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Summary. — The detailed numerical investigation of the highly nonlinear physics
involved in the interaction of a laser-pulse with a plasma and/or an externally in-
jected beam requires suitable simulation tools which are able to retain the basic
features of the process without increasing too much the computational needs. In our
group at the University of Bologna we developed an electromagnetic PIC code using
high-order schemes (explicit/compact finite differences derivatives and a 4th-order
Runge-Kutta) instead of the most used second-order accurate algorithm, this allows
to reach higher accuracy with similar number of grid-points or to use coarser grid
and relax the computer load without compromising the accuracy. Here we present
some validation tests and comparisons for the different schemes.

PACS 52.38.kd – Laser-plasma acceleration of electrons and ions.
PACS 52.65.-y – Plasma simulation.
PACS 02.60.Jh – Numerical differentiation and integration.

1. – Introduction

Most existing PIC codes to study the interaction of ultra intense and short laser pulse
with plasma are implemented on the basis of classical schemes [1, 2], where: i) time in-
tegration is discretized by second-order leap-frog schemes and space derivatives by the
second-order finite difference on staggered mesh (Yee’s module) [1,2]; ii) shape functions
for charge weighting and field interpolation are linear or quadratic B-splines, and iii)
charge conservation is usually implemented by the Esirkepov procedure [3]. To improve
this basic numerical framework on accuracy and efficiency, as needed by the challenging
new physical phenomena arising in high-intensity laser-plasma interaction, the Bologna
group started a new project aimed at developing a PIC code based on high-order integra-
tion schemes (HOPIC). Consolidated results of this numerical activity have been imple-
mented and tested on the new code ALaDyn [4,5]. Main features of the ALaDyn code are i)
a fourth-order Runge-Kutta (RK4) algorithms for time integration, ii) a high-order (up
to eighth) compact/explicit finite differences scheme for space integration; iii) a stretched
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computational grid in the transverse direction in order to ensure a high resolution where
needed (usually around the propagation axis) together with substantially far boundaries;
iv) a hierarchical numerical particles sampling that allow to put more particles in the
“dynamically interesting” zones and, at the same time, decrease the particles in the out-
lying regions. In the PIC framework computational parameters controlling accuracy are
given by: i) space-time resolution measured by the number of grid points which sam-
ple the smallest relevant spatial scale to be resolved (nλ = λ/Δx = σλ/Δt, where λ is
the relevant spatial scale, Δx is the grid size, Δt is the related time step and σ is the
Courant number); ii) the number of representative numerical particles per cell nc and iii)
the order of the shape functions. Numerical experiments using classical (second-order)
PIC schemes show a very slow convergence to high-accuracy results by increasing the
control parameters [6]. HOPIC are expected to allow: i) lower numerical errors, for fixed
space-time resolution and the number of particle per cell (ppc); ii) faster convergence rate
when increasing space-time resolution. In the following, we document on the improved
accuracy of a HOPIC approach by considering 1D non-trivial test problems where some
reference analytical solution is available.

2. – Numerical integration of Maxwell equations

Compact finite differences schemes for space differentiation [7], coupled to a RK4
scheme for time integration assure efficient and highly accurate numerical solution for
the Maxwell equations. In a one-dimensional grid with uniform spacing h and node points
xj = jh, j = 0, 1, N − 1, the compact first derivative u′(xj) of a u(xj+1/2) function with
staggered collocation is expressed by

(1) u′ ≡ D̂[u] =
[
P̂−1ĈΔu

]
,

where P̂ = [α, 1, α] and Ĉ = [b, (a+b), b] are tridiagonal matrix with coefficients a = 3(3−
2α)/8, and b = (22α−1)/24 and [Δu]j = [uj+1/2−uj−1/2]/h is the two-point second-order
explicit derivative. This one-parameter (α) family of compact schemes gives for α = 9/62,
a sixth-order scheme (SC6) and for α = 1/22, b = 0 a fourth-order scheme (SC4). Using
the same formula, the α = 0 case reproduces the fourth-order explicit scheme (SE4). The
classical second-order derivative (SE2) is here expressed by the limiting case α = b = 0
and a = 1. By expressing u(x) in terms of Fourier modes eikx, where k is the discretized
wave number, the derivative D̂ matrix has purely imaginary eigenvalues iZ(w)/h where
w = kh, and Z(w) is the numerical or modified wave number, replacing the spectral
(exact) ik numerical derivative. The one-dimensional wave equation in semi-discrete
form reads ∂tu(x, t) + D̂u(x, t) = 0 gives a dispersion relation ω(k) = Z(w)/h and a
numerical wave speed vph = ω/k = Z(w)/w. The difference R = Z(w)/w − 1 provides
then a measure of the resolution property of a derivative scheme. There are significant
differences between the SE2 and high-order compact derivative (SC): to keep the phase
error below some tolerance value, say R ≤ 10−4, a value of points per wavelength (PPW)
larger than 40 is necessary for SE2, while a number of PPW in the range 10–12 is already
sufficient for SC4 and SC6. In a fully discretized wave equation, using a fourth-order
Runge-Kutta (RK4) scheme for time integration with time step Δt = σh, the resulting
dispersion relation for the complex frequency Ω = ω + iγ, takes the form
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Fig. 1. – The error in phase speed in the 1D wave equation as a function of PPW parameter,
using composite schemes: (a) (RK4 + SC6), (b) (RK4 + SC4), (c) (LP2 + SE2).

(2) eγΔt = |G| =
√

G2
R + G2

I , ω(k) =
k

σw
sin−1 GI

|G| ,

where G(w) = [GR, GI ] is the complex amplification factor, with

(3) GR(w) = 1 − 1
2
(σZ(w))2 +

1
24

(σZ(w))4, GI(w) = σZ(w) − 1
6
(σZ(w))3.

The stability condition |G| ≤ 1 entails an upper limit for the Courant number σ � 1
for compact schemes SC4 and SC6. The corresponding dispersion relation for a Leap-
Frog scheme (LPF2) is given by ω(k) = 2k

σw sin−1 σZ(w)/2 with local stability conditions
σZ(w) < 2, where now Z(w) is the modified wave number of the SE2 derivative scheme.
In fig. 1 we plot the phase speed of a 1D wave freely propagating versus the number of
points per wavelength.

2.1. Multidimensional issues. – In the multidimensional case, high-order compact
schemes having spectral-like behaviors along each coordinate direction Zs(w) ≈ ws s =
x, y, z give accurate isotropy properties of the numerical Laplacian operator

(4) Z2 = Z2
x + Z2

y + Z2
z ,

Fig. 2. – The error in phase speed in the 2D wave equation as a function of PPW, for different
polar angle θ. Left: (RK4 + SC6) scheme; right: (LPF2 + SE2) scheme.
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Fig. 3. – The maximum error in the numerical wave solution of the (LPF2+SE2) and (RK4+
SC4) schemes, for different resolution PPW = λ/Δz parameter. The corresponding reference
scaling laws in the Δt = σΔz grid size are also reported.

while the reference (LPF2+SE2) scheme has dispersion relation strongly dependent on
the polar angle with respect to the propagation direction. This can be appreciated in
fig. 2 where we have plotted the dispersion relations at different angles.

2.2. Testing 1D wave propagation. – Together with the analytical consideration, we
tested the different schemes in propagating a 1D wave packet. To measure the error in
phase speed for different numerical schemes, we consider a linear polarized wave packet
propagating along the z-axis, defined by the vector potential Ax(z, t) with analytical
form

(5) Ax(z, t) = a0 cos(ω0(z − ct)) cos4(β(z − ct)), Ex(z, t) = By(z, t) = −1
c
∂tAx(z, t),

with ω0 = 2π
λ , β = π

2τ , where λ and τ are, respectively, the wavelength and the duration
of the pulse. We compare then the cumulative error, by considering maxz |Enum

x (z, t) −
Ex(z, t)| after a fixed evolution time T = 50λ/c. Figure 3 shows the maximum error for
different integration schemes, when increasing the resolution parameter PPW.

3. – Integration of particles motion

To test accuracy in the particle motion, we consider test particles in the freely prop-
agating (Ex, By) fields given in eq. (5), with cold px = pz = 0 initial conditions.
In the reference analytical model, each particle preserves the two integrals of motion:
h1(t) = p2

x/2 − pz h2(t) = Px = Ax − px giving hk(t) = hk(0) = 0, k = 1, 2. In the
discretized problem, the total numerical error results as a combination of: i) the error
induced by the time integration scheme of the particle motion; ii) the numerical error
induced by the space-time integration scheme wave equation; iii) the interpolation error
to evaluate (Ax, Ex, By) fields at the particle position zi(t).

We compare the LPF2 − SE2 and the RK4 − SC4 space-time integrators. The
comparison, see fig. 4, shows significantly different errors and very different scaling laws
with respect to the resolution.

3.1. Fully self-consistent problem. – When considering the fully self-consistent prob-
lem, the errors in the particle motions manifest themselves as an anomalous numerical
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Fig. 4. – Scaling of the maximum error |h(t) − h(0)| of the particle invariants of motion at
increasing space-time resolution Δt = σΔz for PPW = 16, 24, 32, 48, σ = 0.6.

heating causing spurious injections of electrons in the plasma wave (numerical wave
breaking), another consequence is the incorrect value of the plasma wavelength. Figure 5
shows the nonlinear generation of 1D plasma wave by an intense laser pulse, as can be
seen, at low resolution both, high- and low-order algorithms show spurious wave break-
ing (the high spike in the phase space) that disappears increasing the resolution. While
Runge-Kutta results show a very fast conversion rate, the Leap-Frog results show a much
slower one and the need of a high number of grid points. This results in a reward for the
increased number of operation per time step needed for the Runge-Kutta: the possibility
to relax the resolution by a factor of roughly 2 in each dimension, i.e. a factor 8 in 2D
and a factor 16 in 3D less operation (the time step is related to the spacial grid-step)
gives a significant advance to higher-order scheme.

Fig. 5. – Longitudinal phase space of the electrons in the wake of a 1D wave packet. Left:
leap-frog with different spatial/temporal resolution. Right: RK4+SE6. The figure shows the
plasma wave generated in the wake of the pulse. For LPF at least 40 PPW are needed to get a
correct phase space, while for RK4 20 PPW give already a good accuracy.
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