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Summary. — We study typical half-space problems of rarefied gas dynamics, in-
cluding the problems of Milne and Kramer, for the discrete Boltzmann equation
(a general discrete velocity model, DVM, with an arbitrary finite number of veloci-
ties). Then the discrete Boltzmann equation reduces to a system of ODEs. The data
for the outgoing particles at the boundary are assigned, possibly linearly depend-
ing on the data for the incoming particles. A classification of well-posed half-space
problems for the homogeneous, as well as the inhomogeneous, linearized discrete
Boltzmann equation is made. In the non-linear case the solutions are assumed
to tend to an assigned Maxwellian at infinity. The conditions on the data at the
boundary needed for the existence of a unique (in a neighborhood of the assigned
Maxwellian) solution of the problem are investigated. In the non-degenerate case
(corresponding, in the continuous case, to the case when the Mach number at the
Maxwellian at infinity is different of −1, 0 and 1) implicit conditions are found.
Furthermore, under certain assumptions explicit conditions are found, both in the
non-degenerate and degenerate cases. An application to axially symmetric models
is also studied.

PACS 51.10.+y – Kinetic and transport theory of gases.
PACS 05.20.Dd – Kinetic theory.

1. – Introduction

Half-space problems for the Boltzmann equation are of great importance in the study
of the asymptotic behavior of the solutions of boundary value problems of the Boltzmann
equation for small Knudsen numbers, see ref. [1] and references therein. Mathematical
results on the half-space problem for the Boltzmann equation for a single-component
gas are reviewed in ref. [2]. In this paper we consider corresponding problems for the
general discrete velocity model (DVM), i.e. where the velocity is assumed to be able to
take only an arbitrary finite number of different values. The Boltzmann equation can
be approximated by DVMs, see e.g. refs. [3] and [4], and these approximations can be
solved by numerical methods. The study of DVMs can also give a better conceptual
understanding and new ideas for the continuous case. The half-space problems discussed
in this paper are an example where one can find clear similarities between the discete
and continuous cases. For example, the number of additional conditions needed for well-
posedness in the discrete case agrees with the results in the continuous case. In the
planar stationary case, the discrete Boltzmann equation reduces to a system of ordinary
differential equations. We review here results on this problem from refs. [5, 6] and [7].
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Half-space problems for the linearized Boltzmann equation are well investigated, see
ref. [2] and references therein. In ref. [8] Ukai, Yang and Yu studied the non-linear prob-
lem with inflow boundary condition for a hard sphere gas, assuming that the solutions
tend to an assigned Maxwellian at infinity. The conditions on the data at the boundary
needed for the existence of a unique (in a neighborhood of the assigned Maxwellian)
solution of the problem are investigated. In the cases when the Mach number at the
Maxwellian at infinity is different of −1, 0 and 1 the number of conditions needed is
found. Ukai considered in ref. [9] the same problem for the discrete Boltzmann equa-
tion, in the case corresponding to the case when the Mach number at the Maxwellian
at infinity is less than −1 for the full Boltzmann equation. This result was generalized
by Kawashima and Nishibata in ref. [10], where they still considered inflow boundary
condition, and in ref. [11], for different boundary condition. However, Kawashima and
Nishibata still assumed some quite restrictive conditions in refs. [10] and [11].

This paper is organized as follows: In sect. 2, we introduce the planar stationary
discrete Boltzmann equation and review some of its properties. We also review, in Theo-
rem 1, the results in ref. [5] on the dimensions of the stable, unstable and center manifolds
of the system of ODEs. These results are used to investigate the number of additional
conditions needed to obtain well-posedness of the half-space problems in sect. 3. The
linearized problems are discussed in subsect. 3.1 based on results in ref. [6]. Here we
also present and briefly discuss the boundary conditions. The non-linear problems are
discussed in subsect. 3.2 based on results in ref. [7].

All results in this paper are valid for an arbitrary finite number of velocities. Similar
results can also be obtained for DVMs for mixtures. Existence of weak shock wave
solutions for the discrete Boltzmann equation has also been proved based on the same
ideas in ref. [12].

2. – Discrete Boltzmann equation

The planar stationary system for the discrete Boltzmann equation (DBE) reads

(1) B
dF

dx
= Q(F, F ),

where V = {ξ1, . . . , ξn} ⊂ Rd, with ξi = (ξ1
i , . . . , ξd

i ), is a finite set of velocities, B =
diag(ξ1

1 , . . . , ξ1
n), and F = (F1, . . . , Fn), with Fi = Fi(x) = F (x, ξi), and x ∈ R+. We

assume that ξ1
i �= 0, for i = 1, . . . , n.

For a function g = g(ξ) (possibly depending on more variables than ξ), we identify g
with its restrictions to the points ξ ∈ V, i.e. g = (g1, . . . , gn), with gi = g(ξi).

The collision operator Q(F, F ) in (1) is given by the bilinear expressions

(2) Qi(F, F ) =
n∑

j,k,l=1

Γkl
ij (FkFl − FiFj),

where it is assumed that the collision coefficients Γkl
ij satisfy the relations Γkl

ij = Γkl
ji =

Γij
kl ≥ 0, with equality unless the conservation laws

(3) ξi + ξj = ξk + ξl and |ξi|2 + |ξj |2 = |ξk|2 + |ξl|2

are satisfied (preservation of momentum and energy).
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We consider below (even if this restriction is not necessary in our general context) only
normal DVMs. That is, DVMs without spurious (or non-physical) collision invariants,
i.e. any collision invariant is of the form φ = a + b · ξ + c|ξ|2, for some constant a, c ∈ R
and b ∈ Rd. Methods of their construction are described in refs. [13,14] and [15].

For DVMs the Maxwellian distributions are of the form

(4) M = exp[φ] = A exp[b · ξ + c|ξ|2], with A = exp[a] > 0,

where φ is a collision invariant. The latter equality in eq. (4) is due to the assumption
of normal DVMs.

Given a Maxwellian M we denote

(5) F = M + M1/2f,

in eq. (1), and obtain

(6) B
df

dx
+ Lf = S(f, f),

where Lf = −2M−1/2Q(M,M1/2f), and S = S(f, f) = M−1/2Q(M1/2f,M1/2f). The
linearized collision operator (n × n matrix) L is symmetric and semi-positive, and the
null-space N(L) of L is (for normal DVMs) given by

(7) N(L) = span(M1/2,M1/2ξ1, . . . ,M1/2ξd,M1/2|ξ|2).

Furthermore, the quadratic part S(f, f) is orthogonal to N(L).
The diagonal matrix B is (under our assumptions) non-singular. If we denote f |x=0 =

f0, then we can rewrite eq. (6) as

(8) f(x) = exp[−xB−1L]f0 +
∫ x

0

exp[(σ − x)B−1L][S(f, f)](σ) dσ.

We now denote by n±, where n+ +n− = n, and m±, with m+ +m− = q, the numbers
of positive and negative eigenvalues (counted with multiplicity) of the matrices B and
B−1L respectively, and by m0 the number of zero eigenvalues of B−1L. Moreover, we
denote by k+, k−, and l the numbers of positive, negative, and zero eigenvalues of the
p×p matrix K (p = d+2 for normal DVMs), with entries kij = 〈yi, yj〉B = 〈yi, Byj〉, such
that {y1, . . . , yp} is a basis of the null-space of L, i.e. for normal DVMs span(y1, . . . , yp) =
N(L) = span(M1/2,M1/2ξ1, . . . ,M1/2ξd,M1/2|ξ|2). Here and below, we denote by 〈·, ·〉
the Euclidean scalar product on Rn and we also denote 〈·, ·〉B = 〈·, B·〉. Note that the
numbers k+, k−, and l do not depend on the specific choice of the basis {y1, . . . , yp}.

In applications, the number p of collision invariants is usually relatively small
compared to n (note that formally n = ∞ for the continuous Boltzmann equation
whereas p ≤ 5). Also, the matrix B is diagonal and therefore all its eigenvalues are
known. This explains the importance of the following result by Bobylev and Bernhoff in
ref. [5] (see also ref. [6]).
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Theorem 1. The numbers of positive, negative and zero eigenvalues of B−1L are given
by

(9)

⎧⎪⎨
⎪⎩

m+ = n+ − k+ − l,

m− = n− − k− − l,

m0 = p + l.

In the proof of Theorem 1 a basis

(10) u1, . . . , uq, y1, . . . , yk, z1, . . . , zl, w1, . . . , wl

of Rn, such that

yi, zr ∈ N(L), B−1Lwr = zr and B−1Luα = λαuα,(11a)
〈uα, uβ〉B = λαδαβ , with λ1, . . . , λm+ > 0 and λm++1, . . . , λq < 0,(11b)

〈yi, yj〉B = γiδij , with γ1, . . . , γk+ > 0 and γk++1, . . . , γk < 0,(11c)
〈uα, zr〉B = 〈uα, wr〉B = 〈uα, yi〉B = 〈wr, yi〉B = 〈zr, yi〉B = 0,(11d)

〈wr, ws〉B = 〈zr, zs〉B = 0 and 〈wr, zs〉B = δrs,(11e)

is constructed. Then for any h ∈ Rn, we obtain

(12) exp[−xB−1L]h =
k∑

i=1

μiyi +
l∑

j=1

((ηj − xαj)zj + αjwj) +
q∑

r=1

βr exp[−λrx]ur,

where μi = 〈h, yi〉B/〈yi, yi〉B , βr = 〈h, ur〉B/λr, αj = 〈h, zj〉B and ηj = 〈h,wj〉B .
For the continuous Boltzmann equation (with d = 3), if we have made the expan-

sion (5) around a non-drifting Maxwellian M = (ρ/(2πT )3/2) exp[−|ξ|2/2T ]: k+ =
k− = 1 and l = 3; and we can choose: y1 = (ξ1/

√
2T + |ξ|2/(

√
30T ))M1/2, y2 =

(−ξ1/
√

2T + |ξ|2/(
√

30T ))M1/2, z1 = (
√

5/2 − |ξ|2/(
√

10T ))M1/2, z2 = (ξ2/
√

T )M1/2,
z3 = (ξ3/

√
T )M1/2; and, at least up to an constant: wj = L−1ξ1zj .

3. – Half-space problems

3.1. Linearized problem. – First we consider the inhomogeneous (or homogeneous if
g = 0) linearized problem

(13) B
df

dx
+ Lf = g,

where g = g(x) ∈ L1(R+,Rn), with one of the boundary conditions

(O) the solution tends to zero at infinity, i.e. f(x) → 0 as x → ∞;

(P) the solution is bounded, i.e. |f(x)| < ∞ for all x ∈ R+;

(Q) the solution can be slowly increasing, i.e. |f(x)| exp[−εx] → 0 as x → ∞, for all
ε > 0;
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at infinity. The boundary condition (O) corresponds to the case when we have made the
expansion (5) around a Maxwellian M , such that F → M as x → ∞. The boundary
conditions (P) and (Q) are the boundary conditions in the Milne and Kramers problem,
respectively. In the case of boundary condition (O) at infinity we additionally assume
that

(14) g(x) ∈ N(L)⊥ for all x ∈ R+.

We can, without loss of generality, assume that

(15) B =
(

B+ 0
0 B−

)
,

where B+ = diag(ξ1
1 , . . . , ξ1

n+) and B− = −diag(ξ1
n++1, . . . , ξ

1
n), with ξ1

1 , . . . , ξ1
n+ > 0 and

ξ1
n++1, . . . , ξ

1
n < 0. We also define the projections R+ : Rn → Rn+

and R− : Rn → Rn−
,

by

(16) R+s = s+ = (s1, . . . , sn+) and R−s = s− = (sn++1, . . . , sn)

for s = (s1, . . . , sn).
The original boundary condition at x = 0

(17) F+(0) = C0F
−(0) + a0,

where C0 is a given n+ × n− matrix and a0 ∈ Rn+
, leads after the expansion (5) to the

general boundary condition

(18) f+(0) = Cf−(0) + h0,

where C = M
−1/2
+ C0M

1/2
− is an n+ × n− matrix and h0 = M

−1/2
+ (C0M

− −M+ + a0) ∈
Rn+

, with M
−1/2
+ = diag(M−1/2

1 , . . . ,M
−1/2
n+ ) and M

1/2
− = diag(M1/2

n++1, . . . ,M
1/2
n ), see

refs. [6] and [7]. We introduce the operator C : Rn → Rn+
, given by C = R+ − CR−.

In order to be able to obtain existence and uniqueness of solutions of the linearized
half-space problems, we will assume that the matrix C fulfills either the condition

(19) dim CU+ = m+, with U+ = span(u1, . . . , um+),

as we consider boundary condition (O) at infinity, or the condition

(20) dim CX+ = n+, with X+ = span(u1, . . . , um+ , y1, . . . , yk+ , z1, . . . , zl),

as we consider boundary condition (P) or (Q) at infinity.
If we assume inflow boundary condition, i.e. C0 = 0, then C = 0 and h0 = M

−1/2
+ (a0−

M+).
Let n− = n+. The discrete version of the Maxwell-type boundary conditions reads

(21) F+(0) = C0F
−(0), with C0 = (1 − α)I + αC0d, 0 ≤ α ≤ 1,
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where I is the identity matrix and C0d is the n+ ×n+ matrix, with the elements c0d,ij =
ξ1
n++jM0i/〈B−M−

0 , 1〉 for some Maxwellian M0. The cases α = 0 and α = 1 correspond
to specular and diffuse reflection, respectively. After the expansion (5), the Maxwell-type
boundary conditions read

f+(0)=CMf−(0)+h0, with CM =(1−α)M−1/2
+ M

1/2
− +αCd, 0 ≤α≤ 1,(22a)

h0 =M
−1/2
+ ((1 − α)M− + α(〈B−M−, 1〉/〈B−M−

0 , 1〉)M+
0 − M+),(22b)

where Cd is the matrix with the elements cd,ij = ξ1
n++jM

−1/2
i M

1/2
n++jM0i/〈B−M−

0 , 1〉,
see also refs. [6] and [7]. We have the following existence result from ref. [6].

Theorem 2. i) Assume that the conditions (14) and (19) are fulfilled and that

(23) h0, C exp[xB−1L]B−1g(x) ∈ CU+ for all x ∈ R+.

Then the system (13) with the boundary conditions (O) and (18) has a unique solution.
ii) Assume that the condition (20) is fulfilled. Then the system (13) with the boundary

conditions (Q) and (18) has a unique solution with the asymptotic flow

(24) fA(x) =
k∑

i=1

μiyi +
l∑

j=1

((ηj − xαj)zj + αjwj),

if the k− + l parameters μk++1, . . . , μk and α1, . . . , αl are prescribed.
If we assume boundary condition (P) instead of (Q), then we have to prescribe α1 =

. . . = αl = 0 above.

Especially, for the homogeneous system, where g = 0, condition (23) is reduced to
h0 ∈ CU+.

One can easily prove, see refs. [6] and [7], that condition (19) is fulfilled, if CT B+C ≤
B− on R−U+, and similarily that condition (20) is fulfilled, if CT B+C < B− on R−X+.
It follows immediately that if C = 0, then conditions (19) and (20) are fulfilled. Fur-
thermore, if we assume that n+ = n− and that we have a set of velocities V, such that
ξi+n+ = (−ξ1

i , . . . , ξd
i ), ξ1

i > 0, and that we have made the expansion (5) around a non-
drifting Maxwellian M , i.e. with b = 0 in eq. (4), then condition (19) is fulfilled for the
Maxwell-type boundary conditions, see ref. [6],

(25) f+(0) = CMf−(0), with CM = (1 − α)I + αC0d, 0 ≤ α ≤ 1,

where I is the identity matrix and C0d is the n+ × n+ matrix, with the elements cd,ij =
ξ1
j M

1/2
i M

1/2
j /〈B+M+, 1〉. Moreover, if α �= 0, then also condition (20) is fulfilled.

3.2. Weakly non-linear problem. – We now consider the full non-linear system

(26) B
df

dx
+ Lf = S(f, f),

where the solution tends to zero at infinity.
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We add, following the structure in [8] for the full Boltzmann equation, a damping
term −γP+

0 f to the right-hand side of the system (26) and obtain

(27) B
df

dx
+ Lf = S(f, f) − γP+

0 f,

where γ > 0 and P+
0 f =

∑k+

i=1(〈f(x), yi〉B/〈yi, yi〉B)yi +
∑l

j=1〈f(x), wj〉Bzj .
First we consider the corresponding linearized inhomogeneous system

(28) B
df

dx
+ Lf = g − γP+

0 f,

where g = g(x) : R+ → Rn is a given function such that g(x) ∈ N(L)⊥ for all x ∈ R+.
We can under the assumptions that condition (20) is fulfilled and that all necessary inte-
grals exist prove the existence of a unique solution to the system (28), with the boundary
conditions (O) and (18), see ref. [7]. Thereafter, we can use contraction mapping argu-
ments to prove the following result, see ref. [7].

Theorem 3. Let condition (20) be fulfilled. Then there is a positive number δ0, such that
if

(29) |h0| ≤ δ0,

then the system (27) with the boundary conditions (O) and (18) has a locally unique
solution f = f(x).

We can now note that, if 〈S(f, f), wj〉 = 0 for j = 1, . . . , l, then the solution of
Theorem 3 is a solution of the problem (26), (O), (18) if and only if P+

0 f(0) = 0.
Thereafter, we can use arguments similar to the ones in [8] for the continuous Boltzmann
equation to prove the following theorem, see ref. [7].

Theorem 4. Let condition (20) be fulfilled, and suppose that 〈S(f(x), f(x)), wj〉 = 0 for
j = 1, . . . , l, and that 〈h0, h0〉B+ is sufficiently small. Then with k+ + l conditions on h0,
the system (26) with the boundary conditions (O) and (18) has a locally unique solution.

We obtain implicit conditions on h0 and have, if l ≥ 1 (corresponding, in the contin-
uous case, to the case when the Mach number at the Maxwellian at infinity is 0 or ±1)
some quite restrictive conditions on the quadratic part. If we consider the system (26)
directly we can by using contraction mapping arguments obtain the following result, see
ref. [7].

Theorem 5. Let condition (19) be fulfilled and assume that

(30) h0, C exp[xB−1L]B−1S(f(x), f(x)) ∈ CU+

for all x ∈ R+, with U+ = span(u : Lu = λBu, λ > 0) = span(u1, . . . , um+). Then there
is a positive number δ0, such that if |h0| ≤ δ0, then the system (26) with the boundary
conditions (O) and (18) has a locally unique solution.
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Here we have k+ + l explicit conditions on h0, but also, if k+ + l ≥ 1 (corresponding,
in the continuous case, to the case when the Mach number at the Maxwellian at infinity
is ≥ −1), in general some restrictive conditions on the quadratic part (depending on
the matrix C and the DVM). However, these conditions can be better than the ones in
Theorem 4 if l ≥ 1.

These results extend, by both more general boundary conditions and more general
assumptions, previous results for the discrete Boltzmann equation by Ukai in ref. [9], and
Kawashima and Nishibata in refs. [10] and [11], and include also (for DVMs) the results
obtained by Ukai et al. in ref. [8] for the full Boltzmann equation, see ref. [7].

For a class of axially symmetric models, with some extra symmetry condition on the
collision coefficients, we can prove the following theorem, using Theorem 5, if we have
made the expansion (5) around a non-drifting Maxwellian M , see ref. [7].

Theorem 6. Let h0 ∈ (R+ − R−)U+, where U+ = span(u+
1 , . . . , u+

N−d−1). Then there
is a positive number δ0, such that if |h0| ≤ δ0, then the system (26) with the boundary
conditions (O) and (R+ − R−)f(0) = h0 has a locally unique solution f = f(x).

The same problem, for d = 2, has been studied by Babovsky in ref. [16], but then
under the quite restrictive condition 〈S(f, f), wi〉 = 0 for i = 1, 2. See also ref. [17] for
the continuous case.

All our results can be extended in a natural way, to yield also for singular matrices
B, if N(L) ∩ N(B) = {0}, see refs. [6] and [7].
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