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Summary. — Problems related to physical consistency and practical application
of kinetic BGK models for reactive mixtures are investigated. In particular, two
approximation strategies are discussed, relevant to the different physical scenarios
of slow and fast chemical reactions, respectively. The former is tested versus the
steady shock problem in comparison to available hydrodynamic results. For the
latter, allowing for an explicit proof of the H-theorem, a preliminary sample is
shown of the space homogeneous calculations in progress.

PACS 47.45.Ab – Kinetic theory of gases.
PACS 47.70.Fw – Chemically reactive flows.

1. – Introduction

Rarefied gas flows with chemical reactions arise in a wide range of applications, like for
instance combustion processes, shock and detonation waves, chemical reactors, and space
vehicles. Kinetic approaches [1] to the description of such problems, even though math-
ematically uneasy, represent a basis for a rigorous derivation of fluid-dynamic equations
and also for the correct treatment of fundamental issues, such as surface phenomena,
including evaporation/condensation and phase transition. Consequently, chemically re-
acting mixtures have been quite extensively dealt with from a kinetic point of view in
recent scientific literature [2]. We shall consider the physical frame of a four-component
gas mixture of species Ai, i = 1, . . . , 4, colliding among themselves and undergoing the
reversible bimolecular chemical reaction A1 + A2 � A3 + A4. The gap in the energies of
chemical bonds, ΔE = E3+E4−E1−E2, may be conventionally assumed to be positive.
The evolution of the four distribution functions f i(x,v, t) is governed, according to the
simplest model proposed in [3], by the set of nonlinear integro-differential Boltzmann-like
equations

(1)
∂f i

∂t
+ v · ∂f i

∂x
= Qi[f ] i = 1, . . . , 4,
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where f is the vector of the four distributions, and the collision operator Qi[f ] describes
the effects due to both elastic scattering and chemical reactions. The relevant fluid-
dynamic equations (Euler and Navier-Stokes), typically obtained by Chapman-Enskog
asymptotic expansion, crucially depend on the interplay of the orders of magnitude of
the various phenomena which are accounted for, and in particular on how fast is chemical
reaction with respect to mechanical scattering.

In any case, since reactive Boltzmann equations are quite heavy to deal with, it is
worth considering simpler models, suitable for practical applications, as for instance
relaxation approximations of BGK type. We shall adopt here the consistent model for
multi-component gases proposed in [4], which avoids all typical drawbacks encountered
when dealing with mixtures (see [5] and [4] itself for details and deeper discussion), and
is based on the idea of only one collision operator per species

(2)
∂f i

∂t
+ v · ∂f i

∂x
= νi(Mi − f i) = Q̃i, i = 1, . . . , 4,

where νi are v-independent collision frequencies and Mi are suitable Maxwellian attrac-
tors. In order to extend such strategy to the much more complicated reactive frame,
one must account for exchange of mass and of energy of chemical link, and has to build
up an algorithm which preserves positivity, indifferentiability (see again [4]), and also
reproduces the main features of the Boltzmann kinetic equations, like correct collision
invariants, collision equilibria, and entropy principle (H-theorem) [6]. Once more, like
for the hydro-dynamic limit, different BGK models should be devised according to the
characteristic time of the reaction, in order to describe adequately the regimes of slow [7]
and of fast [8] chemistry, respectively.

We briefly recall here the main features of the actual reactive Boltzmann equations.
The interested reader is referred to [9] for proofs and details. Collision invariants consti-
tute a seven-dimensional linear subspace of the continuous functions of v, and represent
three independent pairwise conservations of mass (e.g., for species (1, 3), (1, 4), (2, 4)),
conservation of momentum, and conservation of total (thermal plus chemical) internal en-
ergy. As a consequence, seven exact, but not closed, macroscopic conservation equations
hold, including chemical contributions to internal energy and heat flux, and involving
macroscopic observables, which are velocity moments of the distribution functions. An
extended version of Boltzmann’s lemma allows to determine collision equilibria as the
seven parameter family of local Maxwellians

(3) f i
M (v) = ni

(
mi

2πKT

)3/2

exp
[
− mi

2KT
(v − u)2

]
i = 1, . . . , 4

with u and T standing for mass velocity and temperature of the mixture, and where
number densities ni must be related by the mass action law

(4)
n1n2

n3n4
=

(
m1m2

m3m4

)3/2

exp
[
ΔE

KT

]
.

Another crucial property of the collision term Q is that we can introduce, in space
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homogeneous conditions, an H-functional

(5) H[f ] =
4∑

i=1

∫
R3

f i log
f i

(mi)3
dv

and prove an equivalent of the H-theorem, namely that H is a strict Lyapunov functional
for stability of equilibria (3), quantifying entropy principle and second law of thermody-
namics.

Relaxation time approximations for the above reactive setting have been introduced
in recent times: we may quote, without pretending to be exhaustive, the papers [10]
and [11]. We shall stick here, however, to the reactive extension of the line proposed
in [4], discussing two different algorithms that seem to be well suited for two separate
collision-dominated physical regimes: the first for slow chemical reactions (reactive time
much longer than mechanical one), and the second for fast chemical reactions (comparable
elastic and chemical characteristic times). This short paper is written at formal level and
is aimed at commenting on response and performance of the proposed models in different
physical scenarios.

2. – BGK model equations for slow reactions

In the case of slow chemistry, after a short initial transient on the elastic scale, dis-
tributions have approached a local mechanical equilibrium, and, in the hypothesis of
Maxwellian collision model, exchange rates of mass, momentum and kinetic energy for
each species (suitable weak forms of the corresponding collision integrals) may be ap-
proximated analytically in terms of the fundamental macroscopic fields [9]. Thus, one
is able to repeat, mutatis mutandis, the same steps as in [4], and to build up accord-
ingly a collision operator of the type (2). Specifically, the “attractors” Mi are fictitious
Maxwellians,

(6) Mi(v) = ni

(
mi

2πKTi

)3/2

exp
[
− mi

2KTi
(v − ui)2

]
,

where the word fictitious means that they are defined in terms of twenty auxiliary quan-
tities (ni,ui, Ti), which differ from the actual fundamental physical fields (ni,ui, T i),
power moments of the distribution functions f i, and constitute rather a set of disposable
parameters to be used for the purposes of the model itself. The idea is equating the
twenty exchange rates for mass, momentum and energy of each species, which may be
easily computed on using (6) into the BGK approximation (2) of the collision operator, to
the actual corresponding exchange rates for the true Boltzmann collision operator in (1),
available from [9]. In spite of the formidable machinery, the resulting twenty algebraic
equations can be solved uniquely for the auxiliary parameters, which eventually can be
cast in closed analytical form [6]. The resulting reactive BGK model can be shown to
fulfill all previously mentioned consistency requirements [4], and to retain most of the
essential features of the Boltzmann kinetic equations [6], in particular correct collision in-
variants, collision equilibria (3), and mass action law (4). The inverse relaxation times νi

can be estimated on the basis of a count of the average number of collisions actually
undergone by each species, thus by equating the velocity averaged kinetic loss terms at
Boltzmann and BGK level.
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As a test problem on which the performance of this model can be discussed, we choose
the classical one-dimensional steady shock wave problem

(7) v
∂f i

∂x
= νi(Mi − f i), i = 1, . . . , 4, lim

x→±∞
f i(x, v) = M i

±(v),

where x and v are the first components of position and velocity vectors, and where
M i

± denote families of equilibrium Maxwellians with upstream (−) and downstream
(+) parameters ni

±, u± (T± follow from mass action law). Such parameters are in a
one-to-one correspondence via the reactive Rankine-Hugoniot relations, and the entropy
inequality results in the expected condition Ma− > 1, where Ma− is the upstream
Mach number (shock speed), plus the requirement on the change of chemical composition
χ1

+ − χ1
− = χ2

+ − χ2
− = −(χ3

+ − χ3
−) = −(χ4

+ − χ4
−) < 0, where χi = ni/n are the

concentration fractions [12]. Notice that the reactive speed of sound is given by

(8) c = c0

{[
4∑

i=1

1
χi

+
2
5

(
ΔE

KT

)2
] / [

4∑
i=1

1
χi

+
2
3

(
ΔE

KT

)2
]}1/2

= α c0,

and is thus smaller than the inert shock speed c0 =
√

5nKT/(3ρ), where ρ is the total
mass density. This shock problem has been investigated in detail in [13], by a suitable
upwind finite difference scheme. An example of the results is given in fig. 1, which is
relevant to a physical situation where the microscopic mean reactive times are larger than
the mean elastic times by one order of magnitude. It shows the structure for the number
densities ni, with values of masses and of energies of chemical link corresponding to the
reaction NO+CO2 � NO2 +CO, for three different Mach numbers Ma−. It is apparent
how the very smooth, almost constant, profiles at low Ma− steepen for increasing Mach,
and present a slower tail downstream, sometimes with overshooting.

We want to discuss here such behavior, also in the light of the features of the proposed
algorithm. In fact the model is suitable for situations in which chemical relaxation is
much slower than mechanical relaxation and in regimes close to mechanical equilibrium,
as imposed by the option (6), and in agreement with the fact that in such regimes the
actual Boltzmann exchange rates are available. In conditions of this type, it is worth
to examine also the results of a simpler hydro-dynamic approach, based on a closure in
terms of mechanical equilibria, which are given again by (3), but without any additional
constraint, thus without mass action law. There results a set of hyperbolic balance laws,
with chemical source terms, which, for the steady shock problem, becomes an eight-
dimensional dynamical system, with seven conservation laws. This much easier problem
has been recently worked out in [14], to which we refer once more for technical details.
The essential difference with respect to the kinetic BGK approach is that one has to
consider two different cases, according to whether M0− < 1 < Ma− (1 < Ma− < 1/α−)
or M0− > 1 (Ma− > 1/α−), where M0− is the inert Mach number, always smaller
than the reactive one Ma−, as follows from (8). In the first quite restricted region (α−
is typically only slightly smaller than unity), a smooth solution exists, connecting the
asymptotic limits, in spite of the absence of viscosity and thermal conductivity, just
by dissipative effects of the reaction. Indeed, in this region of only slightly supersonic
Mach numbers, an inert shock structure does not exist, since M0− < 1. For Ma−
increasing and entering the second unbounded region only a weak solution exists, with
a jump discontinuity, whose edges are related to the singularity present in the vector
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Fig. 1. – Kinetic shock profiles of the number densities ni for three different Mach numbers:
Ma− = 2.470 (solid line), Ma− = 1.286 (dashed line), and Ma− = 1.023 (dot-dashed line).

field. In particular, the jump corresponds exactly to the discontinuity developed by the
hyperbolic conservation laws of the inert mixture (now the inert shock does exist), and
it is remarkable that only a constant trend is allowed ahead of the shock to join it to the
upstream state, whereas a smooth tail towards the downstream state follows the shock.
This tail joins together the downstream equilibria corresponding to the same upstream
equilibrium via the inert and the reactive Rankine-Hugoniot conditions, respectively.
All of the above features, encountered also in other macroscopic approaches [15], agree
very well with the structure shown in fig. 1. In fact, BGK results show a very fast
(but continuous) trend, corresponding to the transition that would occur if the mixture
were non-reactive, followed by a much smoother tail, in which the slow chemical process
drives the mixture itself towards the chemical equilibrium downstream, separating thus
in practice the fast from the slow relaxation. Presence or not of overshooting for a specific
quantity can be inferred from the comparison of the downstream/upstream differences
for the inert and the reactive case. The agreement between the kinetic BGK profiles for
number densities and the hydrodynamic results is shown by fig. 2, deduced from [14],
merely with jump discontinuities replacing the stiff, but yet continuous, kinetic wave
fronts. The different horizontal scales are due to different scalings when making equations
dimensionless.

3. – BGK model equations for fast reactions

The previous discussion shows how appropriate is the BGK model [6] in dealing with
slow chemical reactions. However, the need clearly emerges for an alternative relaxation
model, adequate for fast chemistry. The question has been addressed in a recent paper [8],
and a new idea has been proposed, whose developments are presently in progress. This
different strategy still resorts to (2), but the “attractor” is now defined by the new
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Fig. 2. – Discontinuous hydrodynamic shock profiles of the number densities ni for three different
Mach numbers: Ma− = 2.470 (solid line), Ma− = 1.286 (dashed line), and Ma− = 1.023 (dot-
dashed line).

fictitious Maxwellians

(9) Mi(v) = ñi

(
mi

2πKT̃

)3/2

exp
[
− mi

2KT̃
(v − ũ)2

]
,

with now only seven disposable parameters, ñi, ũ, T̃ , different again from the actual
fields, which must be bound together by the mass action law

(10)
ñ1ñ2

ñ3ñ4
=

(
m1m2

m3m4

)3/2

exp
[
ΔE

KT̃

]
.

The BGK operator drives then distribution functions towards a full (thermal and chem-
ical) equilibrium, as it seems appropriate when the mechanical and reactive mechanisms
have the same level of importance in driving the process. At this point, auxiliary param-
eters are determined in the standard way as in the pioneering papers on relaxation time
approximation in kinetic theory, namely pretending that Boltzmann and BGK collision
operators share “a priori” the same collision invariants

∫
(Q̃i + Q̃j) d3v = 0, (i, j) = (1, 3), (1, 4), (2, 4),(11)

4∑
i=1

∫
miv Q̃i d3v = 0,

4∑
i=1

∫ (
1
2
miv2 + Ei

)
Q̃i d3v = 0.
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Fig. 3. – Time evolution of the reduced distribution functions for double humped initial distri-
butions. (φ1: left top. φ2: right top. φ3: left bottom. φ4: right bottom.)

This leads to seven algebraic equations for the fictitious parameters, which can be worked
out to express all of them in terms of the actual fields and of ñ1, and then the procedure
is closed by enforcing the mass action law (10), yielding a transcendental equation for
the single unknown ñ1, which can be shown to possess a unique physical solution [8].

A positive feature of this second model is that it is not affected by any restriction on
differential cross-sections, which may have any dependence on relative speed, and may or
not exhibit thresholds for the exothermic reaction. Moreover, the model recovers by def-
initions the correct collision invariants and conservation equations, and it is easy to show
that also collision equilibria (3) with mass action law (4) are correctly reproduced. In
addition, in space homogeneous conditions, equilibrium parameters are uniquely defined
by initial conditions. However, the main new feature of this latter BGK model is proba-
bly the fact that it allows for an analytical proof of the H-theorem, a result that has not
been possible to achieve for the reactive models we are aware of so far (however, in most
cases, there is of course numerical evidence of it). This should provide an important tool
of investigation for future mathematical research. Indeed, the Lyapunov functional for
the present BGK equations is given by the actual Boltzmann H-functional (5), which,
in a space homogeneous setting, is known to have its minimum exactly at the unique
equilibrium compatible with the given initial conditions. Therefore, it suffices to prove
Boltzmann’s lemma, which follows from convexity

Ḣ[f ] =
4∑

i=1

∫
Q̃i[f ] log

f i

(mi)3
d3v

= −
4∑

i=1

νi

∫
(f i −Mi) log

f i

Mi
d3v < 0 ∀f �= f

M
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by virtue of the crucial identity

4∑
i=1

∫
Q̃i[f ] log

Mi[f ]
(mi)3

d3v = ν1(ñ1 − n1)

{
log

[
ñ1ñ2

ñ3ñ4

(
m3m4

m1m2

)3/2
]
− ΔE

KT̃

}
= 0 ∀f,

following in turn from the combined exploitation of conservation properties (11) and of
mass action law (10). Chemical equilibrium for the attractors is then a crucial ingredi-
ent in the proof, that was lacking for instance in [6] and [11]. Numerical applications
of these fast BGK equations are now in progress [16]. As a sample we report here in
fig. 3 on the space homogeneous relaxation problem towards the unique (mechanical and
chemical) equilibrium. The figure is relevant to a situation where chemical and mechan-
ical microscopic parameters are of the same order of magnitude. For a typical axially
symmetric problem, the reduced (namely, integrated over the transverse components of
velocity) distribution functions φi evolve from two-peaked initial distributions at differ-
ent densities, velocities, and temperatures towards Maxwellians at a common velocity
and a common temperature, with densities related by mass action law.
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