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Summary. — A holographic description of scalar mesons is presented, in which
two- and three-point functions are holographically reconstructed. Mass spectrum,
decay constants, eigenfunctions and the coupling of the scalar states with two pseu-
doscalars are found. A comparison of the results with current phenomenology is
discussed.

PACS 11.25.Tq – Gauge/string duality.
PACS 12.38.Lg – Other nonperturbative calculations.
PACS 12.40.Yx – Hadron mass models and calculations.
PACS 14.40.Cs – Other mesons with S = C = 0, mass < 2.5 GeV.

1. – Introduction

Many approaches and techniques have been developed to understand QCD in its non-
perturbative regime, but, up to now, no one has been completely satisfactory, leaving
strongly coupled theories still a mystery. Recently, the possibility to apply AdS/CFT
correspondence [1, 2] methods to (the large N limit of) strongly coupled gauge theories
has been pointed out. This direction, known as AdS/QCD [3], has been followed along
two main approaches. The first is a top-down approach, consisting in the attempt to
obtain QCD-like theories as gravity duals of certain limits of well-defined superstring
frameworks [4]. The second is a phenomenological approach, consisting in building a
higher-dimensional model able to describe certain relevant degrees of freedom of strong
interaction, assuming its validity as QCD dual. This is the approach followed in the
present discussion. Many aspects of chromodynamics have been studied in this frame-
work, like chiral symmetry breaking [5, 6], deep inelastic scattering [7], deconfinement
transition [8, 9] and Q̄Q potential [10, 11], form factors [12] and spectra [13-18]. In this
paper, the model for chiral symmetry breaking introduced in [6] and, with a different
aim, in [19] is used to investigate the scalar meson sector [15], which is still debated
nowadays, due to its features at large Nc [20].
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2. – Model

The model is defined by the five-dimensional action

(1) S = −1
k

∫
d5x

√
−g e−Φ(z) Tr

{
|DX|2 + m2

5X
2 +

1
2g2

5

(
F 2

V + F 2
A

)}

in the five-dimensional Anti-de Sitter spacetime (the bulk), defined by the metric gMN =
(R2/z2)ηMN , where ηMN is the Minkowski metric tensor with signature −++++, R is
the AdS radius and z is the fifth holographic coordinate 0 � z < ∞. Every field is dual
to a QCD operator defined on the boundary z = 0. X = (X0 + S)e2iπ is a scalar field,
whose (negative) mass is fixed by the formula m2

5R
2 = (Δ−p)(Δ+p−4), where Δ is the

dimension of the corresponding operator and p is the order of the p-form (i.e. p = 0). π
is the chiral field and X0 = v(z)/2 is dual to 〈q̄q〉 and is responsible for chiral symmetry
breaking. S = SATA = S1T

0 + Sa
8T a with T 0 = (1/

√
6)1 and T a the generators of

SU(3)F , (A = {0, a}, with a = 1, . . . 8). SA is dual to the QCD operator OA
S = q̄TAq

representing the scalar mesons. FMN
V = ∂MV N − ∂NV M − i[V M , V N ]− i[AM , AN ] and

FMN
A = ∂MAN − ∂NAM − i[V M , AN ]− i[AM , V N ] are the strength tensors of the fields

V a
M and Aa

M , obtained rotating Aa
L,R, which are inserted to gauge, in the bulk, the global

chiral symmetry SU(3)L ⊗ SU(3)R, broken to SU(3)V by 〈q̄q〉. Aa
L,R are dual to the

q̄L,RγμT aqL,R currents. The field Φ(z) = c2z2, which in fact defines the model, is a
non-dynamical field, inserted to break the conformal symmetry in the UV (c being a
mass parameter).

Assuming for QCD the validity of the AdS/CFT relation

(2)
〈

exp
[
i

∫
d4x (L + ϕ0(x)O(x))

]〉
QCD

= eiS[ϕ(x,z)] ,

where the l.h.s. is the QCD generating functional and ϕ0(x) is the boundary (z → 0)
value of the 5d field ϕ(x, z), the effective action (1) is the only ingredient needed to
evaluate correlation functions.

3. – Spectrum

To evaluate the spectrum of the scalar mesons, consider the quadratic action for the
field SA:

(3) Seff = − 1
2k

∫
d5x

√
−g e−Φ

(
gMN∂MSA∂NSA + m2

5S
ASA

)
.

Looking for a solution of the equation of motion which is a plane wave in the 4d coordi-
nates, SA(x, z) = eiq·xS̃(z), the masses are found solving a second-order linear differential
equation, whose normalizable solutions represent the wave functions of the scalar mesons.
The spectrum is discrete and the eigensystem is [21]

(4) m2
n = c2(4n + 6) S̃n(z) =

√
2

n + 1
c3z3L1

n(c2z2)

with L1
n the generalized Laguerre polynomials. The scalar mesons are then organized in

a Regge trajectory and, fixing the parameter c with the ρ-meson mass, c = mρ/2 [6], they
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turn out to be heavier than vector mesons, with m0 = 943 MeV, and in good agreement
with the experimental masses, considering a0(980) and f0(980) as the lightest scalar
states.

4. – Two-point correlation function

The next step is to evaluate the two-point correlation function, defined in QCD as

(5) ΠAB
QCD(q2) = i

∫
d4x eiq·x〈0|T

[
OA

S (x)OB
S (0)

]
|0〉.

Writing S̃(q2, z2) = S(q2, z2)S̃0(q2), with S̃0(q2) the Fourier transform of the source
of the operator OS in the QCD generating functional and S(q2, z2) a function called
bulk-to-boundary propagator [2], and using (2), one can evaluate (5) deriving twice the
effective action (1) with respect to S̃0, obtaining

ΠAB
AdS(q2) = δAB R3

k
S(q2, z2)

e−c2z2

z3
∂zS(q2, z2)

∣∣∣∣
z=1/ν→0

(6)

= δAB 4c2R

k

[(
q2

4c2
+

1
2

)
ln

(
c2z2

)
+

(
γ − 1

2

)
+

q2

4c2

(
2γ − 1

2

)

+
(

q2

4c2
+

1
2

)
ψ

(
q2/4c2 + 3/2

)]∣∣∣∣
z=1/ν

.

This function has poles at −q2
n = m2

n = c2(4n + 6), in agreement with (4), with residues
F 2

n = 16Rc4(n + 1)/k corresponding to the decay constants of the scalar mesons. The
factor R/k can be fixed with a comparison of (6) with the known QCD result, obtaining
R/k = Nc/(16π2). The AdS prediction F0 = 0.08 GeV2 can be compared to QCD
determinations Fa0 = (0.21 ± 0.05) GeV2 and Ff0 = 0.18 ± 0.015 GeV2 [22, 23], showing
a difference of about a factor of two.

5. – Three-point correlation function and interaction with two pseudoscalars

The three-point correlation function describing the interaction between a scalar meson
and two pseudoscalars is defined in QCD by

(7) Πabc
QCD αβ(p1, p2) = dabc p1α p2β

p2
1 p2

2

f2
π

∞∑
n=0

Fn gSnPP

q2 + m2
n

with q = −(p1 + p2), fπ the pion decay constant and gSnPP the coupling.
To evaluate it on the AdS side, consider the corresponding interaction term in (1):

(8) SSPP
eff = −R3

k

∫
d5x

e−Φ(z)

z3
v(z)

[
2√
6

S1(∂ψ)2 + dabcSa
8ηMN

(
∂Mψb

)
(∂Nψc)

]
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where AM = A⊥M +∂Mφ and ψa = φa−πa is the pseudoscalar dual field. Differentiating
with respect to the sources, the coupling for the n = 0 state is given by

(9) gS0PP =
m2

S0
Rc

√
Nc

4πf2
π

∫ ∞

0

du e−u2
v(u)

with u = cz. The numerical result is of O(10) MeV, at odds with experimental values
ga0ηπ = 12 ± 6 GeV and phenomenological determinations gf0K+K− 	 7 GeV [24]. This
is an issue of the model and it is due to the fact that the integral in (9) is dominated by
the small quark mass parameter. This is related to the difficulty of the model in correctly
reproducing both spontaneous and explicit chiral symmetry breaking, difficulty already
analyzed in [6].
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