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Summary. — We review the main features of the Ossola, Papadopoulos and Pit-
tau (OPP) method for the evaluation of one-loop amplitudes of arbitrary scattering
processes. In this approach, the coefficients of the scalar integrals are extracted by
means of simple algebraic equations constructed by numerically evaluating the nu-
merator of the integrand for specific choices of the integration momentum. After a
discussion of the first results obtained with this method, we will focus on the latest
developments in the direction of a fully automatized approach to multi-loop NLO
calculation.

PACS 11.10.-z – Field theory.
PACS 12.38.Bx – Perturbative calculations.
PACS 13.85.Hd – Inelastic scattering: many-particle final states.

1. – Introduction

The experimental programs at the LHC will require high-precision predictions for
multi-particle processes. As a consequence, several different groups have been recently
working on the construction of tools for the computation of one-loop amplitudes for
processes involving more than four particles [1].

Any one-loop amplitude M can be expressed in terms of scalar integrals as

(1) M =
∑

i

di Boxi +
∑

i

ci Trianglei +
∑

i

bi Bubblei +
∑

i

ai Tadpolei + R,

where di, ci, bi and ai are the coefficients of 4-, 3-, 2- and 1-point scalar integrals [2, 3]
and R is a polynomial, function of ratios of the external kinematic invariants, known as
rational term. Since the scalar functions can be calculated for all kinematic configura-
tions, by means of codes such as QCDLoop [4, 5] or OneLOop [6], the knowledge of all
coefficients and of the rational term formally completes the calculation of the scattering
amplitude.
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Besides standard techniques, where a tensor reduction is explicitly performed, new
numerical and analytical developments have emerged recently. The common features of
the so-called “unitarity-based” methods [7, 8] is a different approach to the reduction:
they aim at the direct determination of the coefficients of the scalar one-loop functions.

Both approaches have been pursued and led to very important results (see ref. [9] for
a review). In particular, in the last few months, very challenging calculations involving
four particles in the final state have been successfully completed [10,11].

2. – A walk through the OPP method

In two recent papers [12, 13], we proposed a reduction method (OPP) for arbitrary
one-loop amplitudes at the integrand level [14]. The method is based on the idea of
expressing the integrand of the one-loop amplitude in terms of the propagators that
depend on the integration momentum.

In this approach, the coefficients in eq. (1) are numerically determined by solving a
system of algebraic equations that are obtained by: i) the numerical evaluation of the
numerator of the integrand at explicit values of the loop-variable; ii) and the knowledge
of the most general polynomial structure of the integrand itself [14].

The solution of the system of equations becomes particularly simple if we exploit
numerically the set of kinematical equations for the integration momentum corresponding
to the so-called quadruple, triple and double cuts also used in the unitarity-cut method.

Any m-point one-loop amplitude can be written, before integration, as

(2) A(q̄) =
N(q)

D̄0D̄1 · · · D̄m−1

with D̄i = (q̄ + pi)2 − m2
i . The bar denotes objects living in n = 4 + ε dimensions and

a tilde objects of dimension ε. Physical external momenta pi are 4-dimensional objects,
while the integration momentum q is in general n-dimensional. Following this notation,
we have q̄2 = q2 + q̃2 and D̄i = Di + q̃2.

2.1. Reduction in dimension 4 . – Assuming for the moment that the numerator N(q)
is fully 4-dimensional, we can rewrite it at the integrand level in terms of Di = (q +
pi)2 − m2

i as

N(q) =
m−1∑

i0<i1<i2<i3

[
d(i0i1i2i3) + d̃(q; i0i1i2i3)

] m−1∏
i�=i0,i1,i2,i3

Di(3)

+
m−1∑

i0<i1<i2

[
c(i0i1i2) + c̃(q; i0i1i2)

] m−1∏
i�=i0,i1,i2

Di

+
m−1∑
i0<i1

[
b(i0i1) + b̃(q; i0i1)

] m−1∏
i�=i0,i1

Di

+
m−1∑

i0

[
a(i0) + ã(q; i0)

] m−1∏
i�=i0

Di .

The quantities d(i0i1i2i3) are the coefficients of 4-point scalar functions with denom-
inators labeled by i0, i1, i2, and i3. In the same way, we call c(i0i1i2), b(i0i1) and a(i0)
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the coefficients of all possible 3-point, 2-point and 1-point scalar functions, respectively.
The quantities d̃, c̃, b̃, ã are called “spurious” terms, i.e. terms that are present in the
decomposition at the integrand level, but will vanish upon integration. These terms still
depend on the integration momentum q.

Inserted back in eq. (2), this expression simply states the multi-pole nature of any
m-point one-loop amplitude, that contains a pole for any propagator in the loop.

Once eq. (3) is established by fixing the process-independent form of all the spurious
terms, the task of computing the one-loop amplitude is reduced to the algebraic problem
of extracting all the coefficients d, c, b, a. This is achieved simply by evaluating the
function N(q) a sufficient number of times, at different values of q, and then solving
the system with respect to d, c, b, a. This can be achieved quite efficiently by choosing
particular values of q such that a subset of denominators Di vanish. Operating in this
manner, the system becomes “triangular” and it is solved iteratively.

2.2. Rational terms. – As mentioned in the previous section, the reduction has been
performed assuming a purely four-dimensional numerator (this singles out the so-called
cut-constructable part of the amplitude).

However, as is well known, even starting from a perfectly finite tensor integral, the
tensor reduction may lead to integrals that need to be regularized (we use dimensional
regularization). For this reason, we introduced in eq. (2) the d-dimensional denominators
D̄i = Di + q̃2, that differ by an amount q̃2 from their 4-dimensional counterparts Di.

This leads to a mismatch in the cancellation of the d-dimensional denominators
of eq. (2) with the 4-dimensional ones of eq. (3). The rational part of the amplitude,
called R1 [15], comes from such a lack of cancellation. A different source of rational
terms, called R2, can also be generated from the ε-dimensional part of N(q) [15,16]. The
sum of these two contributions reconstructs the rational term in eq. (1).

If we go back to the integrand A(q̄) of eq. (2) and insert the expression for N(q) of
eq. (3), we observe the presence of ratios of denominators in different dimensions, namely
Di/D̄i. We can rewrite them using Di/D̄i = Z̄i, with Z̄i ≡ (1 − q̃2/D̄i). The rational
part is produced, after integrating over dnq, by the q̃2 dependence in Z̄i. The expressions
for all relevant integrals are reported in the Appendix of ref. [13].

As an alternative approach to determine R1, we can reconstruct the dependence of
the various coefficients on q̃2, assuming that the reduction of the numerator was per-
formed directly in terms of n-dimensional denominators D̄i. This approach is described
in refs. [12,15], and leads to identical results for R1.

The rational part R2, generated from the ε-dimensional part of the numerator
N(q), can be determined using a dedicated set of Feynman rules in a tree-level
computation [15,17]. More information about the reduction algorithm has been given in
previous talks [18]. For a complete and detailed discussion, please refer to the original
papers.

3. – Applications and automatization

The rest of this presentation will be devoted to a summary of various developments
within the OPP framework.

As a first example of application of the method, we calculated the 6-photon amplitude,
via a fermionic massive loop [13]. Previous results were available in the massless limit [19]
and we found complete agreement. This process provided a playground for testing our
method and a good benchmark to compare different methods of calculation.
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As a next step, we released a public code called CutTools [20] that allows to extract
all the coefficients of the scalar integral and the rational term R1 in a fully automatized
way. The user only needs to provide a routine for the evaluation of the numerator N(q).

More recently [21], we exploited the polynomial structure of the integrand and the
freedom in choosing the solutions of the cuts, to improve the system-solving algorithm.
By selecting the variables of each polynomial to be proportional to the roots of unity,
the extraction of the polynomial’s coefficients is carried out through projections, using
the orthogonality relation among plane waves, rather than by system inversion. We are
currently working on further improvements to this approach.

In ref. [22], the OPP reduction is applied to the calculation of the next-to-leading order
QCD correction for the production of three vector bosons at the LHC. This includes the
case of ZZZ production, as well as the W+W−Z, W+ZZ, and W+W−W+ production.
The virtual part of the NLO calculation has been performed using CutTools [20]. Scalar
integrals are computed using the package OneLOop [6]. The tree-level cross-section has
been evaluated using the HELAC event generator [23]. The same code, appropriately
adapted to implement the dipole subtraction method, in the form proposed by the authors
in ref. [24], has also been used to calculate the real corrections. Concerning the finite
parts, we agree with the results obtained by the authors of ref. [25], for the production
of three Z bosons. We also compared the results for W+ZZ and W+W−Z with Hankele
and Zeppenfeld [26]. A complete discussion, including leptonic decays, was presented
in [27].

This last calculation, aside from confirming once more the validity of our approach,
was very instructive. In order to go beyond this level of complexity, we need further
automatization, both in the generation of the numerator N(q) and in combining the
different contributions to the result.

In a very recent paper [28], van Hameren, Papadopoulos and Pittau presented a
technique for the automatized evaluation of the numerator N(q), based on a 1-loop
extension of HELAC [23]. In fact, after fixing the integration momentum q, as required
by the OPP reduction, any n-point one-loop amplitude is an (n + 2)-point tree level
amplitude. As a powerful proof of concept for the validity of this approach, which
combines HELAC-1loop with the OPP reduction, they calculated amplitudes for all
6-particle processes in the 2005 Les Houches wishlist.

Even more recently, Czakon, Papadopoulos and Worek, produced an automatized
tool [29] to include dipole subtraction [24], that works within the framework of HELAC.

4. – Conclusions

Motivated by the upcoming LHC experiment, we observed tremendous progress in
the calculation of one-loop multi-leg processes. This involves several new results for
cross-sections of great importance for the LHC, but also the developments of many new
techniques and codes.

The next frontier is a systematic automatization of the calculations. In this process,
we should address important issues, such as stability, precision and versatility. Also, the
computational efficiency of the codes should be good enough to make their use realistic
within the experimental community for the LHC analysis.

Important results have been obtained with traditional methods [11,30]. On the other
hand, unitarity-based approaches led to the development of advanced tools, such as
Rocket [31] or Blackhat [32], that proved to be very effective for massless processes,
such as multi-gluon production or W + 3 jets.
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The OPP reduction was developed from the beginning in order to be suited for au-
tomatization. The recent progress in the automated generation of the numerators [28],
or in the generation of dipole terms [29], is of crucial importance in this direction. It is
likely that in the near future the combination of HELAC and OPP reduction will lead to
a fully automatized tool for the calculation of any process, both in QCD and electroweak
theory, without limitations on the masses of internal and external particles. At the same
time, it will be important to continue to improve the efficiency and the stability of the
method, to reach the same level of reliability of the traditional methods.

∗ ∗ ∗
Work developed in collaboration with C. Papadopoulos, R. Pittau, P. Mastro-

lia, T. Binoth and A. van Hameren. Many thanks to M. Czakon and M. Worek

for fruitful discussions.
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