
DOI 10.1393/ncc/i2010-10569-1

Colloquia: ICTT2009

IL NUOVO CIMENTO Vol. 33 C, N. 1 Gennaio-Febbraio 2010

Time-average and ergodic methods for the dynamics
of electron plasmas

G. Coppa(1)(∗), A. D’Angola(2) and R. Mulas(1)
(1) Politecnico di Torino - corso Duca degli Abruzzi 24, 10129 Torino, Italy
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Summary. — The paper deals with the dynamics of electrons confined by a two-
dimensional electrostatic field and by a constant magnetic field. The electrons un-
dergo collisions with neutral atoms, with frequency much smaller with respect to the
characteristic frequencies of the motion. In this situation, suitable time averages of
the trajectories can be introduced in order to simplify the analysis of the problem.
Two different approaches are described: 1) the time average of the trajectories and
2) the use of a suitable ergodic distribution. Results obtained with the two methods
are presented and discussed.

PACS 52.25.Dg – Plasma kinetic equations.
PACS 52.27.Jt – Nonneutral plasmas.
PACS 52.65.Pp – Monte Carlo methods.

1. – Introduction

In a previous work [1], some of the Authors studied the dynamics of the expansion
of spherical plasmas using a new method based on the time average of the trajectories,
instead of following exactly the electron motion; moreover, these averages were calcu-
lated by using an ergodic distribution for each particle (a discussion on the validity of the
method is reported in [2]). Comparisons with reference numerical simulations demon-
strated that the method provides accurate results in terms of energy spectrum and space
density distribution. For this reason, a similar technique is here proposed to study the
dynamics of an electron plasma [3, 4] in the presence of collisions with neutral atoms.
The final purpose of the research is investigating the effect of a very low-pressure gas
inside a Penning trap [3] used to confine an electron plasma. To show the effectiveness of
the method, a simple two-dimensional problem is considered, in which the electrostatic
potential (generated by the electrodes) is proportional to y2 − x2 and the self-consistent
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field is negligible. In addition, a constant magnetic field in y direction is present. In this
case, the canonical momentum pz is a constant of the motion and in the (x, y) domain
the particles move according to an effective potential U (x, y) = Ux(x) + Uy(y) + const;
as the motion is a simple composition of two oscillators along x and y directions, to
each electron can be associated a phase-space distribution depending on three param-
eters {pz, εx, εy}, where εx and εy represent the energies for the motion along x and y
directions. Alternatively, a simplified “ergodic” model can be used, in which to each par-
ticle is associated the distribution δ(m

2 (v2
x + v2

y) + U (x, y)− ε), ε being the total energy.
The assumption is rigorously correct in the presence of perturbations of the potential,
otherwise it represents a simplified description of the real physical system. In the last
section of the paper, results obtained with the two different approaches are presented
and discussed.

2. – Properties of the motion of the electrons

Between two successive collisions, the motion of a particle of charge q is governed by
the equations

(1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dvx

dt
= − q

m

∂Φ
∂x

− ωcvz,

dvy

dt
= − q

m

∂Φ
∂y

,

dvz

dt
= ωcvx,

where ωc = qB/(mc) is the Larmor frequency and Φ(x, y) is the electrostatic potential.
From the third equation (1), one obtains immediately vz = ωcx + const, which states
that the canonical momentum

(2) pz = m (vz − ωcx)

is a constant of the motion. Therefore vz can be eliminated from the first equation (1)
and the equations of the motion in the (x, y)-plane can be written as

(3)
dpx

dt
= −q

∂Φ
∂x

− mωc (ωcx + pz/m) ,
dpy

dt
= −q

∂Φ
∂y

.

By defining the effective potential, U , as

(4) U (x, y) = qΦ(x, y) +
1

2m
(mωcx + pz)

2
,

the equations of the motion can be deduced from the Hamiltonian

H (x, y, px, py) =
1

2m

(
p2

x + p2
y

)
+ U (x, y) =(5)

=
1

2m

[
p2

x + p2
y + (mωcx + pz)

2
]

+ qΦ(x, y) .
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As H does not depend explicitly on time, its value is a constant of the motion:

(6) H (x (t) , y (t) , px (t) , py (t)) = const = ε

and it coincides with the total energy of the electron in the potential field Φ. The level
curves for U (x, y) and Φ(x, y) have the following property: given a generic point (x0, y0),
if pz = −mωcx0, then the two curves Φ(x, y) = Φ(x0, y0) and U (x, y) = qΦ(x0, y0) are
tangent in (x0, y0). In fact, the tangent line to Φ = const is such that dΦ = 0 and
so ∂Φ

∂x dx + ∂Φ
∂y dy = 0, while the tangent line to U = const is such that 0 = dU =

dΦ + mωc(ωcx − ωcx0)dx, so, if x = x0, then dU = dΦ. Therefore the two lines have
the same equation. The property can be interpreted as follows: if (x0, y0) is a point of
the cathode and in this point an electron with zero velocity is emitted (px = py = 0,
pz = −mωcx0), then the electron moves in a part of the phase-space such that H =
qΦ(x0, y0) = U (x0, y0). Being H (x, y, px, py) ≥ U (x, y), the region of R

2 in which the
electron can be found must satisfy the condition

(7) U (x, y) < ε = U (x0, y0)

and it is delimited by the curve U (x, y) = U (x0, y0). In addition, if the curves
Φ(x, y) = Φ(x0, y0) and U (x, y) = U (x0, y0) were not tangent in (x0, y0), the region
of the motion, eq. (7), should have points in the region qΦ(x, y) > qΦ(x0, y0), but this is
impossible being

(8) ε = qΦ(x, y) +
1
2
mv2 = qΦ(x0, y0) ⇒ qΦ(x, y) < qΦ(x0, y0) .

In the following, a particularly simple potential is considered, i.e.

(9) qΦ(x, y) = a2
(
y2 − x2

)
.

This potential (which can be produced by using a pair of cathodes and a pair of anodes
having a hyperbolic shape [5]) confines the electron only in y direction. The presence of
a sufficiently strong magnetic field can confine the electron also in the x direction, as the
potential U assumes the form

(10) U (x, y) = Ux (x) + Uy (y) + εm (pz)

with

(11) Ux (x) = b2 (x − xm)2 , Uy (y) = a2y2, εm (pz) = − a2p2
z

2mb2

being b2 = mω2
c/2 − a2 and xm(pz) = −ωcpz/(2b2). The electron is confined in x, y

directions if b2 > 0, i.e. if |ωc| > a(2/m)1/2. From the Hamiltonian, eq. (10), uncoupled
equations of harmonic oscillators for the motion in x, y directions are obtained:

d2x

dt2
= −ω2

x (x − xm) , ωx = b

(
2
m

)1/2

,(12)

d2y

dt2
= −ω2

yy, ωy = a

(
2
m

)1/2

.
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Fig. 1. – Electron trajectories for the hyperbolic potential, eq. (9), for t ∈ [0, ti] with t1 < t2 � t3.
The ellipse U (x, y) = ε is also shown.

Therefore, the motion is confined in the rectangular region R ⊂ R
2 defined by

(13) R =

[
xm − ε

1/2
x

b
, xm +

ε
1/2
x

b

]
×

[
−ε

1/2
y

a
,
ε
1/2
y

a

]
,

where εx, εy are the energies associated to the oscillatory motion in x and y directions,
respectively (the total energy, ε, is simply given by ε = εx + εy + εm(pz)). If the ratio
between a and b is not a rational number, the trajectory covers totally the region R (as
shown in fig. 1). Figure 2 shows the elliptic region defined by eq. (7) and the correspond-
ing region R for an electron emitted by the cathode. According to the theory, the ellipse
is tangent to the cathode.

3. – Averaged densities and collision frequencies

In the physical situation here considered, the collision frequency is much smaller with
respect to the characteristic frequencies of the motion. Therefore, instead of calculating
the instantaneous position of the electron at each time instant, one can consider the
time average of the trajectory [6]. In terms of particle density the results obtained with
this technique are extremely accurate, as they differ from the real ones only because of
microfluctuations of the density (occurring on the time scale of the oscillation period)
and can be regarded as reference solutions for the problem. In the case of the separable
potential (11), one can express the time-averaged phase-space distribution associated to
the electron motion as

(14) fA (x,p) = C · δ
(

p2
x

2m
+ Ux (x) − εx

)
δ

(
p2

y

2m
+ Uy (y) − εy

)
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Fig. 2. – Curves Φ(x, y) = const in the region between the electrodes for the hyperbolic poten-
tial, eq. (9). The rectangular and elliptic regions show the support of density distributions ρA

and ρE , respectively, for an electron emitted from the cathode at x = x0.

(the constant C is such that
∫∫

fAdxdp = 1). From fA, the space density, ρA =
∫

fAdp,
can be factorized as

(15) ρA (x) = ρx (x) ρy (y)

being

ρx (x) =

⎧⎪⎨
⎪⎩

b

π

[
εx − b2 (x − xm)2

]−1/2

, |x − xm| <
ε
1/2
x

b

0, otherwise
(16)

ρy (y) =

⎧⎪⎨
⎪⎩

a

π

[
εy − a2y2

]−1/2
, |y| <

ε
1/2
y

a

0, otherwise.
(17)

Local concentrations of charge inside the device may behave like scattering centers. When
a Coulomb scattering event happens, the total energy ε is unchanged but with a different
distribution between εx and εy. The final effect of multiple scattering is creating an
ergodic distribution in the phase space. In this case, the correct time-averaged phase
space density is the following:

(18) fE (x,p) = C · δ
(

p2

2m
+ U (x) − ε

)

and the space distribution is given by

(19) ρE (x) =

⎧⎨
⎩

1
A (ε, pz)

, U (x) � ε

0, U (x) > ε
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A (ε, pz) =
∫

U (x,pz)≤ε
dx being the area of the permitted region of motion. From the

above introduced densities, the time-averaged collision frequencies can be calculated. The
instantaneous collision frequency for a single electron is ν(t) = v(t)σ(v(t))Na, Na being
the atom density and σ(v) the cross-section of the considered process. Instead, the
averaged frequency, ν̄, is given by

(20) ν̄ =
∫∫

vσ (v) Naf (x,p) dxdp

being v(ε,x) = [ 2
m (ε − qΦ(x))]1/2. In particular, using the ergodic distribution, fE , one

obtains

ν̄E (ε, pz) =
∫

dx
∫ +∞

0

vσ (v)NaCδ

(
p2

2m
+ U (x) − ε

)
2πpdp(21)

=
∫

v (ε,x) σ (v (ε,x)) NaρE (x; ε, pz) dx.

A similar result is obtained using the other distribution, fA; in fact, the time-averaged
frequency ν̄A(εx, εy, pz) is obtained from eq. (21) by replacing ρE with ρA.

4. – Effect of the collisions

When phenomena having time scales much larger than the ones characterizing the
electron motion are considered, each electron can be regarded not as a point particle
but as having a spatial charge distribution, according to eq. (15) or eq. (19), having
collision frequency provided by eq. (20). In this way, each electron is fully described by
indicating the set of its constants of the motion, {εx, εy, pz} or {ε, pz}. When an elastic
collision happens, the electron changes its parameters. If the collision has place in xP ,
the electron has velocity v(ε,xP ) and therefore the (density) probability of the event
is v(ε,xP )σel(v(ε,xP ))Na/ν̄el. By considering that the masses of the atoms are much
larger than the electron mass, after a collision the electron has velocity v′ = vΩ′, where
Ω′ is a random unit vector, and its trajectory is described by a set of new constants of
the motion, {ε′, p′z}, or {ε′x, ε′y, p′z}. More specifically

ε′ = ε, p′z = m (v′
z − ωcxP ) ,(22)

ε′y =
m

2
v

′2
y + a2y2

P , ε′x = ε − ε′y − εm (p′z) .

An ionization event may happen in xP (with density probability v(ε,xP )σi(v(ε,xP ))/ν̄i)
only if 1

2mv2(ε,xP ) is greater than the ionization energy, εi. In this case, one must
calculate the constants of motion of the primary (a) and secondary (b) electrons, as

(a) v′
a = (v2 − 2εi/m)1/2, v′

a = v′
aΩ

′,
ε′a = ε − εi, p′z,a = m(v′

z,a − ωcxP ),

ε′y,a =
m

2
(v′

y,a)2 + a2y2
P , ε′x,a = ε′a − εy,a − εm(p′z,a);

(b) v′
b = 0,

ε′b = qΦ(xP ), p′z,b = −mωcxP ,

ε′y,b = a2y2
P , ε′x,b = ε′b − ε′y,a − εm(p′z,b).
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Fig. 3. – Comparison between the charge distribution obtained using the ergodic technique
(based on the distribution ρE , upper part of the figure) and the time-averaged distribution
(based on the distribution ρA, lower part of the figure), after 3.4 ms from electrons injection.
Only elastic collisions are considered (νel = 3kHz).

5. – Numerical technique

The above presented theory suggests a possible numerical technique for studying the
dynamics of the electrons density due to collisions with neutral atoms. Initially, a set of
N computational particles is generated having zero velocity at different positions of the
cathode (in order to simulate the electron emission due to field effect) and the relative

Fig. 4. – Comparison of charge distributions after 0.68 ms when the anode is far from the region
of interest and the electrons are not removed. In the figure, the distribution obtained with the
ergodic technique is represented in the upper part, while the time-averaged distribution in the
lower part. Only elastic collisions are considered (νel = 3 kHz).
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set of 2N (for the ergodic technique) or 3N (for the time-average method) parameters
is calculated. Then, at each time step a subset of colliding particles is selected by using
a Monte Carlo technique. For each colliding electron, the type of collision (elastic or
ionization), the spatial position of the event and the new direction Ω′ are chosen. In this
way, the set of characteristic parameters of the set of computational particles is updated
at each time step, as described in sect. 4. If the anode intersects the region occupied by
the electron, then the particle is removed.

Typical results obtained with this method are presented in figs. 3 and 4. In fig. 3, the
charge density is shown for electrons emitted by the cathodes in the interval 0 < x < 1 mm
after a transient of 3.4 ms. A minimum difference between the (approximated) ergodic
method and the time-average method (which can be regarded as the reference result) can
be evidenced only in the region close to the anode, as the ergodic distribution occupies
a larger domain (as shown in fig. 2) and therefore the probability for an electron to be
absorbed by the anodes is greater. This fact is confirmed in fig. 4, where a similar case
is considered in which the anodes are far from the region of interest and consequently
the main cause of discrepancy between the two methods disappears.

The study here presented is simplified as the effect of the self-consistent electric field
is neglected. However, in principle this effect can be included into the calculation. In
particular, if the ergodic technique is employed, at each time step the self-consistent
potential must be recalculated, and the energies of the particle must be updated by
imposing the conservation of the ergodic invariant [1].
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