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Summary. — This paper shows that the spatially homogeneous Balescu-Guernsey-
Lenard kinetic equation is associated, at least formally, with a stochastic process
that arises naturally as the N → ∞ limit of a certain N -particle Hamiltonian sys-
tem. The process describes the long-time motion of a particle traveling in a Vlasov
fluctuation field. The Fokker-Planck equation for the process coincides with the
Balescu-Guernsey-Lenard equation whenever the solution is analytic in the velocity
variables, but should also be considered as a model in its own right.

PACS 05.20.Dd – Kinetic theory.
PACS 05.60.Cd – Classical transport.
PACS 52.25.Dg – Plasma kinetic equations.

1. – Introduction

At the time of its discovery in 1960 [1-3], the Balescu-Guernsey-Lenard (BGL) equa-
tion could reasonably have been expected to play in the theory of classical plasmas the
same central role that the Boltzmann equation has for (non-ionized) rarefied gases. Fifty
years later, it is fair to say that this has not been the case. Part of the reason lies in the
intrinsic limitations of the model, which neglects some important physical effects that
arise, for instance, in fusion plasmas [4]. But even in its natural field of application—
the transport theory of classical, non-turbulent plasmas—the BGL collision operator has
largely been sidelined [4] in favor of the simpler Landau operator [5]. Moreover, the
mathematical theory of the BGL equation is practically non-existant, even in the spa-
tially homogeneous case; only recently a rigorous study of the linearized BGL equation
has appeared [6].

Given the BGL collision term’s complicated, highly nonlinear structure, it seems likely
that progress will require not just studying the kinetic equation per se, but also under-
standing better the deterministic and/or stochastic N -particle models that lie “behind”
the BGL kernel. The present work outlines a novel derivation of the spatially homoge-
neous BGL equation from a N -particle dynamical system. The textbook derivations of
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the equation from microscopic dynamics are mathematically hard to control and phys-
ically not very transparent, based as they are on formal truncations of the BBGKY
hierarchy of non-equilibrium statistical mechanics. While still largely formal, the new
derivation shows (in the author’s opinion!) more potential than the traditional arguments
to lead, in the long run, to a rigorous justification of the BGL limit. It also suggests
a relatively simple probabilistic interpretation of the BGL equation as the (nonlinear)
Fokker-Planck equation for a “BGL stochastic process,” to be introduced in the first
section of the paper. The BGL process describes, loosely speaking, the random motion
of a particle under the long-time effects of the fluctuating force field about the Vlasov
dynamics (the Vlasov mean field itself being zero in the spatially homogeneous case).
The corresponding Fokker-Planck equation, presented in the second section, is actually
more general than the BGL equation; as shown in the third and last section, it takes the
BGL form if one can prove very strong regularity for the solutions (analiticity).

One should mention that the connection between the BGL equation and Vlasov fluc-
tuations has been long known to plasma physicists [7], but only in terms of formal
manipulations of the BBGKY hierarchy. Here, the link is given a more precise meaning
by the BGL stochastic process, whose definition relies on recent rigorous results on the
Central Limit Theorem for Vlasov fluctuations [8]. The idea of studying the long-time
dynamics in a fluctuating force field around a vanishing Vlasov mean value also has a
precedent in the physical literature, in a work by Piasecki and Szamel [9] who, however,
considered only the case of a “test” particle, not a system of N particles.

2. – Weak vs. mean scaling limits. The BGL process

Let Ω denote the box [−1, 1]⊗3. Each N -particle microstate is a random vector
(p1, . . . ,pN ,q1, . . . ,qN ) ≡ (P,Q) in R

3N × ΩN with permutation-symmetric probabil-
ity measure μ

(N)
τ . To (P,Q) corresponds(1) an “empirical density” EN (dp dq |P,Q) =

1
N

∑N
j=1 δ(p−pj)δ(q −qj), a normalized random measure on R

3 ×Ω. Let the dynamics
of the microstate be determined by the “weak” Newton equations

dqi

dτ
= pi,(1a)

dpi

dτ
= N

∫
R3×Ω

F (N(qi − q)) EN (dp dq |P, NQ),(1b)

where F = −∇U is the (rotationally symmetric) force between two particles. For the
sake of simplicity, we assume a periodic boundary and F ∈ C1

b(R
3). Then, F is globally

Lipschitz and the initial value problem is well-posed(2); the assumptions imply F (0) = 0.
If ΩN = [−N,N ]⊗3, consider also an auxiliary system of N particles with coordinates

(p1, . . . ,pN ,q1, . . . ,qN ) ≡ (P,Q) in R
3N ×ΩN

N that satisfy the “mean” Newton equations

dqi

dt
= pi,(2a)

dpi

dt
=

∫
R3×ΩN

F (qi − q) EN (dp dq |P,Q).(2b)

(1) The correspondence is one-to-one modulo permutations in the particles’ labels.
(2) Newton and Coulomb forces, of course, are not included unless they are suitably regularized.



FROM VLASOV FLUCTUATIONS TO THE BGL KINETIC EQUATION 113

For a given N the two sets of ODEs are related by the scaling transformations t = Nτ ,
Q = NQ. Thus, if the time evolution of (qi(t),pi(t)) is known, then (qi(τ),pi(τ)) =
(N−1qi(Nτ),pi(Nτ)). Similarly, the ensemble probability measure ν

(N)
t for the variables

(P,Q) is related to μ
(N)
τ by μ

(N)
τ = ν

(N)
Nτ . One can write eq. (1b) in integral form

pi(τ + δτ) − pi(τ) = N

∫ τ+δτ

τ

dτ ′
∫

R3×Ω

F (Nqi(τ
′) − Nq)EN (dp dq |P(τ ′), NQ(τ ′))

and change integration variables, τ ′ → t = N(τ ′ − τ) and q → Nq. Exploiting the
relationship [P(τ ′), NQ(τ ′)] = [P(t),Q(t)]—where the mean-field quantities [P,Q] still
satisfy eq. (2), but now with initial distribution ν

(N)
0 = μ

(N)
τ —yields

(3) pi(τ + δτ) − pi(τ) =
∫ Nδτ

0

dt

∫
R3×ΩN

F (qi(t) − q) EN (dp dq |P(t),Q(t)).

Now the right-hand side of eq. (2b) appears inside the t-integration: the change in
momentum pi w.r.t. the “slow” variable τ is simply obtained by integrating the mean-
field acceleration over a large time scale w.r.t. the “fast” variable t.

The N → ∞ scaling limit for the mean-field equations, eqs. (2), also known as Vlasov
limit, is mathematically well-understood [10-12], at least in the case of finite total mass.
Under our assumptions on F and suitable “chaoticity” hypotheses on ν

(N)
0 = μ

(N)
τ [10],

a law of large numbers holds and

(4) EN (dp dq |P(t),Q(t)) w→ νt(dp dq|μτ )

in probability, for t ∈ [0, T0], where νt is the (weak) solution to the Vlasov equation
determined by F with ν0 = μτ . Here we will focus on the spatially homogeneous case,
which unfortunately is not covered by the cited mathematical results because as the
domains ΩN expand to R

3 the total mass goes to infinity. Clearly, it would very desirable
to prove rigorously that the Vlasov limit holds also in this case. We expect that the
validity of eq. (4) will require that F decay at infinity at a suitable rate. Leaving that as
a problem for future study, for now we shall simply take eq. (4) as an assumption. Then,
spatial homogeneity ensures that at every t the average value of the mean-field force in
eq. (3) approaches zero as N → ∞ (hence the name “weak” for eqs. (1)). Since in the
same limit the t integration extends to infinity, the right-hand side of eq. (3) may still
tend to a finite value. “Next-order” information needs to be provided in the form of a
Central Limit Theorem for the fluctuations from mean field, which is also well established
for finite total mass [8, 10]. Again, it will be assumed (but should be proved!) that a
similar result holds for the spatially uniform, infinitely extended density νt, giving

(5)
√

N [EN (dp dq |P(t),Q(t)) − νt(dp dq|μτ )] w→ ζt(dp dq|μτ )

in the sense of finite-dimensional distributions. By analogy with the finite-mass case [8],
ζt will be taken to be a continuous functional on C1

c,0(R
6) ≡ {g ∈ C1

c(R
6) : 〈g, μτ 〉 = 0}

determined by the so-called Braun-Hepp integral equations [10]; under the hypothesis of
strong μτ -chaoticity [8] on μ

(N)
τ , ζ0 will be the Gaussian field on C1

c(R
6) with mean zero

and covariance 〈μτ , g h〉 for g, h ∈ C1
c,0(R

6).
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In order to exploit eq. (5), we write the right side of eq. (3) as

√
Nδτ

1
Nδτ

∫ Nδτ

0

dt

∫
R3×ΩN

F (qi(t) − q)
√

N [EN (dp dq |P(t),Q(t)) − νt(dp dq|μτ )]

(where, of course, νt contributes nothing to the integral). This formula is still exact;
what one would like to do is to take the double limit N → ∞, δt → 0 in order to obtain
an infinite-particle approximation to eqs. (1). Clearly, it is necessary that Nδt → ∞,
because otherwise the limit is trivially zero. Heuristically, one possible way to proceed
is by keeping the t-integration fixed at first and replacing the integrand with its limit as
N → ∞, i.e. the random force associated with the fluctuations from mean field

(6) Zt(q |μτ ) =
∫

R6
F (q − q′) ζt(dq′dp′|μτ ).

Here, the action of the functional ζt has been written as an integral to help intuition(3).
One can then pass to the limit in the time-average 1

Nδτ

∫ Nδτ

0
dt, and finally consider the

scaling limit as N → ∞ of the resulting ODEs. Obviously this is not the only plausible
infinite-particle approximation to eqs. (1)—for instance, the time-averaging could be
done last. However, the important (and difficult) problem of establishing rigorously the
correct limit will not be addressed here. Our more modest goal is to show that the
limiting procedure just described leads, at least formally, to the BGL equation.

With this in mind, let us now introduce a R
6-valued “BGL process” [p(τ),q(τ)] with

law μτ , τ ∈ [0, T ], as follows. Let ζ0(dp dq|μτ ) (to be written also more compactly as
ζ0(τ)) be the Gaussian process with index set C1

c,0(R
6) × [0, T ] and

E (〈ζ0(τ), g〉) = 0,(7a)

E (〈ζ0(σ), g〉 , 〈ζ0(τ), h〉) = 〈μτ , g h〉 δ(σ − τ)(7b)

for all g, h ∈ C1
c,0(R

6), σ, τ ∈ [0, T ]. Let ζt(dp dq|μτ ) be the Vlasov fluctuation field
at time t evolved from ζ0(dp dq|μτ ), and Zt(q |μτ ) the corresponding force field as in
eq. (6). Let ε ≡ 1/

√
N and let [pε(τ),qε(τ)] be the family of processes that satisfy

dqε

dτ
= pε,(8a)

dpε

dτ
=

1
ε

lim
T→∞

1
T

∫ T

0

dt Zt(ε−2qε + pεt |μτ )(8b)

with initial law μ0. Finally, let [p(τ),q(τ)] = limε→0 [pε(τ),qε(τ)]. Assuming that
this limit is well defined, as N → ∞ each particle is affected by the other particles
only through the law μτ , via Zt(q |μτ ), which suggests that the dynamics approaches a
Markovian limit. Of course, one needs to prove that the limiting process is mathemat-
ically well defined. A crucial question is whether μτ remains “linearly stable” in some
suitable sense that ensures that the time-average of the fluctuating force field in eq. (8b)

(3) This quantity will be well defined only for a suitable subspace of all the functionals on
C1

c(R
6) if F is not compactly supported.
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exists. If so, the weak-field limit ε → 0 could probably be established, e.g., along the lines
in [13] (with the complication that the right-hand side in eq. (8b) also depends on μτ ).
Here, however, the well-posedness of the BGL process will be simply taken for granted,
and the focus will be on the partial differential equation formally satisfied by μτ .

3. – The transport equation

According to well-known formulas [13-15] the BGL process is formally associated with
the nonlinear Fokker-Planck equation (in a weak sense)

(9) ∂τμτ = ∂p · [D(μτ )∂pμτ + V (μτ )μτ ]

with diffusion matrix

(10) D(μτ ) =
∫ τ

0

dσ
[
[E (Zt1(q + pt1 |μτ ) ⊗ Zt2(q + pt2 |μσ))]t1

]
t2

and drift vector

(11) V (μτ ) =
∫ τ

0

dσ
[
[E (∂p · Zt1(q + pt1 |μτ )Zt2(q + pt2 |μσ))]t1

]
t2

,

where we used the notation [f(t)]t = limT→∞
1
T

∫ T

0
f(t) dt.

At each given point q we can regard the fluctuating force field Zt(q |μτ ), eq. (6), as
the action

〈
ζt, gq

〉
of the functional ζt over a test function gq(p′, q′) ≡ F

(
q−q′). Under

the assumption that the Central Limit Theorem for Vlasov fluctuations [8, 10] can be
extended to an infinitely extended uniform distribution of particles, one has

(12) Zt(q |μτ ) =
∫

R6
TtF

(
q − q′) ζ0(dq′dp′|μτ ).

Here ζ0 is the “initial” (with respect to t) fluctuation field determined by μτ and Tt is
an appropriate propagation operator [8,10], which in our case (where F (q − q′) is just a
constant function of p′) takes the form

TtF (q − q′) = F (q − q′ − p′t)(13)

−
∫

R6
μτ (dp′′dq′′)K(t,p′′q′′,p′, q′|μτ ) · ∇F (q − q′′ − p′′t).

The kernel K is determined by the Braun-Hepp [10] linearized Newton equation

K̈(t,p, q,p′, q′|μτ )=F (q + pt−q′−p′t)(14)

−
∫

R6
μτ (dp′′dq′′)∇F (q+pt−q′′−p′′t) · K(t,p′′q′′,p′, q′|μτ )

whose unique solution can be easily obtained in series form.
Comparing the last three equations reveals an interesting identity:

(15) Zt(q + pt |μτ ) =
∫

R6
K̈(t,p, q,p′, q′|μτ ) ζ0(dq′dp′, μτ ).
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Substituting into eqs. (10), (11) and using eq. (7b) gives

D(μτ ) =

[[∫
R6

μτ (dp′dq′)K̈(t1,p,q,p′, q′|μτ ) ⊗ K̈(t2,p,q,p′, q′|μτ )
]

t1

]
t2

,(16)

V (μτ ) =

[[∫
R6

μτ (dp′dq′) ∂p · K̈(t1,p,q,p′, q′|μτ ) K̈(t2,p,q,p′, q′|μτ )
]

t1

]
t2

.(17)

Equation (14) can be reinterpreted as an integral equation for K̈:

K̈(t,p, q,p′, q′|μτ ) = F (q + pt − q′ − p′t)(18)

−
∫

R6
μτ (dp′′dq′′)∇F (q + pt − q′′ − p′′t) ·

∫ t

0

dt′ (t − t′)K̈(t′,p′′q′′,p′, q′|μτ ).

Solving for K̈ in series form and substituting into eqs. (16) and (17) determines the
diffusion and drift coefficients for the nonlinear Fokker-Planck equation (9).

4. – Balescu-Guernsey-Lenard form

We are now going to show that the transport equation, eq. (9) together with
eqs. (16), (17) and (18), coincides with the BGL equation in the special case when
μτ is so regular that the diffusion and drift coefficients can be obtained by solving
eq. (18) not in series form but rather in Fourier-Laplace variables. From now on, it
will be assumed that μτ is absolutely continuous w.r.t. Lebesgue with density fτ (p), i.e.
μτ (dp dq) = fτ (p)dp dq. Further, fτ will be taken to be analytic.

4.1. Fourier-Laplace solution. – Abusing the notation we use K̈ to indicate also its
integral transforms, changing only the arguments. Fourier transforming eq. (18) w.r.t. q

K̈(t,p,k,p′, q′|μτ ) = F̂ (k) eik·q′−ik·(p−p′)t(19)

+F̂ (k)
∫

R3
dp′′ fτ (p′′) e−ik·(p−p′′)t ik ·

∫ t

0

dt′ (t − t′)K̈(t′,p′′,k,p′, q′|μτ ).

Then, multiplying by eik·pt and taking the Laplace transform with respect to t yields

K̈(s − ik · p,p,k,p′, q′|μτ ) =
F̂ (k) eik·q′

s − ik · p′(20)

+F̂ (k)
∫

R3

fτ (p′′)dp′′

(s − ik · p′′)2
ik · K̈(s − ik · p′′,p′′,k,p′, q′|μτ )

from which it follows easily that

(21)
∫

R3

fτ (p′′)dp′′

(s − ik · p′′)2
ik · K̈(s − ik · p′′,p′′,k,p′, q′|μτ ) =

eik·q′

s − ik · p′
1 − ε(s,k|μτ )

ε(s,k|μτ )
,

where

(22) ε(s,k|μτ ) = 1 − ik · F̂ (k)
∫

R3

fτ (p′′)dp′′

(s − ik · p)2
.
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Substituting back into eq. (20) gives the solution

(23) K̈(s,p,k,p′, q′|μτ ) =
1

ε(s,k|μτ )
F̂ (k) eik·q′

s + ik · p − ik · p′ .

4.2. Diffusion matrix . – We use eq. (23) in eq. (16) and write

D(μτ ) =

[[∫
R3

dk1

8π3
e−ik1·q

∫
R3

dk2

8π3
e−ik2·q

∫
B1

ds1

2πi
e(s1−ik1·p)t1

∫
B2

ds2

2πi
e(s2−ik2·p)t2(24)

×
∫

R6
dp′dq′fτ (p′)

2⊗
j=1

1
ε(sj ,kj |μτ )

F̂ (kj) eikj ·q′

sj−ikj · p′

]
t1

]
t2

,

where B1 and B2 are suitable integration contours to be specified shortly. The
q′-integration produces a factor 8π3δ(k1 + k2), which in turn makes it possible to carry
out another integration. A standard manipulation leads to

D(μτ ) =
[[ ∫

R3

dk

8π3
e−ik·p(t1−t2)

∫
B1

ds1

2πi
es1t1

∫
B2

ds2

2πi
es2t2

F̂ (k) ⊗ F̂ (−k)
ε(s1,k |μτ )ε(s2,−k |μτ )

(25)

· 1
s1 + s2

∫
R3

dp fτ (p)
(

PV
1

s1 − ik · p + πiδ(s1 − ik · p)

+ PV
1

s2 + ik · p + πiδ(s2 + ik · p)
) ]

t1

]
t2

.

Here, we abused the notation by using ε(s,k |μτ ) to indicate not the function in eq. (22)
but rather its analytic continuation à la Landau. Under the traditional assumption [1-3]
that fτ (p) is “linearly stable”, all zeroes of the Landau dielectric function ε(s,k |μτ )
have negative real parts, and the integration contours B1 and B2 for the inverse Laplace
transforms can be taken to coincide with the imaginary axis. Accordingly, the integrals
in dp also have been analytically continued by adding the necessary delta-functions and
interpreting the singular integrals as principal values. In calculating the inverse Laplace
transforms, all the contributions from the poles with negative real parts cancel under the
action of the time averages. Hence, for the integral in ds2 one only need consider the
imaginary pole s2 = −s1. The residue calculation is trivial and leads to the cancellation
of the principal values, whereas the delta terms add leaving

D(μτ ) =
[[ ∫

R3

dk

8π3
e−ik·p(t1−t2)

∫
B1

ds1 es1(t1−t2)
F̂ (k) ⊗ F̂ (−k)

ε(s1,k |μτ ) ε(−s1,−k |μτ )
(26)

∫
R3

dp fτ (p) δ(s1 − ik · p)
]

t1

]
t2

.

Exchanging orders of integration, integrating in ds1 and using the symmetries of the
functions F and ε yields

(27) D(μτ ) =

[[∫
R3

dk

8π3

∫
R3

dp fτ (p) eik·(p−p)(t1−t2)
F̂ (k) ⊗ F̂ (k)

|ε(ik · p,k |μτ )|2

]
t1

]
t2

.
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Finally, by calculating the time-averages we get the BGL expression

(28) D(μτ ) =
∫

R3

dk

8π3

∫
R3

dp fτ (p)
F̂ (k) ⊗ F̂ (k)

|ε(ik · p,k |μτ )|2 δ(ik · p − ik · p).

4.3. Drift vector . – Following the exact same steps as in the calculation of the diffusion
matrix leads from eq. (17) to

(29) V (μτ ) =

[[∫
R3

dk

8π3

∫
R3

dp fτ (p)(−ikt1)eik·(p−p)(t1−t2) · F̂ (k) ⊗ F̂ (k)
|ε(ik · p,k |μτ )|2

]
t1

]
t2

.

Carrying out the average in t2 shows that also in this case for each k the dp integration
must be restricted to the plane L = {p ∈ R

3 : ik · p − ik · p = 0}, leaving

(30) V (μτ ) =

[∫
R3

dk

8π3

∫
L

dp fτ (p)
de

dp

ik·(p−p)t1

· F̂ (k) ⊗ F̂ (k)
|ε(ik · p,k |μτ )|2

]
t1

.

Then, an integration by parts (on L) gives the BGL drift vector

(31) V (μτ ) = −
∫

R3

dk

8π3

∫
R3

dp
∂fτ

∂p
· F̂ (k) ⊗ F̂ (k)
|ε(ik · p,k |μτ )|2 δ(ik · p − ik · p).

5. – Concluding remarks

Even though the BGL equation is commonly described [4] as a “collisional” model,
the present discussion shows rather clearly that there is nothing “binary” about the BGL
kernel, since it describes diffusion in phase space due to the long-term collective effect
of fluctuations around the Vlasov limit. Only time will tell if it is feasible to turn this
formal link into a rigorous justification of the BGL equation from N -particle dynamics.
For the time being, it should be pointed out that eq. (9)—together with eqs. (16), (17)
and (18)—poses an interesting mathematical problem in its own right. In a sense, this
“generalized” model takes logical precedence on the BGL equation itself—since the latter
has been shown to be a special case associated with highly regular (analytic) solutions.
A detailed study of its properties will be a worthy project for the future.
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