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Summary. — In this paper I compare the knowledge on the critical end point of
the QCD phase diagram grasped from lattice calculations, with that obtained from
Nambu–Jona-Lasinio (NJL) model computations.

PACS 21.65.Qr – Quark matter.
PACS 12.38.Mh – Quark-gluon plasma.
PACS 12.38.Lg – Other nonperturbative calculations.

The major knowledge on the QCD phase transitions at zero baryon density comes
from first principle calculations made on supercomputers, namely from the lattice. When
simulations are run with physical quark masses, it is well known that lattice predicts the
restoration of chiral symmetry, which is spontaneously broken by the quark condensate
in the vacuum, at a finite value of the temperature 170MeV ≤ T ≤ 200 MeV. The chiral
restoration in the vacuum is actually a smooth crossover, the reason being that finite
values of the quark masses break explicitly chiral symmetry, hence there is not a true
phase transition. For simplicity, from now on I will call the chiral crossover, as well as the
true phase transition, the chiral restoration. In correspondence of the chiral restoration,
lattice shows that a deconfinement transition occurs. This has suggested that chiral
restoration and deconfinement of color are two intimately connected transitions of QCD,
(see ref. [1] and references therein).

Lattice investigations at finite baryon chemical potential, μ, suffer the (in)famous
sign problem in three color QCD. To this end, several approximated methods have been
used to circumvent it. By means of one of these methods, namely the two-parameter
reweighting, it has been predicted, some time ago [2], that the chiral crossover becomes
a first-order transition at a certain value of μ. The couple (μE , TE) in the (μ, T )-plane
at which this occurs is called the Critical End Point (CEP) of the QCD phase diagram.
The numerical simulations of ref. [2] predict μE ≈ 350 MeV and TE ≈ 160 MeV.

An interesting alternative to the reweighting analysis of the QCD phase diagram,
with particular reference to the existence of a CEP, has been performed [3] (see also
references therein). The reasoning on which the investigations of [3] lies is very simple
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to understand: at μ = 0, it is known, from lattice studies, that the chiral transition is
a true first-order transition, if quarks are taken in the chiral limit. Moreover, as the
quark masses are increased above a critical value, the transition becomes a crossover. It
happens that at the physical point, defined as the couple of values for the up- and strange-
quark mass, (mu,ms), which gives the physical spectrum of mesons, the transition is a
crossover. Hence, there exists a critical line in the (mu,ms)-plane which is the border
between an inner region, in which the chiral transition is of first order, and an outer
region, in which the transition is a crossover. As μ is increased, one can study the
evolution of the critical line in this plane. In order to circumvent the sign problem, the
authors of ref. [3] performed a Taylor expansion in powers of μ/T , computing all the
coefficients at μ = 0 (where the sign problems is absent). Within the Taylor expansion,
the critical line is expressed as

(1) mc(μ) = mc(0)

[
1 +

N∑
k=1

ck

(
μ

Tc

)2k
]

.

The coefficient c1 governs the behavior of the critical line at small values of μ. Nowadays,
the coefficients ck have been determined up to the 8th order. Surprisingly enough, the
results of ref. [3] are that the critical line moves towards lower values (hence to less
realistic) of the quark masses, as μ is increased. This means that at finite (but small,
see below) values of μ the crossover remains crossover, if quarks are taken in the chiral
limit. The analysis performed in ref. [3] should be reliable, by author’s admission, up
to μ ≈ 500 MeV. As a consequence, their results are consistent with the scenery in
which a CEP, if it there exists, is located at values of μ larger than that predicted in [2].
The discrepancy is probably due to the fact that the reweighting method suffers of large
systematic errors at large μ.

It is of a certain interest to compare this scenario with that of some model cal-
culation. Among the various models, the NJL model (or its improved version, the
Polyakov–Nambu–Jona-Lasinio (PNJL) one) is a very popular one (for review see [4]).
The NJL model Lagrangian shares the same global symmetries of the QCD Lagrangian.
Since we can describe the numerous (expected) phases of the QCD phase diagram in terms
of broken/restored global symmetries, the hope is that the NJL calculations grasps, for
the property specified above, at least the main characters of the QCD phase diagram in
the μ-T plane. Moreover, determining the ground state of the model at any temperature
and/or chemical potential is a very easy task, which requires only some numerics. On
the other hand, first principle calculations are not feasible at finite μ both numerically
(for the infamous sign problem of three color QCD) and analytically (for weak coupling
approximation might break down in the range of temperature/chemical potential rele-
vant for heavy-ion collisions as well as for compact star phenomenology). Therefore, the
NJL model might be helpful in depicting the main aspects of the QCD phase diagram.

The NJL (or PNJL) phase diagram has been discussed in several papers. Here I refer
to [5]. First of all, I need to specify the model Lagrangian density,

(2) L =
∑

f

ψ̄f (iDμγμ − mf + μγ0) ψf + L4 + L6,

where the sum is over the three flavors f (= 1, 2, 3 for u, d, s). In the above equa-
tion the background gauge field Aμ = gδμ0AaμTa is coupled to quarks via the covari-
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ant derivative Dμ = ∂μ − iAμ and Aμ will be specified later; mf is the current mass
(we assume mu = md). The quark chemical potential is denoted by μ. The NJL four-
fermion and six-fermion interaction Lagrangians are as follows [4]:

L4 = G

8∑
a=0

[
(ψ̄λaψ)2 + (iψ̄γ5λaψ)2

]
,(3)

L6 = −K
[
det ψ̄f (1 + γ5)ψf ′ + det ψ̄f (1 − γ5)ψf ′

]
,(4)

where λa are the Gell-Mann matrices in flavor space (λ0 =
√

2/31f ) and the determinant
is in flavor space as well. The parameters are

mu,d = 5.5MeV, ms = 140.7MeV, GΛ2 = 1.835, KΛ5 = 12.36, Λ = 602.3MeV.

From these parameters one gets mπ � 135 MeV, mK � 498 MeV, mη′ � 958 MeV,
mη � 515 MeV and fπ � 92 MeV.

Once the Lagrangian is specified, the thermodynamic potential at temperature T is
obtained after integration over the fermion fields in the partition function:

(5) Ω = U
[
T,Φ, Φ̄

]
+ Ωq

[
Mf ,Φ, Φ̄

]
,

where Ωq denotes the free quark contribution, as well as the interaction term of quarks
with the Polyakov loop (see [5] for more details). In the thermodynamical potential,
the term U(T,Φ, Φ̄) is the novelty that improves the NJL model and promotes it to the
PNJL model [6]. It describes the dynamics of the traced Polyakov loop in the absence of
dynamical quarks. The potential U cannot be determined by first principles: one has to
choose a convenient form for it, by trying to reproduce lattice data on thermodynamical
quantities of the pure glue theory. Different analytical forms of U lead to different
quantitative predictions, even if the qualitative picture is quite not sensible of the form
chosen. In this paper I focus on a model calculation based on the following potential:

(6)
U(T,Φ, Φ̄)

T 4
= − b̃2(T )

2
Φ̄Φ + b(T ) ln

[
1 − 6Φ̄Φ + 4

(
Φ3 + Φ̄3

)
− (Φ̄Φ)2

]
,

where the analytical form of the coefficients has been determined in ref. [7].
In the mean-field approximation, which is formally equivalent to determine only the

classical contribution to the partition function, one can get quark condensates σf and
Polyakov loop for any value of the parameters μ and T simply by looking at the global
minima of Ω. Depending on the values of σf and Φ, one can characterize the symmetry
breaking pattern of the theory in any point of the plane μ-T , hence one can build a
phase diagram. The phase diagram of the model is sketched in fig. 1. For simplicity, I
have drawn only the chiral crossover line. The dashed line denotes the chiral crossover,
the solid line corresponds to a first-order transition. The region denoted symbolically by
χSB denotes the zone of the phase diagram with quark condensate different from zero.
In the region χ ≈ 0, on the other hand, one has 〈ūu〉 ≈ 0 but 〈s̄s〉 �= 0. It is interesting
to notice that, with the parameters at hand that reproduce the vacuum spectra of the
pseudoscalar mesons, the CEP is located at quite large values of the quark chemical
potential, which is one third of the baryon chemical potential, thus at values of μ larger
than the 350 MeV quoted above. The introduction of a vector interaction can shift μCEP



80 M. RUGGIERI

CEP

2+1 flavors

ΧSB Χ ≈ 0

0 100 200 300 400
0

50

100

150

200

μq (MeV)

T
(M

eV
)

Fig. 1. – Sketch of the phase diagram of the PNJL model with 2 + 1 massive flavors. Here μq

denotes the quark chemical potential, μq = 3μ, where μ corresponds to the baryon chemical
potential. For simplicity, I have drawn only the chiral crossover line. The dashed line denotes
the chiral crossover, the solid line corresponds to a first-order transition. The region denoted
symbolically by χSB denotes the zone of the phase diagram with quark condensate different
from zero. In the region χ ≈ 0, on the other hand, one has 〈ūu〉 ≈ 0 but 〈s̄s �= 0〉. Based on [5].

to higher values, depending on its magnitude at finite density [8]. It can even disappear
at all, if the vector interaction is repulsive enough. Hence, we can conclude that the
PNJL model scenario is in agreement with the newest lattice findings on the absence of
a CEP at small values of the baryon chemical potential.
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