell law.

2. – Theoretical background and numerical issues

The analytic solution of a postseismic rebound model with Maxwell viscoelastic rhe-
ology is usually carried out in the Laplace domain because, owing to the Correspondence
Principle of linear viscoelasticity [12], the governing equations of the model become
formally identical to the elastic case and a solution can be obtained with standard prop-
agation techniques. However, once the solution is obtained, it has to be transformed
back to the time domain. This inversion can be performed explicitly by expressing it
in terms of a Bromwich path integral and invoking the Residue Theorem; this requires
the knowledge of the poles of the Laplace-transformed solution, which are the (isolated)
roots of the equation
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where N is the number of layers, ri and Yi are, respectively, the top radius and the
fundamental matrix of each layer, P is a projector matrix and Ic represents boundary
conditions at the core-mantle boundary [13]. It can be shown that, if a linear rheological
law is assumed, the polynomial degree of eq. (1) is 6N . This represents a serious limita-
tion to the range of practically solvable Earth models, since for high polynomial degrees
all root-finding algorithms become numerically unstable.

The PW inversion algorithm, in its discretized form, provides an approximate expres-
sion to evaluate the Laplace inverse of a function by sampling the values of the transform
on the positive real axis. Since for a stably stratified incompressible Earth the roots of
the secular equation are placed along the real negative axis [14], the sampling region is
singularity free, which makes the PW formula a viable alternative to the NM approach.
The main shortcoming of the PW inversion method is its slow (less than logarithmic)
convergence. Moreover, in the discretized form of the PW method, the antitransform is
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expressed in terms of a sum of oscillating terms which may lead to catastrophic cancel-
lation. To avoid this possibility, the computation must be performed with high-precision
floating point arithmetic, through the use of a high-level multiprecision library, which
leads to a considerable performance degradation with respect to native hardware formats.

In order to minimize the computational requests of a PW code, it is necessary to
carefully find the minimum floating point precision needed to carry out the whole com-
putation without numerical degenerations. To this aim, a comprehensive set of numerical
benchmarks has been performed by comparing the results of the PW algorithm with an
independent NM code [11]. As a result, it has been obtained that NM results are cor-
rectly reproduced if a system precision ranging from 30 and 40 digits is employed. With
these parameters, the evaluation of a single degree of the harmonic expansion of a post-
seismic deformation field requires about 1.7 s on a 1.6 GHz Intel Itanium2 CPU. Since the
harmonic expansion of postseismic fields usually requires several thousands of terms to
reach convergence [15], the computational requirements of the PW codes can be handled
only by high-performance parallel systems.

3. – Impact of layering resolution on coseismic and postseismic rebound
modeling

One of the key issues in postseismic deformation modeling is the effect of lithospheric
and mantle layering. The application of the PW method to postseismic deformation
models allows to investigate models with arbitrary layering resolution; it is therefore
possible to quantitatively assess the minimum resolution needed to reproduce a realistic
layering within a predefined precision. To this aim, we computed the postseismic defor-
mation field with models of increasing radial resolution and studied their convergence to
results obtained with a realistic reference Earth model, obtained as a discretization of
the Preliminary Reference Earth Model [16], hereafter PREM. We defined three different
approaches to the layered model definition: i) uniform layering from the core-mantle
boundary to Earth surface; ii) homogeneous lithosphere and uniformly layered mantle;
iii) high-resolution uniformly layered lithosphere and low-resolution uniformly layered
mantle. For each layering strategy, we seek the minimum number of layers needed to re-
produce reference results within a 5% threshold. As a result, we find that the fastest and
most regular convergence to PREM results is obtained with layering approach (iii) with
25 layers. This is in agreement with the well-known importance of lithospheric structure
in modeling surface coseismic displacements [17], and allows to estimate quantitatively
the minimum radial resolution needed to model experimental data within their typical
uncertainties [18].

4. – Conclusions

We discussed the application of the Post-Widder inversion formula to normal-mode
analytical modeling of postseismic rebound. The PW approach allows to overcome the
most striking limitations of this class of models, allowing to investigate layering structures
of arbitrary resolution and generalized linear rheologies. These modelistic enhancements
come at the cost of a considerable increase of computational requests, that can be fulfilled
owing to the growing availability of high-performance computing facilities.
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