
DOI 10.1393/ncc/i2010-10576-2

Colloquia: ICTT2009

IL NUOVO CIMENTO Vol. 33 C, N. 1 Gennaio-Febbraio 2010

Solution of the one-velocity 2D and 3D source and criticality
problems by the Boundary Element-Response Matrix (BERM)
method in the A2-SP3

V. Giusti(1)(∗), B. Montagnini(1), G. G. M. Coppa(2) and S. Dulla(2)

(1) Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, Università di Pisa
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Summary. — The paper illustrates some applications of a variant of the simplified
spherical harmonics (SPN ) method, called AN , in order to solve 2D and 3D source
and criticality problems. The AN equations (here considered only for N = 2, which
corresponds to the SP3 approximation) are solved by means of a Boundary Element-
Response Matrix technique.

PACS 28.20.Gd – Neutron transport: diffusion and moderation.
PACS 28.41.Ak – Theory, design, and computerized simulation.

1. – Introduction

The purpose of this paper is to show some results obtained by the AN method, a
variant of the odd-order simplified spherical harmonics (SPN ) method. The AN method
is characterized, at least in the case of isotropic and linearly anisotropic scattering, by
a set of partial differential equations of the diffusion type, holding for general N , which
is simpler than the corresponding set of the SPN equations (actually, the AN equation
system is equivalent to the simplified spherical harmonics system of order 2N−1, whence
the name AN -SP2N−1 that will be also used for the method). A short sketch of some
main features of the AN method is given in sect. 2. To achieve a deeper understanding
of the subject the reader can refer, other than to the original papers illustrating the basic
idea [1,2], to papers [3] and [4], in which the full equivalence of AN and SP2N−1 method
is shown, together with other relevant results of the theory. The application of the
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Boundary Element-Response Matrix technique (BERM) [5,6] to solve the AN diffusion-
like equations (sect. 3) is also rather novel. It turns out that the BERM method ensures
both a remarkable accuracy and a good efficiency.

2. – The AN -SP2N−1

The AN method was initially proposed [1, 2] as a method for the solution of the
transport equation in simple geometrical configurations and was extended, later on, to
the class of the diffusing systems in which the total cross-section is everywhere constant,
in short “constant σ” systems [3,4]. What is here of a particular relevance is that AN is
equivalent, even for general space-dependent cross-sections, to the odd-order simplified
spherical harmonics, SP2N−1, method. Namely, if the scattering is isotropic, a suitable
diagonalization procedure allows to transform the one-velocity SP2N−1 equations into
the following AN differential system, which has the structure of a system of multigroup
diffusion equations with up-scattering:

∇ ·
(

μ2
α

Σt (�r)
∇ϕα (�r)

)
− Σt (�r)ϕα (�r) + Σs (�r)

N∑
β=1

wβϕβ (�r) + Q (�r) = 0(1)

(α = 1, . . . , N) .

Here, μi and wi for i = 1, . . . , N are the points and the weights of the N -th order Gauss-
Legendre integration formula, respectively, and the other symbols are the usual ones.
The “pseudo-fluxes” ϕα are simply related to the SP2N−1 moments of the angular flux.
In particular, the physical scalar flux φ0(�r) is

(2) φ0 (�r) =
N∑

α=1

wαϕα (�r) ,

while the physical current vector is

�J (�r) = �φ1 (�r) =
N∑

α=1

(
μ2

α

Σt (�r)
∇ϕα (�r)

)
.

A general formula is also obtained in the case of a linearly anisotropic scattering [7]. We
report, in this case, only the equations holding for a homogeneous region

μ2
α

Σt
Δφα (�r) − Σtφα (�r) + Σs

[
1 + 3

μ2
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Σt
μ̄0 (Σt − Σs)

] N∑
β=1

wβϕβ (�r) +(3)

+
(

1 − 3
μ2

α

Σt
μ̄0Σs

)
Q (�r) = 0 (α = 1, . . . , N) ,

where μ̄0 is the mean cosine of the scattering angle.
The AN diagonalized form of the SP2N−1 equations allows to investigate the higher-

order approximations very easily [4]. This is not devoid of interest, since, at least in the
special case of the above “constant σ” systems, the accuracy of the AN method can be
arbitrarily increased by letting N go to infinity.
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Of course, any multigroup diffusion problem solver can be applied to eqs. (1) or (3).
Here below we sketch one such method, the Boundary Element-Response Matrix method,
which, in this field, is now becoming a competitor of the finite-element methods.

3. – The Boundary Element-Response Matrix method

Considering the neutron diffusion equation in a homogeneous body V with a boundary
surface S,

(4) DΔφ (�r) − Σaφ (�r) + Q (�r) = 0, �r ∈ V,

a classical procedure of the boundary element theory leads to the following boundary
integral relationship:

c (�r) φ (�r) +
∫

S

[
D

∂φ̃

∂n′
S

(�r, �r ′
S) φ (�r ′

S) − φ̃ (�r, �r ′
S)

∂φ

∂n′
S

(�r ′
S)

]
dS (�r ) =(5)

= q̃ (�r) (α = 1, . . . , N) ,

where φ̃ is the infinite medium Green function,

φ̃ (�r, �r ′) =
exp [− |�r − �r ′| /L]

4πD |�r − �r ′|

with L =
√

D/Σa while q̃(�r) =
∫

V
φ̃(�r, �r ′)Q(�r ′)dV ′ is a new source term and c(�r) =∫

V
δ(�r − �r ′)dV ′, so that, by the properties of the δ function, c(�r) = 1, 0, 1

2 according to
�r is inside V , outside V or is coincident with a smooth point �rS of the boundary S (if
�rS is an edge or corner point, then c(�rS) = ΩS/4π, where ΩS is the angle of aperture
of the tangent cone at �rS). If we just take �r = �rS in eq. (5), this equation becomes a
relationship between φ(�rS) and ∂φ(�rS)

∂nS
.

If, for instance, ∂φ(�rS)
∂nS

is assigned on the boundary (which corresponds to a Neumann
boundary condition for eq. (4)), then we get a boundary integral equation for the re-
maining quantity, the boundary flux φ(�rS). Once the integral equation has been solved,
substitution of φ(�rS) and its normal derivative into eq. (5) allows to determine φ(�r) for
any �r in the interior of V , thus obtaining the complete solution of the problem.

The boundary integral equation can be also given in a partial current form. If the
partial currents

J± (�rS) =
1
4
φ (�rS) ∓ D

2
∂φ

∂nS
(�rS)

and the corresponding kernels

J̃± (�rS , �r ′
S) =

1
4
φ̃ (�rS , �r ′

S) ± D

2
∂φ̃

∂n′
S

(�rS , �r ′
S)
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are introduced, the integral equation reads

1
2
c (�rS) J+ (�rS) +

∫
S

J̃+ (�rS , �r ′
S) J+ (�r ′

S) dS′ =(6)

−1
2
c (�rS) J− (�rS) +

∫
S

J̃− (�rS , �r ′
S) J− (�r ′

S) dS′ +
1
4
q̃ (�rS) .

Let the partial current entering V , J−(�rS), be known, as well as the volume source.
Then the above equation yields the outward partial current, J+(�rS), i.e. the response
of the region V to the injected current. Equation (6) can be solved by means of either
a collocation method or a projection (or “weak”) procedure. According to the latter,
in the simple case of a 2D square region V , the partial currents J± are approximated,
along each side, by, e.g., a truncated Legendre polynomials expansion. After performing
a number of integrals involving the kernels J̃± and the Legendre polynomials, eq. (6) is
transformed into an algebraic linear system such as

M+J+ = M−J− + h,

where

J+ = RJ− + z

and R = [M+]−1 · M− is the response matrix of V and z = [M+]−1 · h a vector, which
represents the source term.

The extension of the above theory to a multigroup system of diffusion equations is
not difficult. A remark is in order as regards the void condition. It has been proven in [3]
(see also [1]) that the usual Mark or Marshak void conditions can be advantageously
replaced by an interface condition with a perfectly absorbing outer medium (a layer of a
few mean free paths, with the same total cross-section as the region facing the void and
the J− = 0 condition at its end will suffice). This kind of interface condition has been
used throughout all the examples here below.

4. – Application to multiregion systems

A reactor is usually represented as an array of cells, often coinciding with the homog-
enized fuel assemblies, or parts of them. The above boundary element method is applied
to each cell and the corresponding response matrix is calculated and stored. Then a
Response Matrix procedure [8] is applied, in order to connect the inward and outward
currents of the cells and arrive, finally, at the flux distribution over the whole system.

In the case of reactor criticality problems the source term is suppressed and the
response matrix of the cells containing a multiplying material involves the eigenvalue
parameter k. As k is a quantity referring to the global system, it is updated at the level
of an outer iteration cycle. When performing the “cell level” of the calculation k is kept
constant, with the value determined at the previous “reactor level” outer iteration step.

Of course nothing prevents from applying the above Boundary Element-Response
Matrix procedure, which was initially intended as a diffusion problem solver [5, 6] (a 3D
xyz version is in progress), also to the A2-SP3 problems. Here below we present some
one-group A2-SP3 examples, solved by the projection method.
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Fig. 1. – Scalar flux distribution along the horizontal cut y = 6.0 cm. Geometry and material
characteristics of the problem are also shown. Data from [9].

Fig. 2. – Scalar flux along y = 4.5 cm and estimates of the fundamental eigenvalue for the
2D one-group eigenvalue problem. Geometry and material characteristics are also shown. As
expected, the curves referring to the SP3 method and to the A2-SP3 method are overlapping
almost exactly. Data from [10].
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Fig. 3. – Scalar flux along y = 0.0 cm and estimates of the fundamental eigenvalue for the 2D
heterogeneous eigenvalue problem with anisotropic scattering. Geometry and material charac-
teristics are also shown. Data from [11].

The first example is a 2D problem considering a localized source and pure absorbers
in the source-free scattering region. Figure 1, in which the geometry and material char-
acteristics are also shown, compares the scalar flux distribution obtained by the A2-SP3

method in correspondence of y = 6.0 cm with the flux distributions reported in [9]. The
excellent agreement between the A2-SP3 and TWODANT(S16) results is evident. The
second example is a 2D one-group, isotropic scattering, eigenvalue problem. The com-
parison of the scalar flux distribution obtained by the A2-SP3 method with the results
reported in [10] is shown in fig. 2, together with the geometry and the material charac-
teristics. The agreement still turns out to be very good. Moreover, fig. 2 reports also the
estimate of the fundamental eigenvalue obtained by the different methods and, again, the
equivalence between the A2-SP3 and the SP3 methods is supported by the results. The
third example concerns a 2D heterogeneous eigenvalue problem with anisotropic scat-
tering. As for the foregoing examples, fig. 3 both shows the geometry and the material

Fig. 4. – Estimates of the fundamental eigenvalue for the 3D simplified reactor. Geometry and
material characteristics are also shown. Data from [12].
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characteristics of the problem and compares the scalar flux distribution in correspon-
dence of y = 0.0 cm as obtained by A2-SP3 method with the distributions resulting from
other methods, as reported in [11]. The last example is a one-group eigenvalue problem
for a 3D simplified reactor [12]. The calculated fundamental eigenvalue is shown in fig. 4,
together with the reactor geometry (thanks to the symmetry, only one-eighth of the core
needs to be modeled) and the material properties.

5. – Conclusion

If applied to the A2-SP3 equations, the Boundary Element-Response Matrix method
has been shown to yield satisfactory solutions of 2D and 3D source and criticality bench-
mark problems, both with isotropic and linearly anisotropic scattering. As expected,
the A2-SP3 calculations shown above turned out to be remarkably more accurate than
those based on diffusion (or P1) theory, with an increment of the computational burden
of only a factor two. With respect to the SPN equation system, AN has the advantage
of having a very simple structure. This could suggest increasing the calculation order
to, e.g., N = 3 or 4, at least for the diffusing systems in which the cross-sections (in
particular the total cross-section) do not undergo a very strong variation.
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