Interaction of a glow discharge with an ion beam

B. Lucquin-Desreux

Lab. J.-L. Lions, CNRS UMR 7598, Université Pierre et Marie Curie
4 Place Jussieu, 75252 Paris Cedex 05, France
(ricevuto il 23 Ottobre 2009; approvato il 15 Gennaio 2010; pubblicato online il 5 Marzo 2010)

Summary. - The aim is to derive a fluid model, of hydrodynamic/diffusion type, describing the interaction of a glow discharge with an ion beam at atmospheric pressure.
PACS 52.40.Mj - Particle beam interactions in plasmas.
PACS 41.75.Ak - Positive-ion beams.
PACS 52.20.Hv - Atomic, molecular, ion, and heavy-particle collisions.
PACS 52.80.-s - Electric discharges.

1. - Introduction

We intend to continue the study of macroscopic models for partially ionized plasmas at atmospherique pressure, that we started in [1] and completed in [2,3], covering a wide range of discharges, such as thermal arc discharges, glow discharges, etc. We refer to the above references for a precise description of the physical context. The aim here is to modelize the interaction of an ion beam with a glow discharge.

2. - The scaled kinetic system

21. The kinetic collisional model. - The plasma we consider is a mixture made of electrons (e), ions (i) and neutrals (n), which interact all together through elastic and inelastic collisions. Denoting by $f_{\alpha}(\alpha=e, i, n)$ the distribution function of the α species, the kinetic collisional system modelling this mixture is given by [1]

$$
\begin{equation*}
\partial_{t} f_{\alpha}+v_{\alpha} \cdot \nabla_{x} f_{\alpha}+\frac{F_{\alpha}}{m_{\alpha}} \cdot \nabla_{v_{\alpha}} f_{\alpha}=\left(\partial_{t} f_{\alpha}\right)_{c} \tag{1}
\end{equation*}
$$

where m_{α} is the mass of the α species and F_{α} the force term; moreover, we have

$$
\left(\partial_{t} f_{\alpha}\right)_{c}=Q_{\alpha \alpha}\left(f_{\alpha}, f_{\alpha}\right)+Q_{\alpha \beta}\left(f_{\alpha}, f_{\beta}\right)+Q_{\alpha \gamma}\left(f_{\alpha}, f_{\gamma}\right)+Q_{\alpha, i r}\left(f_{\alpha}, f_{\beta}, f_{\gamma}\right)
$$

where $\alpha, \beta, \gamma=e, i, n$ with $\alpha \neq \beta \neq \gamma \neq \alpha$. The three first terms represent the elastic collisions of a particle of the α species with the particles of the three species; the operators are classical Landau-Fokker-Planck operators if the two species involved in the collisional process are both charged particles and is of Boltzmann type otherwise [4]. The ionizationrecombination operators are of the following form (see [1] for details):

$$
\begin{align*}
Q_{e, i r}\left(f_{e}, f_{i}, f_{n}\right)\left(v_{e}\right)= & \int_{\mathbb{R}^{12}} \sigma^{r} \delta_{v} \delta_{\mathcal{E}}\left(f_{e^{\prime}} f_{e^{\star}} f_{i}-\mathcal{F}_{0} f_{e} f_{n}\right) \mathrm{d} v_{e}^{\prime} \mathrm{d} v_{e}^{\star} \mathrm{d} v_{i} \mathrm{~d} v_{n} \tag{2a}\\
& +2 \int_{\mathbb{R}^{12}} \sigma^{r \prime} \delta_{v^{\prime}} \delta_{\mathcal{E}^{\prime}}\left(\mathcal{F}_{0} f_{e^{\prime}} f_{n}-f_{e} f_{e^{\star}} f_{i}\right) \mathrm{d} v_{e}^{\prime} \mathrm{d} v_{e}^{\star} \mathrm{d} v_{i} \mathrm{~d} v_{n} \\
Q_{i, i r}\left(f_{e}, f_{i}, f_{n}\right)\left(v_{i}\right)= & \int_{\mathbb{R}^{12}} \sigma^{r} \delta_{v} \delta_{\mathcal{E}}\left(\mathcal{F}_{0} f_{e} f_{n}-f_{e^{\prime}} f_{e^{\star}} f_{i}\right) \mathrm{d} v_{e} \mathrm{~d} v_{e}^{\prime} \mathrm{d} v_{e}^{\star} \mathrm{d} v_{n} \tag{2b}\\
Q_{n, i r}\left(f_{e}, f_{i}, f_{n}\right)\left(v_{n}\right)= & \int_{\mathbb{R}^{12}} \sigma^{r} \delta_{v} \delta_{\mathcal{E}}\left(f_{e^{\prime}} f_{e^{\star}} f_{i}-\mathcal{F}_{0} f_{e} f_{n}\right) \mathrm{d} v_{e} \mathrm{~d} v_{e}^{\prime} \mathrm{d} v_{e}^{\star} \mathrm{d} v_{i}
\end{align*}
$$

In particular, \mathcal{F}_{0} is a positive constant, which represents the efficiency of the dissociation with respect to the recombination and the notations $\delta_{\mathcal{E}}$ and δ_{v} hold for the energy and momentum conservation during this inelastic collisional process, i.e.

$$
\begin{aligned}
\delta_{\mathcal{E}} & =\delta\left(m_{e}\left|v_{e}\right|^{2}+m_{n}\left|v_{n}\right|^{2}-\left[m_{e}\left(\left|v_{e}^{\prime}\right|^{2}+\left|v_{e}^{\star}\right|^{2}\right)+m_{i}\left|v_{i}\right|^{2}+2 \Delta\right]\right) \\
\delta_{v} & =\delta\left(m_{e} v_{e}+m_{n} v_{n}-\left[m_{e}\left(v_{e}^{\prime}+v_{e}^{\star}\right)+m_{i} v_{i}\right]\right)
\end{aligned}
$$

where δ denotes the Dirac measure, and Δ the ionization energy.
2.2 . The diffusion scaling. - Let us first describe the physical scalings. We first have a small parameter ε representing the mass ratio defined by

$$
\varepsilon=\sqrt{\frac{m_{e}}{m_{n}}}=\sqrt{\frac{m_{e}}{m_{i}+m_{e}}} \ll 1 .
$$

We suppose that the temperature of the three species are of the same order of magnitude T_{0}, and define the characteristic velocities $\left(v_{\alpha}\right)_{0}$ as the respective thermal velocities, i.e.

$$
\left(v_{\alpha}\right)_{0}=\sqrt{\frac{k_{B} T_{0}}{m_{\alpha}}}, \quad \text { for } \quad \alpha=e, i, n
$$

k_{B} being the Boltzmann constant. Consequently, these velocities only depend on the masses, and more precisely we have: $\left(v_{n}\right)_{0}=\sqrt{1-\varepsilon^{2}}\left(v_{i}\right)_{0}=\varepsilon\left(v_{e}\right)_{0}$. We denote by δ_{e} and δ_{i} the two small paremeters defined by

$$
\delta_{e}=\frac{\left(\rho_{e}\right)_{0}}{\left(\rho_{n}\right)_{0}}, \quad \delta_{i}=\frac{\left(\rho_{i}\right)_{0}}{\left(\rho_{n}\right)_{0}}
$$

For a glow discharge, we typically have $\delta_{e}=\delta_{i}=\varepsilon^{2}$. Here, in order to modelize the interaction of an ion beam with a glow discharge, we set: $\delta_{e}=\varepsilon^{2}$ and $\delta_{i}=\varepsilon$. We choose $x_{0}=t_{0}\left(v_{e}\right)_{0}$ as reference length, the reference time t_{0} being the smallest time scale defined by: $t_{0}=\tau_{e n}=\delta_{i} \tau_{e e}=\delta_{i} \tau_{i r}\left(\tau_{\alpha \beta}\right.$ denoting the characteristic collision time
of a particle of the α species againts the β one and $\tau_{i r}$ the characteristic time of inelastic collisions). Last, we choose a force field unit F_{0} such that $F_{0} x_{0}=k_{B} T_{0}$. At the electronic diffusion scale $\left(t \rightarrow \varepsilon^{2} t, x \rightarrow \varepsilon x\right)$, the dimensionless kinetic system then writes

$$
\begin{align*}
\partial_{t} f_{e}+\frac{1}{\varepsilon}\left(v_{e} \cdot \nabla_{x}+F_{e} \cdot \nabla_{v_{e}}\right) f_{e}= & \frac{1}{\varepsilon^{2}}\left[Q_{e n}^{\varepsilon}\left(f_{e}, f_{n}\right)+Q_{e i}^{\varepsilon}\left(f_{e}, f_{i}\right)\right] \tag{3a}\\
& +\frac{1}{\varepsilon}\left[Q_{e, i r}^{\varepsilon}\left(f_{e}, f_{i}, f_{n}\right)+Q_{e e}\left(f_{e}, f_{e}\right)\right] \\
\partial_{t} f_{i}+\frac{1}{\sqrt{1-\varepsilon^{2}}}\left(v_{i} \cdot \nabla_{x}+F_{i} \cdot \nabla_{v_{i}}\right) f_{i}= & \frac{1}{\varepsilon \sqrt{1-\varepsilon^{2}}}\left[Q_{i n}^{\varepsilon}\left(f_{i}, f_{n}\right)+Q_{i i}\left(f_{i}, f_{i}\right)\right] \tag{3b}\\
& +Q_{i, i r}^{\varepsilon}\left(f_{e}, f_{i}, f_{n}\right)+Q_{i e}^{\varepsilon}\left(f_{i}, f_{e}\right), \\
\left(\partial_{t}+v_{n} \cdot \nabla_{x}+F_{n} \cdot \nabla_{v_{n}}\right) f_{n}= & \frac{1}{\varepsilon} Q_{n n}\left(f_{n}, f_{n}\right)+\frac{1}{\sqrt{1-\varepsilon^{2}}} Q_{n i}^{\varepsilon}\left(f_{n}, f_{i}\right) \tag{3c}\\
& +\varepsilon\left[Q_{n, i r}^{\varepsilon}\left(f_{e}, f_{i}, f_{n}\right)+Q_{n e}^{\varepsilon}\left(f_{n}, f_{e}\right)\right]
\end{align*}
$$

where all the collision operators, except the intra species one, depend on ε.

3. - The coupled fluid model for the mixture

We use a classical Hilbert method by expanding each distribution function f^{α} in terms of $\varepsilon\left(f_{\alpha}=f_{\alpha}^{0}+\varepsilon f_{\alpha}^{1}+\ldots\right)$, but also each collision operator (see Lemma A.1) and identifying terms of equal power in each side of the equations in the above kinetic system.
3.1. The equilibrium states. - We start with the identification of the lowest-order terms, in order to derive the three equilibrium states. We find in fact

$$
\begin{align*}
Q_{e n}^{0}\left(f_{e}^{0}, f_{n}^{0}\right)+Q_{e i}^{0}\left(f_{e}^{0}, f_{i}^{0}\right) & =0 \tag{4a}\\
Q_{i n}^{0}\left(f_{i}^{0}, f_{n}^{0}\right)+Q_{i i}\left(f_{i}^{0}, f_{i}^{0}\right) & =0 \tag{4b}\\
Q_{n n}\left(f_{n}^{0}, f_{n}^{0}\right) & =0 \tag{4c}
\end{align*}
$$

We get from (4c) that $f_{n}^{0}=\rho_{n} M_{u, T}$ is a classical Maxwellian of density ρ_{n}, while we easily deduce from (4b) that $f_{i}^{0}=\rho_{i} M_{u, T}$ is also a Maxwellian that shares with f_{n}^{0} the same mean velocity u and mean temperature T. Last, we get from (4a) and the properties of the operator L_{e} defined by $L_{e}=Q_{e n}^{0}\left(\cdot, f_{n}^{0}\right)+Q_{e i}^{0}\left(\cdot, f_{i}^{0}\right)$ (see Lemma A.1) that f_{e}^{0} is an isotropic function (that will be precised in the next section).
$3 \cdot 2$. The electronic order-one correction. - We go on with the identification of the next terms, in order to compute the order-one corrections. Concerning the electrons, we get

$$
\begin{align*}
L_{e} f_{e}^{1}= & S_{e}^{1}, \quad \text { with } \tag{5a}\\
S_{e}^{1}= & \left(v_{e} \cdot \nabla_{x}+F_{e} \cdot \nabla_{v_{e}}\right) f_{e}^{0}-Q_{e n}^{1}\left(f_{e}^{0}, f_{n}^{0}\right)-Q_{e i}^{1}\left(f_{e}^{0}, f_{i}^{0}\right) \tag{5b}\\
& -Q_{e e}\left(f_{e}^{0}, f_{e}^{0}\right)-Q_{e, i r}^{0}\left(f_{e}^{0}, f_{i}^{0}, f_{n}^{0}\right)
\end{align*}
$$

The solvability condition for this equation writes (see Lemma A.1): for all $W>0$ (W represents the energy $|v|^{2} / 2$), the integral of S_{e}^{1} on the sphere of radius W is zero,
i.e. $\int_{S_{W}} S_{e}^{1} \mathrm{~d} N(v)=0$. As the first four terms in S_{e}^{1} are odd [4], this reduces to

$$
\text { for all } W>0, \quad \int_{S_{W}}\left[Q_{e e}\left(f_{e}^{0}, f_{e}^{0}\right)+Q_{e, i r}^{0}\left(f_{e}^{0}, f_{i}^{0}, f_{n}^{0}\right)\right] \mathrm{d} N(v)=0
$$

Integrating against the isotropic function $H_{e}=\log \left(\rho_{i} f_{e}^{0} /\left(\rho_{n} \mathcal{F}_{0}\right)\right)$, we get

$$
\int_{\mathbb{R}^{3}} Q_{e e}\left(f_{e}^{0}, f_{e}^{0}\right) H_{e} \mathrm{~d} v_{e}+\int_{\mathbb{R}^{3}} Q_{e, i r}^{0}\left(f_{e}^{0}, f_{i}^{0}, f_{n}^{0}\right) H_{e} \mathrm{~d} v_{e}=0
$$

But as each one of these two integrals is non-positive (this is classical for the first one [5]; we refer to Lemma A. 2 for the second one), this means that they are both zero. We deduce that f_{e}^{0} is a centered Maxwellian $f_{e}^{0}=\rho_{e} M_{0, T_{e}}$, with ρ_{e} given by the following Saha law:

$$
\begin{equation*}
\rho_{e}=\frac{\mathcal{F}_{0} \rho_{n}}{\rho_{i}}\left(2 \pi T_{e}\right)^{3 / 2} \exp \left[-\frac{\Delta}{T_{e}}\right] . \tag{6}
\end{equation*}
$$

Moreover, it is possible to compute explicitly the order-one correction f_{e}^{1}; this is due to the fact that the operator L_{e} is of Lorentz type, like in [6]. We have the following expression, which is a generalization of Lemma 7.1 of [2]: $f_{e}^{1}=f_{e}^{1, o}+f_{e}^{1, e}$, where $f_{e}^{1, e}$ is an arbitrary isotropic function while $f_{e}^{1, o}=f_{e}^{0} v_{e} \cdot \phi_{e}^{1}$, with ϕ_{e}^{1} given by (α_{n} and α_{i} are both isotropic functions entirely given in terms of the Boltzman and Fokker-Planck kernels in $Q_{e n}^{0}$ and $Q_{i n}^{0}$)

$$
\begin{equation*}
\phi_{e}^{1}\left(v_{e}\right)=\frac{u}{T_{e}}-\frac{1}{2\left[\alpha_{n}\left(\left|v_{e}\right|\right) \rho_{n}+\alpha_{i}\left(\left|v_{e}\right|\right) \rho_{i}\right]}\left[\nabla_{x}\left(\frac{\mu_{e}}{T_{e}}\right)-\frac{F_{e}}{T_{e}}+\frac{\left|v_{e}\right|^{2}}{2} \nabla_{x}\left(-\frac{1}{T_{e}}\right)\right] . \tag{7}
\end{equation*}
$$

3.3. The fluid system. - Let us go on with the Hilbert method, looking for the orderone correction f_{n}^{1}. This one satisfies the equation: $2 Q_{n n}\left(f_{n}^{1}, f_{n}^{0}\right)=\left(\partial_{t}+v_{n} \cdot \nabla_{x}+\right.$ $\left.F_{n} \cdot \nabla_{v_{n}}\right) f_{n}^{0}$. The solvability condition for this equation gives a classical Euler system for (ρ_{n}, u, T) which does not depend on the other species (see system (14) below). Concerning the ions, we find that f_{i}^{1} satisfies the equation: $L_{i}\left(f_{i}^{1}\right)=S_{i}^{1}$, where L_{i} is the linear operator defined by $L_{i}=Q_{i n}^{0}\left(\cdot, f_{n}^{0}\right)+2 Q_{i i}\left(\cdot, f_{i}^{0}\right)$ and S_{i}^{1} is given by

$$
S_{i}^{1}=\left(\partial_{t}+v_{i} \cdot \nabla_{x}+F_{i} \cdot \nabla_{v_{i}}\right) f_{i}^{0}-Q_{i n}^{0}\left(f_{i}^{0}, f_{n}^{1}\right)
$$

We have in fact $Q_{i e}\left(\cdot, f_{e}^{0}\right)=0$ because f_{e}^{0} is isotropic and $Q_{i, i r}^{0}\left(f_{e}^{0}, f_{i}^{0}, f_{n}^{0}\right)=0$, on account of the Saha law. It is easy to check that the kernel of the operator L_{i} is the straight line generated by f_{i}^{0}, so that the solvability conditions reduce to one equation on the ionic density ρ_{i}, with no source term, because the operator $Q_{i n}^{0}$ conserves mass (see eq. (15) below). We finally go on, looking for the order-two correction f_{e}^{2}. We find the following equation: $L_{e} f_{e}^{2}=S_{e}^{2}$, with

$$
\begin{aligned}
S_{e}^{2}= & \partial_{t} f_{e}^{0}+\left[v_{e} \cdot \nabla_{x}+F_{e} \cdot \nabla_{v_{e}}\right] f_{e}^{1}-Q_{e n}^{0}\left(f_{e}^{1}, f_{n}^{1}\right)-Q_{e n}^{1}\left(f_{e}^{1}, f_{n}^{0}\right)-Q_{e n}^{1}\left(f_{e}^{0}, f_{n}^{1}\right)-Q_{e n}^{2}\left(f_{e}^{0}, f_{n}^{0}\right) \\
& -Q_{e i}^{0}\left(f_{e}^{1}, f_{i}^{1}\right)-Q_{e i}^{1}\left(f_{e}^{1}, f_{i}^{0}\right)-Q_{e i}^{1}\left(f_{e}^{0}, f_{i}^{1}\right)-Q_{e i}^{2}\left(f_{e}^{0}, f_{i}^{0}\right)-2 Q_{e e}\left(f_{e}^{1}, f_{e}^{0}\right)-S_{e, i r}^{1}
\end{aligned}
$$

where $S_{e, i r}^{1}$ is the order-one term in the asymptotic expansion of $Q_{i, i r}\left(f_{e}^{\varepsilon}, f_{i}^{\varepsilon}, f_{n}^{\varepsilon}\right)$ in terms of ε. The solvability condition for this equation writes: $\forall W>0, \int_{S_{W}} S_{e}^{2}(v) \mathrm{d} N(v)=0$.

As $Q_{e n}^{1}\left(f_{e}^{1, e}, f_{n}^{0}\right), Q_{e i}^{1}\left(f_{e}^{1, e}, f_{i}^{0}\right)$ and $Q_{e e}\left(f_{e}^{1, o}, f_{0}^{e}\right)$ are odd functions of $v\left(\right.$ and $Q_{e n}^{0}\left(f_{e}^{1, e}, \cdot\right)=$ $\left.Q_{e n}^{0}\left(f_{e}^{1, e}, \cdot\right)=0\right)$, it remains:
(8) $\forall W>0, \quad \int_{S_{W}} \tilde{S}_{e}^{2}(v) \mathrm{d} N(v)=0, \quad$ with

$$
\begin{aligned}
& \tilde{S}_{e}^{2}=\partial_{t} f_{e}^{0}+\left(v_{e} \cdot \nabla_{x}-E \cdot \nabla_{v_{e}}\right) f_{e}^{1, o}-Q_{e n}^{0}\left(f_{e}^{1, o}, f_{n}^{1}\right)-Q_{e n}^{1}\left(f_{e}^{1, o}, f_{n}^{0}\right)-Q_{e n}^{1}\left(f_{e}^{0}, f_{n}^{1}\right) \\
& \quad-Q_{e n}^{2}\left(f_{e}^{0}, f_{n}^{0}\right)-Q_{e i}^{0}\left(f_{e}^{1, o}, f_{i}^{1}\right)-Q_{e i}^{1}\left(f_{e}^{1, o}, f_{i}^{0}\right)-Q_{e i}^{1}\left(f_{e}^{0}, f_{i}^{1}\right)-Q_{e i}^{2}\left(f_{e}^{0}, f_{i}^{0}\right) \\
& \quad-2 Q_{e e}\left(f_{e}^{1, e}, f_{e}^{0}\right)-S_{e, i r}^{1} .
\end{aligned}
$$

Remarking that $f_{e}^{1, e}$ only appears in $2 Q_{e e}\left(f_{e}^{1, e}, f_{e}^{0}\right)=\frac{\mathrm{d} Q_{e e}}{\mathrm{~d} f_{e}}\left(f_{e}^{0}\right)\left(f_{e}^{1, e}\right)$, we deduce that condition (8) entirely determines $f_{e}^{1, e}(W)$, for any W. Now, multiplying (8) by $1, W$, and integrating with respect to W, we get in particular

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} \tilde{S}_{2}^{e}\left(v_{e}\right) \mathrm{d} v_{e}=0, \quad \int_{\mathbb{R}^{3}} \tilde{S}_{2}^{e}\left(v_{e}\right) \frac{\left|v_{e}\right|^{2}}{2} \mathrm{~d} v_{e}=0 \tag{9}
\end{equation*}
$$

From the definition of $Q_{e n}^{0}$ (see Lemma A.1) and the properties of $q_{e}^{\mathcal{B}}$ (self-adjointness, kernel made of isotropic functions, see [4]), we have, for any f and g (and setting $C_{g}=$ $\left.\left(\int_{\mathbb{R}^{3}} g(v) \mathrm{d} v\right)\right)$:

$$
\int_{\mathbb{R}^{3}} Q_{e n}^{0}(f, g)\binom{1}{\frac{1}{2}\left|v_{e}\right|^{2}} \mathrm{~d} v_{e}=C_{g} \int_{\mathbb{R}^{3}} f\left(v_{e}\right)\binom{q_{e}^{\mathcal{B}}(1)}{q_{e}^{\mathcal{B}}\left(\frac{1}{2}\left|v_{e}\right|^{2}\right)} \mathrm{d} v_{e}=\binom{0}{0} .
$$

In the same way, as $Q_{e n}^{1}\left(f_{e}^{0}, f_{n}^{1}\right)=q_{e}^{\mathcal{B}}\left(\nabla f_{e}^{0}\right) \int_{\mathbb{R}^{3}} v_{n} f_{n}^{1} \mathrm{~d} v_{n}$, we also have

$$
\int_{\mathbb{R}^{3}} Q_{e n}^{1}\left(f_{e}^{0}, f_{n}^{1}\right)\binom{1}{\frac{1}{2}\left|v_{e}\right|^{2}} \mathrm{~d} v_{e}=\binom{0}{0} .
$$

These two properties are also valid for $Q_{e i}^{0}$ and $Q_{e i}^{1}\left(f_{e}^{0}, f_{i}^{1}\right)$. From [7], we get

$$
\int_{\mathbb{R}^{3}}\left[Q_{e n}^{1}\left(f_{e}^{1, o}, f_{n}^{0}\right)+Q_{e n}^{2}\left(f_{e}^{0}, f_{n}^{0}\right)+Q_{e i}^{1}\left(f_{e}^{1, o}, f_{i}^{0}\right)+Q_{e i}^{2}\left(f_{e}^{0}, f_{i}^{0}\right)\right]\binom{1}{\frac{1}{2}\left|v_{e}\right|^{2}} \mathrm{~d} v_{e}=\binom{0}{U_{e}}
$$

where we have set (λ_{n} and λ_{i} are two coefficients which can be explicitly computed in terms of the Boltzmann and Fokker-Planck kernels in $Q_{e n}^{0}$ and $Q_{e i}^{0}$, see $[3,4,7]$):

$$
\begin{equation*}
U_{e}=2 u \cdot\left[\nabla_{x}\left(\rho_{e} T_{e}\right)-\rho_{e} F_{e}\right]+3 \rho_{e}\left(\lambda_{n} \rho_{n}+\lambda_{i} \rho_{i}\right) \frac{T-T_{e}}{T_{e}} \tag{10}
\end{equation*}
$$

As the linearized Fokker-Planck operator classicaly conserves mass and energy, we have

$$
\int_{\mathbb{R}^{3}} Q_{e e}\left(f_{e}^{1, e}, f_{e}^{0}\right)\binom{1}{\frac{1}{2}\left|v_{e}\right|^{2}} \mathrm{~d} v_{e}=\binom{0}{0} .
$$

Now, setting $R_{e}=\int_{\mathbb{R}^{3}} S_{e, i r}^{1} \mathrm{~d} v_{e}$, we get: $\int_{\mathbb{R}^{3}} S_{e, i r}^{1}\left|v_{e}\right|^{2} / 2 \mathrm{~d} v_{e}=-\Delta R_{e}$ (see Lemma A.2). Last, concerning the transport terms, we refer to the computations already done
in $[7,8,1,6,2,3]$. We then derive from (9) the following energy-transport model:

$$
\begin{gather*}
\partial_{t} \rho_{e}+\operatorname{div}\left(\rho_{e}\left(u+u_{J}\right)\right)=R_{e} \tag{11a}\\
\partial_{t}\left(\frac{3}{2} \rho_{e} T_{e}\right)+\operatorname{div}\left[\frac{5}{2} \rho_{e} u T_{e}+\rho_{e} v_{J}\right]-\rho_{e}\left(u+u_{J}\right) \cdot F_{e}=S_{e} \tag{11b}
\end{gather*}
$$

with $S_{e}=U_{e}-\Delta R_{e}$ and

$$
\begin{equation*}
\binom{u_{J}}{v_{J}}=-D\binom{\nabla_{x}\left(\frac{\mu_{e}}{T_{e}}\right)-\frac{F_{e}}{T_{e}}}{\nabla_{x}\left(-\frac{1}{T_{e}}\right)} \tag{12}
\end{equation*}
$$

the entries $D_{k l}$ of the diffusion matrix D being given by

$$
\begin{equation*}
D_{k l}=D_{l k}=\frac{1}{6 \times 2^{k+l-2}} \int_{\mathbb{R}^{3}} \frac{|v|^{2(k+l-1)}}{\rho_{n} \alpha_{n}(|v|)+\rho_{i} \alpha_{i}(|v|)} M_{0, T_{e}}(v) \mathrm{d} v \tag{13}
\end{equation*}
$$

Note that R_{e} in fact depends on the isotropic part $f_{e}^{1, e}$ that appears in $S_{e, i r}^{1}$. But, thanks to the expression of S_{e}, it is possible to eliminate R_{e} between the two equations in (11); from a physical point of view, this corresponds to the fact that the energy which is conserved by the ionization is $|v|^{2} / 2+\Delta$. We then get the following fluid model for the mixture:

Theorem: The equilibrium states for the heavy species $f_{n}^{0}=\rho_{n} M_{u, T}$ and $f_{i}^{0}=\rho_{i} M_{u, T}$ are characterized by the same mean velocity u and temperature T; the electronic distribution function $f_{e}^{0}=\rho_{e} M_{0, T_{e}}$ is a centered Maxwellian, whose density ρ_{e} is given in terms of the two other densities ρ_{n} and ρ_{i}, and the electronic temperature T_{e}, by the Saha law (6). The neutral particles satisfy the standard Euler system (setting $\left.W_{n}=\frac{1}{2} \rho_{n}|u|^{2}+\frac{3}{2} \rho_{n} T\right)$:

$$
\begin{gather*}
\partial_{t} \rho_{n}+\operatorname{div}\left(\rho_{n} u\right)=0 \tag{14a}\\
\partial_{t}\left(\rho_{n} u\right)+\operatorname{div}\left[\rho_{n}(u \otimes u)\right]+\nabla_{x}\left(\rho_{n} T\right)-\rho_{n} F_{n}=0 \tag{14b}\\
\partial_{t} W_{n}+\operatorname{div}\left[u\left(W_{n}+\rho_{n} T\right)\right]-\rho_{n} u \cdot F_{n}=0 \tag{14c}
\end{gather*}
$$

which is totally independent of the other species. The fluid model for ions reduces to a mass conservation equation:

$$
\begin{equation*}
\partial_{t} \rho_{i}+\operatorname{div}\left(\rho_{i} u\right)=0 \tag{15}
\end{equation*}
$$

The electronic macroscopic quantities $\left(\rho_{e}, T_{e}\right)$ satisfy the following diffusion equation:

$$
\begin{equation*}
\partial_{t}\left(\frac{3}{2} \rho_{e} T_{e}+\Delta \rho_{e}\right)+\operatorname{div}\left(j_{T_{e}}+\Delta j_{\rho_{e}}\right)-j_{\rho_{e}} \cdot F_{e}=U_{e} \tag{16}
\end{equation*}
$$

where we have set, for simplicity: $j_{\rho_{e}}=\rho_{e}\left(u+u_{J}\right), j_{T_{e}}=\frac{5}{2} \rho_{e} u T_{e}+\rho_{e} v_{J}$, with u_{J} and v_{J} defined by (12), (13) and U_{e} by (10).

4. - Conclusion and comments

Equation (15) corresponds to the charge conservation, while eq. (16) represents the balance sheet of the electronic energy. The coupling between the three species appears through the Saha law and the transport coefficients in eq. (16).

The model we have here derived looks like the fluid model obtained in [3]. We first mention however that the derivation from the kinetic system is far different here, essentially on account of the orderings of the inelastic collisions. Secondly, the model we have obtained differs by the expression of the transport coefficients which are here simpler and can be explicitly computed; this is due to the fact that the operator L_{e} is here a Lorentztype operator, like in [6]. In [3], the diffusion coefficients are more complex, because they depend on the ionization, which is stronger than in the case under consideration here.

Moreover, let us note that the model we have here obtained directly from the kinetic system can also be recovered from a glow plasma model, of SHE type, in which the Saha law appears as a source term in the equation on the ionic density (see Proposition 4 of [2]), by multiplying this relaxation term by a factor $1 / \varepsilon$ and looking for the limit $\varepsilon \rightarrow 0$.

Let us finally mention that the derivation we have here obtained is purely formal. From a mathematical point of view, one main difficulty comes from the strong coupling between the neutrals and the other species and the fact that the Euler system for the neutrals can develop solutions with shocks.

Appendix A.

In the two Lemmas below, we only recall, for simplicity, the first-order terms of the asymptotic expansion of the collisional operators in terms of ε and their main properties. For the other terms, we refer to previous references.

Lemma A. $1[4,6,9]$: i) Let $\alpha, \beta=i, n, \alpha \neq \beta$; then $Q_{\alpha \beta}^{\varepsilon}\left(f_{\alpha}, f_{\beta}\right)=Q_{\alpha \beta}^{0}\left(f_{\alpha}, f_{\beta}\right)+\mathcal{O}\left(\varepsilon^{2}\right)$, with

$$
Q_{\alpha \beta}^{0}\left(f_{\alpha}, f_{\beta}\right)\left(v_{\alpha}\right)=\int_{\mathbb{R}^{3} \times S^{2}} B_{\star}^{\mathcal{B}}\left(v_{\alpha}-v_{\beta}^{\star}, \Omega\right)\left(f_{\alpha^{\prime}} f_{\beta_{\star}^{\prime}}-f_{\alpha} f_{\beta_{\star}}\right) \mathrm{d} v_{\beta}^{\star} \mathrm{d} \Omega
$$

ii) Let α, $\beta=e, n, \alpha \neq \beta$; then $Q_{\alpha \beta}^{\varepsilon}\left(f_{\alpha}, f_{\beta}\right)=Q_{\alpha \beta}^{0}\left(f_{\alpha}, f_{\beta}\right)+\mathcal{O}(\varepsilon)$, with

$$
\begin{aligned}
& Q_{e n}^{0}\left(f_{e}, f_{n}\right)\left(v_{e}\right)=q_{e}^{\mathcal{B}}\left(f_{e}\right)\left(v_{e}\right) \int_{\mathbb{R}^{3}} f_{n}\left(v_{n}\right) \mathrm{d} v_{n} \\
& Q_{n e}^{0}\left(f_{n}, f_{e}\right)\left(v_{n}\right)=-2 \nabla_{v_{n}} f_{n}\left(v_{n}\right) \cdot \int_{\mathbb{R}^{3} \times S^{2}} B^{\mathcal{B}}\left(v_{e}, \Omega\right) \frac{\left(v_{e} \cdot \Omega\right)^{2}}{\left|v_{e}\right|^{2}} v_{e} f_{e}\left(v_{e}\right) \mathrm{d} v_{e} \mathrm{~d} \Omega
\end{aligned}
$$

Moreover, $q_{e}^{\mathcal{B}}\left(f_{e}\right)\left(v_{e}\right)=\int_{S^{2}} B^{\mathcal{B}}\left(v_{e}, \Omega\right)\left[f_{e}\left(v_{e}-2\left(v_{e}, \Omega\right) \Omega\right)-f_{e}\left(v_{e}\right)\right] \mathrm{d} \Omega$.
iii) $Q_{e i}^{\varepsilon}\left(f_{e}, f_{i}\right)=Q_{e i}^{0}\left(f_{e}, f_{i}\right)+\mathcal{O}(\varepsilon), Q_{i e}^{\varepsilon}\left(f_{i}, f_{e}\right)=Q_{i e}^{0}\left(f_{i}, f_{e}\right)+\mathcal{O}(\varepsilon)$, with

$$
\begin{aligned}
Q_{e i}^{0}\left(f_{e}, f_{i}\right)\left(v_{e}\right) & =q_{e}^{\mathcal{F}}\left(f_{e}\right)\left(v_{e}\right) \int_{\mathbb{R}^{3}} f_{i}\left(v_{i}\right) \mathrm{d} v_{i}, \quad q_{e}^{\mathcal{F}}\left(f_{e}\right)=\nabla_{v_{e}} \cdot\left[B^{\mathcal{F}} S \nabla_{v_{e}} f_{e}\right] \\
Q_{i e}^{0}\left(f_{i}, f_{e}\right)\left(v_{i}\right) & =-2 \nabla_{v_{i}} f_{i}\left(v_{i}\right) \cdot \int_{\mathbb{R}^{3}} \frac{B^{\mathcal{F}}\left(v_{e}\right)}{\left|v_{e}\right|^{2}} v_{e} f_{e}\left(v_{e}\right) \mathrm{d} v_{e}
\end{aligned}
$$

iv) For any f_{n}, f_{i}, the kernel of the operators $L_{e}=Q_{e n}^{0}\left(\cdot, f_{n}\right)+Q_{i n}^{0}\left(\cdot, f_{i}\right)$ is made of isotropic functions. Introducing the energy variable $W(v)=|v|^{2} / 2$, the sphere $S_{W}=$ $\left\{v \in \mathbb{R}^{3}, W(v)=W\right\}$, and $\mathrm{d} N(v)=\frac{\mathrm{d} S_{W}(v)}{\sqrt{2 W}}\left(\mathrm{~d} S_{W}\right.$ is the Euclidean surface element on $\left.S_{W}\right)$, we get from the co-area formula that the equation $L_{e} f=g$ has a solution if and only if the right-hand side satisfies the following orthogonality relation:

$$
\forall W>0, \quad \int_{S_{W}} g(v) \mathrm{d} N(v)=0
$$

Lemma A. 2 [1-3]: i) We set: $\rho_{\alpha}=\int_{\mathbb{R}^{3}} f_{\alpha}\left(v_{\alpha}\right) \mathrm{d} v_{\alpha}, \alpha \in\{e, i, n\}$; then $Q_{\alpha, i r}=Q_{\alpha, i r}^{0}+$ $R_{\alpha, i r}^{1}+O\left(\varepsilon^{2}\right)$, where $Q_{\alpha, i r}^{0}$ is given by (2), but with $\delta_{v}, \delta_{\mathcal{E}}$ replaced by their limit when ε goes to zero, i.e. by $\delta_{v}^{0}=\delta\left(v_{i}-v_{n}\right), \delta_{\mathcal{E}}^{0}=\delta\left(\left|v_{e}\right|^{2}-\left[\left|v_{e}{ }^{\prime}\right|^{2}+\left|v_{e}^{\star}\right|^{2}+2 \Delta\right]\right)$. Moreover

$$
\begin{gathered}
Q_{i, i r}^{0}\left(f_{e}, f_{i}, f_{n}\right)(v)=-Q_{n, i r}^{0}\left(f_{e}, f_{i}, f_{n}\right)(v)=A_{1}\left(f_{e}\right) f_{n}(v)-A\left(f_{e}\right) f_{i}(v) \text {, with } \\
A_{1}\left(f_{e}\right)=\int_{\mathbb{R}^{9}} \sigma^{r} \delta_{\mathcal{E}}^{0} \mathcal{F}_{0} f_{e}\left(v_{e}\right) \mathrm{d} v_{e} \mathrm{~d} v_{e}^{\prime} \mathrm{d} v_{e}^{\star}, \quad A\left(f_{e}\right)=\int_{\mathbb{R}^{9}} \sigma^{r} \delta_{\mathcal{E}}^{0} f_{e}\left(v_{e}{ }^{\prime}\right) f_{e}\left(v_{e}^{\star}\right) \mathrm{d} v_{e} \mathrm{~d} v_{e}^{\prime} \mathrm{d} v_{e}^{\star} .
\end{gathered}
$$

ii) The operator $Q_{e, i r}^{0}\left(f_{e}, f_{i}, f_{n}\right)$ satisfies

$$
\int_{\mathbb{R}^{3}} Q_{e, i r}^{0}\left(f_{e}, f_{i}, f_{n}\right)\left(v_{e}\right)\binom{1}{\frac{1}{2}\left|v_{e}\right|^{2}} \mathrm{~d} v_{e}=\left[\rho_{n} A_{1}\left(f_{e}\right)-\rho_{i} A\left(f_{e}\right)\right]\binom{1}{-\Delta} .
$$

iii) Moreover, let $H\left(f_{e}\right)=\log \left(\mathcal{F}_{0}^{-1} \rho_{n}^{-1} \rho_{i} f_{e}\right)$, and let σ^{r} be positive, then

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}} Q_{e, i r}^{0}\left(f_{e}, f_{i}, f_{n}\right)\left(v_{e}\right) H\left(f_{e}\right)\left(v_{e}\right) \mathrm{d} v_{e}=-\rho_{i} \int_{\mathbb{R}}{ }^{9} \\
& \sigma^{r} \delta_{\mathcal{E}}^{0}\left[\mathcal{F}_{0} \frac{\rho_{n}}{\rho_{i}} f_{e}\left(v_{e}\right)-f_{e}\left(v_{e}{ }^{\prime}\right) f_{e}\left(v_{e}^{\star}\right)\right] \\
& \times\left[\log \left(\mathcal{F}_{0} \frac{\rho_{n}}{\rho_{i}} f_{e}\left(v_{e}\right)\right)-\log \left(f_{e}\left(v_{e}{ }^{\prime}\right) f_{e}\left(v_{e}^{\star}\right)\right)\right] \mathrm{d} v_{e} \mathrm{~d} v_{e}{ }^{\prime} \mathrm{d} v_{e}^{\star} \leq 0
\end{aligned}
$$

If f_{e} is isotropic and $Q_{e, i r}^{0}\left(f_{e}, f_{i}, f_{n}\right)=0$, then: $f_{e}=\rho_{e} M_{0, T_{e}}$, with $\rho_{e}=$ $\frac{\mathcal{F}_{0} \rho_{n}}{\rho_{i}}\left(2 \pi T_{e}\right)^{3 / 2} \exp \left[-\frac{\Delta}{T_{e}}\right] ;$ moreover, $\int_{\mathbb{R}^{3}} S_{e, i r}^{1}\left(\Delta+|v|^{2} / 2\right) \mathrm{d} v_{e}=0$.

REFERENCES

[1] Choquet I. and Lucquin-Desreux B., J. Stat. Phys., 119 (2005) 197.
[2] Choquet I., Degond P. and Lucquin-Desreux B., Discret. Contin. Dyn. Syst.-Ser. B, 8 (2007) 735.
[3] Choquet I., Degond P. and Lucquin-Desreux B., Math. Comput. Model., 49 (2009) 88.
[4] Degond P. and Lucquin-Desreux B., Math. Mod. Meth. Appl. Sci., 6 (1996) 405.
[5] Cercignani C., The Boltzmann Equation and its Applications (Springer Verlag, New York) 1988.
[6] Lucquin-Desreux B., Math. Mod. Meth. Appl. Sci., 10 (2000) 409.
[7] Degond P. and Lucquin-Desreux B., Transp. Theory Stat. Phys., 26 (1996) 595.
[8] Lucquin-Desreux B., Transp. Theory Stat. Phys., 27 (1998) 99.
[9] Ben Abdallah N. and Degond P., J. Math. Phys., 37 (1996) 3306.

