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Summary. — A quasi-static approach within the framework of neutron transport
theory is used to develop a computational tool for the time-dependent analysis of
nuclear systems. The determination of the shape function needed for the quasi-
static scheme is obtained by the steady-state transport code DRAGON. The kinetic
model solves the system of ordinary differential equations for the amplitude function
on a fast scale. The kinetic parameters are calculated by a coupling module that
retrieves the shape from the output of the transport code and performs the required
adjoint-weighted quadratures. When the update of the shape has to be carried out,
the coupling module generates an appropriate input file for the transport code. Both
the standard Improved Quasi-Static scheme and an innovative Predictor-Corrector
algorithm are implemented. The results show the feasibility of both procedures and
their effectiveness in terms of computational times and accuracy.

PACS 28.20.Gd – Neutron transport: diffusion and moderation.
PACS 28.50.-k – Fission reactor types.
PACS 28.41.Ak – Theory, design, and computerized simulation.

1. – Introduction

For several applications in the physics of nuclear systems an accurate transport model
may be needed to adequately describe the evolution of the neutron population in per-
turbed conditions. This may be the case especially when treating advanced systems,
such as source-driven subcritical assemblies or some of the Generation IV reactor config-
urations. In such systems, the use of diffusion models cannot fully account for important
physical phenomena.

A direct approach involves the inversion of the transport operator on a very short time
scale, thus implying a huge computational effort. To overcome this problem, the quasi-
static method can be very appropriate, allowing to obtain high-quality time-dependent
predictions with a reasonable computational effort.
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In this work, a computational tool coupling the existing transport code DRAGON to
a kinetic module is described. The transport code is used for the generation of the shapes
needed to evaluate the kinetic parameters of the amplitude model, which is solved on
a fast time scale. Two possible implementations of the quasi-static scheme are consid-
ered: the Improved Quasi-static Method (IQM) and the Predictor-Corrector Quasi-static
Method (PCQM). Some test results are presented and discussed.

2. – Quasi-static approaches to the time-dependent transport problem

The time-dependent analysis of nuclear systems requires the solution of the balance
equations for neutrons and delayed neutron precursors:
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where ϕ(t) ≡ ϕ(r, E,Ω, t) and Ci ≡ Ci(r , t) denote the neutron angular flux and the
delayed neutron precursors concentrations, respectively. The general definitions of the
operators appearing in eqs. (1) are well known and can be found in ref. [1].

Since the complete solution of system (1) is highly computer-time consuming, various
approximate models for neutron kinetics have been developed during the past years [2-6].
In particular, the quasi-static approach is based on the factorization of the neutron flux
in the product of an amplitude function A, only depending on time, and a shape function
ψ, depending on the phase space variables and, on a slower time scale, on time:

(2) ϕ(r, E,Ω, t) = A(t)ψ(r, E,Ω; t).

The introduction of the factorization formula (2) into the balance equations (1) leads to
what is referred to as shape model :
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The factorization introduced, eq. (2), is general and thus non-unique. A normalization
constraint is introduced requiring the integral of the neutron density, weighted on the
adjoint function associated to a reference initial configuration, to be constant:
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where ϕ0 is the neutron flux in the initial configuration. This choice is convenient, since
the following step consists in the projection of the shape model over the same weighting
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Fig. 1. – Block diagram of the quasi-static algorithms for a single Δt computation. a) IQM;
b) PCQM. Bold-edged boxes identify tasks demanded to the DRAGON code.

function, taking advantage of the simplification introduced by condition (4), obtaining
the amplitude model :
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When the shape function is equal to the steady-state initial neutron flux ϕ0, the Point
Kinetic equations (PK) are derived.

Both the shape and amplitude models are non-linear, since the kinetics parameters
in (5) depend on the shape and the product of the two unknowns appears explicitly
in (3). The improved quasi-static method (IQM) takes advantage of the different time
scales appearing in the transient evolution. First, the amplitude equations are solved
over a large time interval Δt, using a finer time mesh δt. Then, the shape model is
solved on the same Δt, updating the kinetic parameters and iterating the solution by
modifying the derivative of the amplitude function. This allows to reduce the error on
the normalization condition (4), defined as
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The block diagram for IQM is sketched in fig. 1a, enlightening the presence of the normal-
ization iterations. The non-linearity of IQM can represent a relevant problem, since the
convergence of the γ parameter is a critical aspect. For this reason, a different approach
to quasi-statics has been recently proposed to overcome this issue, the predictor-corrector
quasi-static method (PCQM) [1,7]. The two time-scale approach to the time-dependent
problem is still used, but the shape update procedure is carried out first to obtain im-
proved kinetic parameters. To do so, the neutron balance equations (1) are solved on the
coarse time step Δt and the obtained predicted flux is renormalized in order to obtain a
shape fulfilling condition (4). The kinetic parameters evaluated with the new shape are
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then used for the solution of eqs. (5), to provide the power evolution on the fine mesh
δt. The block diagram for PCQM is given in fig. 1b.

3. – Description of the work

The quasi-static algorithms described in the previous section require the solution of a
time-dependent balance equation for neutrons and precursors. Once the time derivative
is approximated by a suitable numerical scheme, both the neutron balance equations (1)
and the shape model (3) can be recast into a pseudo-stationary form. In this work, a
first-order implicit-Euler scheme is adopted. The shape model for IQM can be written as
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and a time-absorption term, depending on the value of the amplitude and its derivative,
appears on the left-hand side of (7).

In PCQM, the form of the pseudo-stationary equation is

(9)

[
L (t) − 1

vΔt
+

Δt

2

∑
i

λiF
d
i (t)

]
ϕ̃(r, E,Ω, t) + Q̃(r, E,Ω, t) = 0,

where the generalized source Q̃ is now defined as

Q̃(r, E,Ω, t) = S(r, E,Ω, t) +
ψ(r, E,Ω, t − Δt)

vΔt
(10)

+
∑

i

λi

[
χi

4π
Ci,0(r)e−λiΔt +

Δt

2
F d

i (t)ϕ̃(r, E,Ω, t)

]
.

This feature of both approaches is well suited for the use of a steady-state solver instead
of a full dedicated time-dependent code. This possibility allows to use well-assessed and
optimized flux solvers to be coupled to an external module dealing with the quasi-static
algorithms [8].

In this work, the open-source stand-alone steady-state neutron transport solver DRA-
GON, developed by the École Polytechnique de Montréal, is used [9]. The code is coupled
to a kinetic module, implementing the quasi-static schemes described before, through an
interface module which manages the input/output data. Equations (7) and (9) are solved
introducing virtual cross-sections and sources in the transport solver. The quasi-static
procedure is established through linked computational modules.
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Fig. 2. – Representation of one quarter of the two reactor domains. a) 2D square test reactor;
b) 2D MASURCA-like reactor. The shaded areas identify the regions where cross-section pertur-
bations are introduced. The neutron transport calculations are performed by imposing reflective
boundary conditions on the dashed edges, while vacuum boundary conditions are imposed on
the solid edges.

4. – Results

In this section some test calculations are presented in order to demonstrate the fea-
sibility of the procedure and the efficiency of the computational tool in the prediction
of the reactor power evolution, induced by source and cross-section perturbations in-
serted into the system. However, it must be highlighted that, in order to obtain a fully
consistent model with eqs. (8) and (10), the steady-state transport solver must accept
angular-dependent sources and provide angular fluxes as output, for the computation of
the kinetic parameters. In this work, the DRAGON code solves the transport equation
using the collision probability method, with a 10−6 maximum tolerance on the error on
the eigenvalue and the flux. This module provides as output the scalar fluxes and accepts
as input only isotropic source distributions. These aspects constitute an inconsistency in
the formulation of the quasi-static algorithm and could introduce relevant errors when
problems with a high anisotropy of the neutron shape are concerned (e.g., high-energy
neutrons). However, the results in the current section show that for some cases accurate
power predictions can be obtained.

The dynamic code takes into account the presence of delayed neutrons. The choice
of macro Δt and micro δt time-step sizes is provided by the user. In the following
calculations δt = 10−6 s, while parametric studies on the value of Δt are performed. In
figs. 2a and 2b, a picture of the two systems analyzed is presented. They are adopted
for one-group and three-group calculations, respectively.

As a preliminary assessment, a transient induced by doubling the external neutron
source intensity is considered for the system in fig. 2a. The transport problem being
linear, the final value of the power must be consequently doubled. Results are presented
in fig. 3. The presence of delayed neutrons is taken into account by considering one
family of precursors only, with β = 500 pcm and λ = 100 s−1. This value of the decay
constant, even if not realistic, allows to analyze whether the code is treating correctly
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5.00 2.000275 2.000333
2.50 2.000371 2.000469
1.25 2.000480 2.000480
1.00 2.000540 2.000539

Fig. 3. – Doubling of the external source. The values in the table refer to the power levels at
the end of the transient, in the case without delayed neutrons. The macro time-steps and the
micro time-steps are uniform.

the presence of precursors and the consequent different time scales, adopting a reduced
transient duration. The convergence to the asymptotic solution can be clearly seen.

The study of test transients involving delayed neutron precursors points out a main
difference between IQM and PCQM: the presence of delayed neutrons requires to adapt
the macro time-step along the evolution of the transient to capture the change of the
neutron shape. If an adaptive technique is considered, it can be assumed that, once
the spatial transient is extinguished, the following evolution up to equilibrium with the
delayed neutron precursors (last Δt) could be well retraced by a PK calculation with
the last available kinetic parameters. In IQM this is automatically fulfilled, since the
amplitude calculation is performed before the shape update. On the other hand, PCQM
requires as a first step the solution of the flux problem, which can lead to significant
errors when the last Δt is too large. To overcome this problem, the PCQM should be
hybridized with a PK module that performs the calculation along the last Δt.

A second test calculation carried out for the system in fig. 2a is a transient induced by
a step-wise fission cross-section perturbation, leaving the reactor in a subcritical state.
The same data for precursors as in the previous case are assumed. Since after a transient
the system settles on a new steady-state, an asymptotic transport calculation is carried
out to determine the exact value of the flux and of the power at the end of the transient.
It is clear from figs. 4 and 5 that a correct evaluation of the power evolution requires the
analysis up to the time when delayed neutrons reach equilibrium. Moreover, a full PK
treatment is not sufficient to predict the power level at the end of the transient, while
both IQM and PCQM can provide accurate results.

In fig. 6 a test calculation for the system in fig. 2b is presented. For the sake of
simplicity, no delayed neutrons are considered, in order to reduce the time interval on
which the analysis is carried out. It can be observed that IQM requires a certain number
of shape updates to provide a satisfactory power prediction. This is due to the error
introduced in the shape recomputation process. On the other hand, PCQM can produce
reliable results even considering just one macro time-step, provided it is short enough.
Nevertheless, in most calculations, the shape recomputation error introduced in the IQM
does not affect dramatically the power prediction, as it is usually of the order of the
relative error on the power itself.
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Fig. 4. – Power evolution induced by a uniform fission cross-section perturbation (δνΣf/νΣf =
+10%). a) Comparison of the power evolution for IQM; b) the same for PCQM. The time interval
is subdivided into uniform macro time-steps. The initial multiplication factor is 0.96884. The
reactivity insertion is Δρ = +574 pcm. The graph is zoomed in the region [0, 5 ms], to evidence
the prompt-jump.

5. – Conclusions

A computational tool that can perform time-dependent neutronic transport calcu-
lations using a quasi-static approach is developed. The DRAGON code is used as a
transport solver to generate direct and adjoint fluxes, to be used for the calculation of
the kinetic parameters introduced into the amplitude model. A coupling module provides
the input information for the DRAGON code by suitable modifications of cross-sections
and sources as needed, in order to take into account the evolution of neutron and pre-
cursor concentrations.

Test calculations show the feasibility of the procedure and the accuracy of the re-
sults, both for the classical IQM and for the innovative PCQM. Some considerations are
highlighted concerning the possibility to hybridize the two algorithms when dealing with
a long transient analysis. The results presented show that both algorithms can reproduce
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Fig. 5. – Comparison of the power evolution for the whole transient analysis adopting the IQM
(a), markers as in fig. 4a. b) The same but adopting the PCQM, markers as in fig. 4b. The
time interval is subdivided into uniform macro time-steps, the same for both IQM and PCQM.
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Fig. 6. – Power evolution induced by a uniform capture cross-section perturbation (δΣc/Σc =
+20%). a) Comparison of the power evolution for IQM; b) the same for PCQM. The initial
multiplication factor is 0.97240. The reactivity insertion is Δρ = −371 pcm. The view is zoomed
in the region [0, 5 ms], where only the prompt neutron equilibrium is reached.

the power level at the end of the transient rather accurately: it must be reminded that
PCQM is computationally more advantageous than IQM.

Further development should be directed towards handling angular distributions for
sources and fluxes. This step will lead to a fully consistent computational tool for trans-
port nuclear reactor kinetics.
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