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Summary. — We present a rigorous formalism to describe the evolution of observ-
ables of quantum many-particle systems. We construct a solution of the initial-value
problem of the quantum dual BBGKY hierarchy of equations as an expansion over
particle clusters, whose evolution is governed by the corresponding-order cumulant
(semi-invariant) of the evolution operators of finitely many particles. For initial data
from the space of sequences of bounded operators the existence and uniqueness the-
orem is proved.

PACS 05.30.-d – Quantum statistical mechanics.
PACS 03.65.-w – Quantum mechanics.
PACS 05.20.Dd – Kinetic theory.

1. – Introduction

Evolution equations of quantum many-particle systems arise in many problems of
modern statistical mechanics [1-3]. In the theory of such equations, during the last
decade, many new results have been obtained, in particular concerning the fundamental
problem of the rigorous derivation of quantum kinetic equations [4-9].

A description of quantum many-particle systems can be formulated in terms of two
sets of objects: observables and states. The mean value defines a duality between observ-
ables and states and, as a consequence, there exist two approaches to the description of
the evolution. Usually the evolution of many-particle systems is described, in the frame-
work of the evolution of states, by the BBGKY hierarchy for marginal density operators,
which is equivalent to the von Neumann (quantum Liouville) equation for the density op-
erator in the case of finitely many particles. In the papers [5-9] a solution of the Cauchy
problem to the quantum BBGKY hierarchy is constructed in the form of iteration series
for initial data in the space of sequences of trace class operators. In [10, 11] for the
quantum BBGKY hierarchy (for the classical many-particle systems in [12]) a solution
is represented in the form of series over particle clusters, whose evolution is described
by the corresponding order cumulant (semi-invariant) of evolution operators of finitely
many particles. Using an analog of Duhamel formulas, such a solution expansion reduces
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to an iteration series, which is valid for a particular class of initial data and interaction
potentials. An equivalent approach for the description of many-particle system evolution
is given by the evolution of observables and by the dual BBGKY hierarchy. For classical
systems this approach is studied in the paper [13].

In this paper we deduce the initial-value problem to the quantum dual BBGKY hierar-
chy describing the evolution of observables of many-particle quantum systems, obeying
Maxwell-Boltzmann statistics and construct its solution in the form of an expansion
over clusters of the decreasing number of particles, whose evolution is governed by the
corresponding-order cumulant (semi-invariant) of groups of operators of finitely many
particles (groups of operators of the Heisenberg equations). We also discuss the problem
of the description of infinite-particle systems in the Heisenberg picture of evolution.

2. – The quantum dual BBGKY hierarchy

In order to describe the observables of quantum many-particle systems by the marginal
observables (s-particle observables) we study the evolution of the system by means of
the quantum dual BBGKY hierarchy.

2.1. The initial-value problem of the quantum dual BBGKY hierarchy. – Let the space
L(FH) be the space of sequences g = (I, g1, . . . , gn, . . .) of bounded operators gn (I is
a unit operator) defined on the Hilbert space Hn and satisfying symmetry property:
gn(1, . . . , n) = gn(i1, . . . , in), if {i1, . . . , in} ∈ {1, . . . , n}, with an operator norm [2, 14].
We will also consider a more general space Lγ(FH) with a norm

‖g‖Lγ(FH) = max
n≥0

γn

n!
‖gn‖L(Hn),

where 0 < γ < 1 and ‖ · ‖L(Hn) is an operator norm. An observable of many-particle
quantum system is a sequence of self-adjoint operators from Lγ(FH). The case of the
unbounded observables can be reduced to the case under consideration [15]. For exam-
ple, the Hamiltonian H =

⊕∞
n=0 Hn is defined on the subspace L2

0(R
3n) ⊂ L2(R3n) of

infinitely differentiable functions with compact support and the n-particle Hamiltonian
Hn acts according to the formula

(1) Hnψn = −�
2

2

n∑
i=1

Δqi
ψn +

n∑
k=1

n∑
i1<...<ik=1

Φ(k)(qi1 , . . . , qik
)ψn,

where h = 2π� is the Planck constant and Φ(k) is a k-body interaction potential satisfying
Kato conditions [2].

The evolution of marginal observables G(t) = (G0, G1(t, 1), . . . , Gs(t, 1, . . . , s), . . .) is
described by the initial-value problem for the following hierarchy of evolution equations:

d
dt

Gs(t, Y ) = Ns(Y )Gs(t, Y ) +(2)

+
s∑

n=1

1
n!

s∑
k=n+1

1
(k − n)!

s∑
j1 �=...�=jk=1

N (k)
int (j1, . . . , jk)Gs−n(t, Y \{j1, . . . , jn}),

Gs(t) |t=0= Gs(0), s ≥ 1,(3)
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where the following abridged notations are used: Y ≡ (1, . . . , s), Y \{j} ≡ (1, . . . , j−1, j+

1, . . . , s) = (1, . . . ,
j
∨, . . . , s), and, if g ∈ D(N ) ⊂ Lγ(FH), the von Neumann operator

N =
⊕∞

n=0 Nn is defined by the formula

(N g)n = − i

�
(gnHn − Hngn),

and the operator N (n)
int is defined by

(4) N (n)
int gn = − i

�

(
gnΦ(n) − Φ(n)gn

)
.

We refer to eqs. (2) as the quantum dual BBGKY hierarchy, since the canonical
BBGKY hierarchy [1] for marginal density operators is the dual hierarchy of evolution
equations to eqs. (2) with respect to bilinear form (positive continuous linear functional
on the space of observables, whose value is interpreted as its average value),

(5) 〈G(t)|F (0)〉 =
∞∑

s=0

1
s!

Tr1,...,s Gs(t, 1, . . . , s)Fs(0, 1, . . . , s),

where Fs(0), s ≥ 1, are marginal density operators (or s-particle density operators).
In the case of two-body interaction potential, hierarchy (2) has the form

(6)
d
dt

Gs(t, Y ) = Ns(Y )Gs(t, Y ) +
s∑

j1 �=j2=1

N (2)
int (j1, j2)Gs−1(t, Y \{j1}), s ≥ 1,

where the operator N (2)
int is defined by (4) for n = 2. For H = L2(R3n), the evolution of

kernels of operators Gs(t), s ≥ 1, for eqs. (6), is given by

i�
∂

∂t
Gs(t, q1, . . . , qs; q′1, . . . , q

′
s) =

(
− �

2

2

s∑
i=1

(−Δqi
+ Δq′

i
) +

+
s∑

1=i<j

(
Φ(2)(q′i − q′j) − Φ(2)(qi − qj)

))
Gs(t, q1, . . . , qs; q′1, . . . , q

′
s) +

+
s∑

1=i�=j

(
Φ(2)(q′i − q′j) − Φ(2)(qi − qj)

)
Gs−1

(
t, q1, . . . ,

j
∨, . . . , qs; q′1, . . . ,

j
∨, . . . , q′s

)
,

where (q1, . . . ,
j
∨, . . . , qs) ≡ (q1, . . . , qj−1, qj+1, . . . , qs). The dual BBGKY hierarchy for

a system of classical particles stated in [1, 13] is defined by similar recurrence evolution
equations.

The quantum dual BBGKY hierarchy (2) can be derived from the sequence of the
Heisenberg equations provided that observables of a system are described in terms of
marginal operators (s-particle observables) [13].

A different way of looking to the derivation of the quantum dual BBGKY hierar-
chy consists in the construction of adjoint (dual) equations to the quantum BBGKY
hierarchy [2] with respect to the bilinear form (5).
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2.2. Remarks. – In the paper [13], for classical systems of particles with a two-body
interaction potential, an equivalent representation for the dual hierarchy generator was
used. In the case under consideration, on the subspace D(B+) ⊂ Lγ(FH), its generator
has the following representation: B+ = N +[N , a+], where [·, ·] is a commutator and the
operator a+ is defined on the space Lγ(FH) (an analog of the creation operator) as follows:

(7) (a+g)s(Y ) =
s∑

j=1

gs−1(Y \{j}).

In a general case the generator of the quantum dual BBGKY hierarchy (2) can be
represented in the following form:

(8) B+ = N +
∞∑

n=1

1
n!

[. . . [N , a+], . . . , a+︸ ︷︷ ︸
n-times

] = e−a
+N ea

+
.

Representation (8) is correct in consequence of definition (7) of the operator a+ and the
validity of identity

([. . . [N , a+], . . . , a+︸ ︷︷ ︸
n-times

]
g
)
s

=
s∑

k=n+1

1
(k − n)!

s∑
j1 �=... �=jk=1

N (k)
int (j1, . . . , jk)gs−n,

which for a two-body interaction potential reduces to the following one: ([N , a+]g)s(Y ) =∑s
j1 �=j2=1 N

(2)
int (j1, j2)gs−1(Y \{j1}) (see eq. (6)).

3. – A solution of the initial-value problem of the quantum dual BBGKY
hierarchy

Further we will use some abridged notations: Y ≡ (1, . . . , s), Y \{j1, . . . , js−n} ≡
X, the set (Y \X)1 consists of one element from Y \X = (j1, . . . , js−n), i.e. the set
(j1, . . . , js−n) is a connected subset of the partition P (|P| = 1, |P| denotes the number
of considered partitions).

3.1. A solution expansion. – A solution of the initial-value problem of the quantum
dual BBGKY hierarchy (2), (3) is determined by the expansion (s ≥ 1)

(9) Gs(t, Y ) =
s∑

n=0

1
(s − n)!

s∑
j1 �=...�=js−n=1

A1+n

(
t, (Y \X)1,X

)
Gs−n(0, Y \X),

where the (1 + n)-th–order cumulant A1+n(t, (Y \X)1,X) is defined by the expression

(10) A1+n

(
t, (Y \X)1,X

)
=

∑
P:{(Y \X)1,X}=

S

i Xi

(−1)|P|−1(|P| − 1)!
∏

Xi⊂P

G|Xi|(t,Xi),

where
∑

P is the sum over all possible partitions P of the set {(Y \X)1, j1, . . . , js−n} into
|P| nonempty mutually disjoint subsets Xi ⊂ {(Y \X)1,X}, and

(11) Gn(t)gn = e
i
�

tHngne−
i
�

tHn

is the group of operators of the Heisenberg equation.
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3.2. A group of operators of the quantum dual BBGKY hierarchy . – On the space
Lγ(FH) solution (9) of the initial-value problem of the dual BBGKY hierarchy (2), (3)
is determined by a one-parameter mapping: R

1 
 t �→ U+(t)g

(12) (U+(t)g)s(Y ) :=
s∑

n=0

1
(s − n)!

s∑
j1 �=...�=js−n=1

A1+n

(
t, (Y \X)1,X

)
gs−n(Y \X)

with the following properties.
If g ∈ Lγ(FH) and γ < e−1, then the one-parameter mapping: R

1 
 t �→ U+(t)g is
a C∗

0 -group. The infinitesimal generator B+ =
⊕∞

n=0 B+
n of this group of operators is a

closed operator for the ∗-weak topology and on the domain of the definition D(B+) ⊂
Lγ(FH) which is the everywhere dense set for the ∗-weak topology of the space Lγ(FH)
it is defined by the operator

(B+g)s(Y ) = Ns(Y )gs(Y ) +(13)

+
s∑

n=1

1
n!

s∑
k=n+1

1
(k − n)!

s∑
j1 �=...�=jk=1

N (k)
int (j1, . . . , jk)gs−n(Y \{j1, . . . , jn}),

where the operator N (k)
int is given by (4).

If g ∈ Lγ(FH), mapping (12) is defined provided that γ < e−1 and that the following
estimate holds:

(14)
∥∥U+(t)g

∥∥
Lγ(FH)

≤ e2(1 − γe)−1‖g‖Lγ(FH).

On the space Lγ(FH) the ∗-weak continuity property of the group U+(t) over the
parameter t ∈ R

1 is a consequence of the ∗-weak continuity of the group G(t) of opera-
tors (11) of the Heisenberg equation.

In order to construct an infinitesimal generator of the group {U+(t)}t∈R we firstly
differentiate the n-th term of expansion (12) in the sense of the pointwise convergence of
the space Lγ . If g ∈ D(N ) ⊂ Lγ(FH), for (1+n)-th–order cumulant (10), n ≥ 1, we derive

lim
t→0

1
t

A1+n

(
t, (Y \X)1,X

)
gs−n(Y \X)ψs =

∑
Z⊂Y \X,

Z �=∅

N (|Z|+n)
int (Z,X)gs−n(Y \X)ψs =

=
s−n∑
k=1

1
k!

∑
i1 �=... �=ik∈{j1,...,js−n}

N (k+n)
int (i1, . . . , ik,X)gs−n(Y \X)ψs.

Then, according to this equality, for group (12) we obtain

lim
t→0

1
t

(
(U+(t)g)s − gs

)
ψs = lim

t→0

1
t

(
A1(t)gs − gs

)
ψs +

+
s∑

n=1

1
(s − n)!

s∑
j1 �=... �=js−n=1

lim
t→0

1
t

A1+n

(
t, (Y \X)1,X

)
gs−n(Y \X)ψs =

= Nsgsψs +
s∑

n=1

1
n!

s∑
k=n+1

1
(k − n)!

s∑
j1 �=... �=jk=1

N (k)
int (j1, . . . , jk)gs−n(Y \{j1, . . . , jn})ψs.
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Thus, if g ∈ D(B+) ⊂ Lγ(FH) in the sense of the ∗-weak convergence of the space
Lγ(FH) we finally have: w∗ − limt→0( 1

t (U
+(t)g − g) − B+g) = 0, where the generator

B+ =
⊕∞

n=0 B+
n of group of operators (12) is given by (13).

3.3. The existence and uniqueness theorem. – The following statement holds for ab-
stract initial-value problem (2), (3) on the space Lγ(FH).

A solution of the initial-value problem of the quantum dual BBGKY hierarchy (2), (3)
is determined by expansion (9). If G(0) ∈ D(B+) ⊂ Lγ(FH) it is a classical solution and
for arbitrary initial data G(0) ∈ Lγ(FH) it is a generalized solution.

Indeed, for the initial data G(0) ∈ D(B+) ⊂ Lγ(FH), sequence (9) is a classical
solution of initial-value problem (2), (3) in the sense of the ∗-weak convergence of the
space Lγ(FH).

Let us now show that in the general case G(0) ∈ Lγ(FH) expansions (9) give a general-
ized solution of the initial-value problem to the quantum dual BBGKY hierarchy (2), (3).
To this aim we consider the functional

(15) (f,G(t)) :=
∞∑

s=0

1
s!

Tr1,...,s fs Gs(t),

where f ∈ L1
α,0 is a finite sequence of the degenerate trace class operators with infinitely

times differentiable kernels and with compact support. According to estimate (14) this
functional exists provided that α = γ−1 > e (see sect. 4).

Using (9), we can transform functional (15) as follows:

(16) (f,G(t)) = (f, U+(t)G(0)) = (U(t)f,G(0)).

In this equality the group U+(t) is defined by expression (12) and U(t) is an adjoint
mapping to the group U+(t)

(17) (U(t)f)s(Y ) =
∞∑

n=0

1
n!

Trs+1,...,s+n A1+n(−t, Y1,X\Y )fs+n(X),

where X ≡ {1, . . . , s+n}, i.e. X\Y ≡ {s+1, . . . , s+n}. In expansion (17) the evolution
operator A1+n(−t, Y1,X\Y ) is the (1 + n)-th–order cumulant of group of operators (11)

A1+n(−t, Y1,X\Y ) =
∑

P: {Y1,X\Y }=
S

i Xi

(−1)|P|−1(|P| − 1)!
∏

Xi⊂P

G|Xi|(−t,Xi),

where
∑

P is the sum over all possible partitions P of the set {Y1,X \ Y } = {Y1, s +
1, . . . , s + n} into |P| nonempty mutually disjoint subsets Xi ⊂ {Y1,X \ Y }. If f ∈
L1

α,0, series (17) converges, provided that α > e [10] and the functional (U(t)f,G(0))
exists.

The one-parameter family of operators U(t) is differentiable with respect to t and for
f ∈ L1

α,0 an infinitesimal generator of group (17) is defined by the following expression:

(Bf)s(Y ) = −Ns(Y )fs(Y ) +(18)

+
s∑

k=1

1
k!

s∑
i1 �=...�=ik=1

∞∑
n=1

1
n!

Trs+1,...,s+n

(
−N (k+n)

int

)
(i1, . . . , ik,X\Y )fs+n(X).
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Since for bounded interaction potentials (1), if f ∈ L1
α,0, the operator BU(t)f is a

trace class operator, the operator BU(t)fG(0) is also a trace class operator then the
functional (BU(t)f,G(0)) exists. Moreover, there holds the equality: (BU(t)f,G(0)) =
(U(t)Bf,G(0)) and the following result:

lim
t→0

∣∣∣∣
(

1
t
(U(t) − I)f,G(0)

)
− (Bf,G(0))

∣∣∣∣= lim
t→0

∣∣∣∣ ∞∑
s=0

1
s!

Tr1,...,s

(
1
t
(U(t)f − f)sGs(0) −

−(Bf)sGs(0)
)∣∣∣∣ ≤ ‖G(0)‖Lγ(FH) lim

t→0

∥∥∥∥1
t
(U(t)f − f) − Bf

∥∥∥∥
L1

γ−1 (FH)

= 0.

Hence equality (16) can be differentiated with respect to time and we get finally

d
dt

(f,G(t)) =
(
U(t)Bf,G(0)

)
=

(
Bf, U+(t)G(0)

)
= (Bf,G(t)),

where the operator B is defined by (18). These equalities mean that the sequence
of operators (9) for arbitrary G(0) ∈ Lγ(FH) is a generalized solution of the Cauchy
problem to the quantum dual BBGKY hierarchy (2), (3).

3.4. The existence of the mean-value observable functional . – As it was above men-
tioned, the functional of the mean value (5) defines a duality between marginal observ-
ables and marginal states. If G(t) ∈ Lγ(FH) and F (0) ∈ L1

α, where L1
α is the space of

sequences of trace class operators defined in [10], then, according to estimate (14), the
functional (5) exists, provided that α = γ−1 > e, and the following estimate holds:

|〈G(t)|F (0)〉| ≤ e2(1 − γe)−1‖G(0)‖Lγ(FH)‖F (0)‖L1
γ−1 (FH).

Thus, marginal density operators from the space L1
α describe finitely many quantum

particles. Indeed, for such additive-type observable as the number of particles, i.e. one-
component sequence N(0) = (0, I, 0, . . .), according to definition of cumulants, the ex-
pansion for solution (9) assumes the following form:

(N(t))s(Y ) = As(t, 1, . . . , s)
s∑

j=1

I = Iδs,1, s ≥ 1,

and we have: |〈N(t)|F (0)〉| = |Tr1 F1(0, 1)| ≤ ‖F (0)‖L1
γ−1 (FH) < ∞.

Let us now remark that, if we try to extend our results to the description of infinitely
many particles [1], the problem of the definition of functional (5) arises. As a matter
of fact, marginal density operators have to belong to more general spaces than L1

α(FH).
For example, one could choose the space of sequences of bounded operators containing
the equilibrium states, but in this case every term of expansions for the mean-value
functional (5) contains the divergent traces [1,13,10] and the analysis of such a point for
quantum systems remains an open problem.

4. – Conclusion

The concept of cumulants of groups of operators of the Heisenberg equations or cumu-
lants of groups of operators of the von Neumann equations forms the basis of the groups
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of operators for quantum many-particle evolution equations as well as the quantum dual
BBGKY hierarchy (2) for marginal observables and the BBGKY hierarchy for marginal
density operators [10].

On the space Lγ(FH) one-parameter mapping (12) is not a strong continuous group.
The group {U+(t)}t∈R of operators (12) defined on the space Lγ(FH) is dual to the
strong continuous group {U(t)}t∈R of operators (17) for the BBGKY hierarchy defined
on the space of sequences of trace class operators L1

α(FH) and the property that it is a
C∗

0 -group follows also from general theorems about dual semigroups [14].

∗ ∗ ∗
This work was performed under the auspices of the National Group for Mathematical

Physics of the Istituto Nazionale di Alta Matematica and by Research Funds of the
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