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Summary. — This talk gives a very fast overview of the algorithms commonly
used to perform computer simulations of the theory of Strong Interactions (QCD)
for scientists working on problems arising in different scientific fields whose solution
requires numerical simulations of many interacting degrees of freedom.

PACS 11.15.Ha – Lattice gauge theory.
PACS 12.38.Gc – Lattice QCD calculations.

1. – Introduction

The quantum field theory of the Strong Interactions, called Quantum Chromo Dy-
namics (QCD), is formulated in terms of fundamental degrees of freedom. These are
the quarks, i.e. six particles of different gravitational mass (of different flavor) carrying
twelve internal quantum numbers (three color and four spinor indexes) and the gluons,
i.e. eight particles playing for the strong interactions the role played from the photon for
electromagnetism, represented as a traceless hermitian matrix acting in color space.

The peculiarity of QCD with respect to the theories of the other known interactions,
all built on the principle of gauge invariance, is that the strong coupling constant is not
(always) small. More precisely, the strong force is small when the quarks are “glued”
together to form a bound state, generically called hadron, and gets stronger and stronger
when one tries to pull apart one of the quarks. At some point the energy accumulated
into the system gets sufficiently big to create a quark-antiquark pair and the original
system rearranges into two or more new hadrons. This mechanism is known as asymp-
totic freedom [1, 2] and it is believed to be responsible for the so-called confinement of
the quarks inside the hadrons. The consequences of confinement for theorists making
phenomenological predictions starting from QCD is that we cannot set up a perturbative
expansion in powers of the strong coupling constant and we cannot use the concept of
“test charge”, tools that have been both proved extremely useful in the study of the
other fundamental interactions. As an example one can think of a proton, a bound state
of three (valence) quarks whose mass is almost enterally due to their binding energy,
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the three quarks being almost massless: that is very different from what happens for an
electromagnetically bound state, a hydrogen atom say, and that is why a nuclear bomb
is much more dangerous than a firecracker.

Quarks interact also weakly and electromagnetically. The most beautiful and inter-
esting phenomenology shown by hadronic systems is indeed due to weak interactions
among bound states containing quarks of different flavor. Though perturbative tools can
be used when studying electroweak interactions of leptons (electrons, neutrinos and their
heavier “copies”) these techniques are not useful when applied to confined quarks. The
only known theoretical tool that we have in our hands to study QCD by starting from
its formulation in terms of fundamental degrees of freedom are computer simulations.

2. – Feynmann to Wilson: “go on a lattice!”

QCD can be studied on a computer by introducing a finite volume, by discretizing
the four space-time dimensions and by defining the theory on the resulting “lattice” [3].
The formulation of the discrete theory is not unique because of the freedom to modify
the interactions by terms that vanish in the continuum and/or infinite volume limits (i.e.
by sending the lattice spacing a to zero and the number of points in each direction Ni

to infinity). The scope of this talk is to give a flavor of the complexity of lattice QCD
(LQCD) calculations so I will briefly sketch how a typical simulation goes on without
entering too much into the details.

In order to make predictions from the theory we have to calculate the expectation
values of observables according to

(1) 〈O〉 = N
∫

δU e−Sg[U ] det
{
(M†[U ] + m)(M [U ] + m)

}
O

[
1

M [U ] + m

]
,

where the U ’s are unitary 3 × 3 complex matrices with det U = 1 and we have four of
them per lattice point (typical lattice sizes simulated nowadays have about N0N1N2N3 =
64 × 323 lattice points). The matrix M [U ] is the lattice Dirac operator and acts on a
complex vector space of dimension 12×N0N1N2N3. In the previous expression we have
neglected the determinants of four out of the six quarks (since they are heavier than the
two retained, the up and down) and made the very good approximation that the up and
down quarks have the same mass. Equation (1) is the link between quantum field theory
and statistical physics. What changes from one statistical system to the other are the
number and nature of the degrees of freedom (here x = U), their partition function (here
exp[−V (x)] = det{(M†[U ]+m)(M [U ]+m)} exp[−Sg[U ]]) and the observable of interest
but the algorithms used to calculate the partition function are very similar. Lattice
QCD calculations are particularly difficult and expensive from the numerical point of
view because of the determinant appearing in eq. (1) and of the peculiar functional
dependence of O[(M [U ] + m)−1] that arise after the exact formal integration of the
quark’s degrees of freedom.

The problem can be attached by enlarging the phase space through the introduction
of the conjugate momenta of the U ’s, the Π’s, and complex bosonic variables φ and φ†

that live in the vector space acted upon from the Dirac operator. In this space it is
possible to set up an algorithm that generates a sequence of configurations distributed
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according to the probability density

(2) P [Π, U, φ] ∝ exp
[
−Π2/2 − Sg[U ] − φ† 1

(M†[U ] + m)(M [U ] + m)
φ

]
.

Having such a sequence, a given observable can be calculated as the average over the
subset of statistically independent gauge configurations so generated

(3) 〈O〉 = lim
N→∞

1
N

N∑
i=1

O
[

1
M [Ui] + m

]
.

The algorithms used to generate the sequence of gauge configurations are all variants
of the exact Hybrid Monte Carlo (HMC) algorithm introduced in ref. [4]. The first
step of the algorithm consists in extracting the Π’s distributed according to P [Π] ∝
exp[−Π2/2] and the vectors χ and χ† distributed according to P [χ, χ†] ∝ exp[−χ†χ/2]
in order to obtain the vector φ = (M [U ] + m)χ and its conjugate. Subsequently one
starts a Molecular Dynamics in the (Π, U) space at fixed φ according to the Hamiltonian
H[Π, U, φ] = − log P [Π, U, φ]. After an MD trajectory of length τ , the new configuration
is accepted or rejected with probability

(4) Pacc[U ] = min(r, exp[H[Π0, U0, φ0] − H[Πτ , Uτ , φτ ]]),

where 0 ≤ r ≤ 1 is a random number extracted from a flat distribution and a new
iteration is started with the new U ’s. On the one hand, the accept/reject step corrects
for the errors due to the numerical integration of the MD equations and makes the
algorithm exact. On the other hand, the time-step in the numerical integration of the
MD equations must be chosen sufficiently small to get a good acceptance rate (say bigger
than 80%). At each step of the MD evolution one needs to evaluate the “fermion force”,

Ff [U, φ] ∝ φ† 1
M [U ]

δM [U ]
δU

1
M [U ]

φ,(5)

where we have defined M [U ] = (M†[U ] + m)(M [U ] + m). This requires the inversion of
a huge matrix that gets worse and worse conditioned when the quark mass m is lowered
toward its physical value.

3. – The Berlin wall and its fall

In 2001 the annual lattice conference was held in Berlin where it has been discussed
the scaling of the HMC algorithm with the quark mass. The plot in the left panel of fig. 1
shows the scaling of the HMC algorithm as a function of the quark mass as obtained by
the Japanese group [5]: the black curve exhibits a critical slowing down of the algorithm
that goes a m−6 and the lattice community immediately realized that it would have been
impossible to approach the physical point (marked by the red vertical line) without an
improvement in simulation algorithms. This was the Berlin Wall (there are many other
“walls” in lattice QCD simulations because of the very different thermalization times
of the short-and long-distance collective variables and, in particular, of the topological
ones [7]).



270 N. TANTALO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
fl
o

p
s
 y

e
a

rs

MP/MV

HMC cost
DD-HMC cost

0 50 100 150 200 250

(amsea)
1

0

50

100

150

200

t [min]

377618

DD-HMC

485

Accelerated DD-HMC

M   282 MeV

Fig. 1. – (Colour on-line) Left panel: cost of lattice QCD simulation in Teraflops per year as a
function of the quark mass; the red vertical line marks the physical point while the black curve
is the scaling of the HMC algorithm as discussed in ref. [5]; the blue points show the scaling
of the DD-HMC algorithm. Right panel: time required to perform DD-HMC simulations of
lattice QCD (in minutes) as a function of the inverse quark mass (the physical point is at
Mπ = 140 MeV); data are from ref. [6].

In ref. [8] M. Lüscher proposed a new algorithm of the HMC type based on domain
decomposition. The whole lattice is divided into small blocks and the Dirac operator
is factorized into the product of the operators acting within the blocks (short-distance
physics) times the resulting Schur complement (long-distance physics). By factorizing the
Dirac operator one can introduce a different vector φk for each factor and the resulting
MD fermion force is the sum of several contributions:

M [U ] = M1[U ] M2[U ] . . .(6)

Ff [U, φ] ∝ φ†
1

1
M1[U ]

δM1[U ]
δU

1
M1[U ]

φ1 + φ†
2

1
M2[U ]

δM2[U ]
δU

1
M2[U ]

φ1 + . . .

If the different contributions to the MD have different magnitudes one can use a multiple
time step integrator [9] in such a way that ε1|F1| ∼ ε2|F2| ∼ . . . , where the εi’s are the
different time steps. A big gain with respect to the unfactorized algorithm is obtained
when the proposed factorization is such that the computationally demanding contribu-
tions to the force are the ones that have to be evaluated less frequently. The so-called
DD-HMC algorithm of refs. [8, 6] achieves this goal by exploiting asymptotic freedom of
the strong interactions. A systematic study of the scaling of the DD-HMC algorithm has
been carried out in refs. [10-12] where a scaling with the first power of the inverse quark
mass has been found, as shown by the blue points of fig. 1. Similar performances have
been obtained by using similar ideas and by introducing different factorizations of the
Dirac operator [13,14].

∗ ∗ ∗
In this talk I have tried to give an idea of the complexity of lattice QCD calcula-

tions by sketching the algorithms that are commonly used to carry out these simulations
but without describing the details of the theory and without even discussing any par-
ticular problem that would require the knowledge of strong interactions phenomenology.
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Exhaustive recent reviews on the status of lattice QCD simulations can be found in
refs. [15,16] while the details on the formulation of the theory on the lattice can be found
in standard textbooks on the subject.

A warm thank goes to the organizers of the conference Calcolo Scientifico Nella Fisica
Italiana for their kind ospitality in Rimini and in particular to V. Vagnoni.
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