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Summary. — A brief survey of applications of point groups to reactor physics is
given. First, the general principles of applications of point groups are summarized,
this is followed by a short historical review. Two instances of applications in reactor
physics are mentioned: the analytical solution to the few group diffusion theory
is given based on symmetry considerations. The analytical solution has made it
possible to investigate Selengut’s principle and conclude that in general, in the
solution process in region D it is not possible to replace a heterogeneous domain
Dh ⊂ D by a homogeneous material so that the solution to the few group diffusion
equation outside the replaced part, i.e. in D −Dh would remain unchanged.

PACS 02.20.Hj – Classical groups.
PACS 28.41.Ak – Theory, design, and computerized simulation.
PACS 28.41.Vx – Fuel cycles.

1. – Introduction

Symmetry considerations have been present in reactor theory since the beginning as
one of the first pioneers of neutron physics was E. P. Wigner. In the theory of reactor
lattices the concept of Wigner-Seitz cell was borrowed from solid state physics. As early as
1948, in the discussion of the boundary condition of reactors, Weinberg and Schweinler [1]
made use of the image pile concept. Symmetry considerations were suggested by Mark
Goldsmidth [2] as early as in 1963. Case and Zweifel [3] discussed the symmetry of the
transport equation. Nieva and Christensen [4] used symmetries in the design of control
rods. Binnebeck [5] urged symmetry considerations based on analogy with quantum
mechanical calculations.

In the last years of 1970s, the application of symmetries to reactor physics has gained
a new impetus. Finite elements: Albert Fässler of ETH (Zürich) worked out a finite
element method in which the structure of the solution was simpler because of the careful
selection of the basis functions. In 1979, the present author proposed [6] a more elabo-
rate use of group theory tools in homogenization and in the nodal methods. The first
nodal program using group theory was written in 1980 at Eidg. Institute für Reaktor-
forschung, Würenlingen [7]. That time the solution of the diffusion equation was attacked
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by two methods. Those believing in mathematical methods clung to variants of the fi-
nite difference method (FD) and hoped for finding an effective acceleration method. The
other camp searched for new solution methods, differing from FD in using higher-order
approximation thus allowing for a coarser discretization of the spatial domain. Two com-
petitive methods have appeared: the finite element method [8] and the nodal method.
The former has been used in engineering practice successfully, the latter was a novelty
and rather promising tool. We mention here two groups, Allan Henry’s group at MIT [9]
and Wagner’s at KWU [10]. The former used trial functions composed of an exponential
plus a quadratic term but those were solutions of a one-dimensional equation hence an
iteration is needed along the three spatial directions. An analytical solution was badly
needed to work out an effective coarse mesh procedure. KWU worked with polynomials.

Roy Axford proposed an independent approach that used a discretization scheme
conforming to the symmetry of the spatial region [11]. He used Lie groups in his works.

In sect. 2, we summarize the applied principles of group theoretical considerations.
In sect. 3, we formulate the reactor physical problems to be investigated and use the
principles of sect. 3 to derive an analytical solution to the few group diffusion equation. In
sect. 4, the analytical solution is applied to the investigation of the Selengut principle [12].
Finally, concluding remarks are given.

2. – Main principles of applied group theory

In physical problems, we encounter known quantities (like spatial distribution of
known materials, given sources or boundary conditions) and from them we determine
other quantities (like the neutron flux in a region). The mathematical term map is used
to describe the relationship between the known and unknown things. An area where
those maps are typical is the iteration. When we seek an iterative solution to a problem,
we map the old solution to a new one(1). When we solve a source problem, an equation
connects the known source to the unknown solution. Formally, the solution process has
the following ingredients: given normed vector spaces E, F, a linear operator A : E → F.
When we have a group G whose action is defined on E and F, the procedure can be
refined. G not only generates a splitting Ei of E, and Fi of F such that Ei and Ej as well
as Fi and Fj are orthogonal when i �= j but also g ∈ G transforms elements in Ei and
Fi in the same way. Furthermore, when the map A : E → F commutes with elements of
G, i.e. Ag = gA holds for any g ∈ G, AEi belongs to the subspace Fi that transforms
under g ∈ G as Ei does. In that sense map A preserves the splitting of space E.

In connection with the above expressed idea, one needs a recipe to find a group G,
to determine the splitting of a given space. In reactor physics, the two most frequently
encountered equations are the diffusion and the linear Boltzmann equation. Those equa-
tions are known [3] to be invariant with respect to rotations and reflections, the basic
constituents of the geometric symmetries of a regular, homogeneous domain. Hence, G
can be the symmetry group of the spatial region under consideration provided the ma-
terial distribution in V is symmetric and the scattering cross-section depends solely on
the angle between the entering and exiting directions. Discretization is an often used
technique in numerical solutions, and there we encounter two kinds of volumes: the
volume of the reactor V and the volume of a discretized part Vi (often called node) in-

(1) And when the iteration is convergent the difference between “new” and “old” diminishes as
the iteration proceeds.
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terrelated as V =
⋃

i Vi. It is clear that analyzing the iteration A : Ψk(r) → Ψk+1(r),
where k is the subscript of the iteration, we refer to a map A : Ψ(V ) → Ψ(V ) bringing
a function over the entire V into a new function over the entire V . When we regard
the entering current-exiting current relation in a given map, we have to consider the
Ψ(Vi) → Ψ(Vi) map.

The technique of splitting a set is available in textbooks [13,14], the main points are
summarized below. If someone is more allured by the net, a consultation with the web
site GAP [15] is recommended. There complete information is available.

Theorem 2.1 (Splitting [13], [14] of space E). Let E consist of the square integrable func-
tions Ψ(r), r ∈ V . A splitting of Ψ(r) is given by

(1) Ψi(r) =
�i

|G|
∑
g∈G

χi(g)∗Ψ(R−1
g r),Ψi(r) ∈ Ei.

Here �i is the dimension of subspace i, |G| is the number of elements in group G, and
Rg is the transformation (a matrix) of r under symmetry g. Matrices Rg, g ∈ G form
a matrix representation of G. χi(g)∗ is the transpose of the character table of G. Ψi(r)
and Ψj(r) are orthogonal when i �= j.

A character table is a concise description of a group. Group elements are ordered into
equivalence classes, they form the columns of the character table. Each row is associated
with an irreducible subspace (irrep). For details, see [13, 14]. The character tables also
can be found in textbooks and at the GAP web site. The next theorem claims that an
operator A commuting with G is a multiple of the identity operator. The theorem is
formulated for matrices [13].

Theorem 2.2 (Schur Lemma). Let matrices Dg, g ∈ G be an irreducible matrix repre-
sentation of the group G. If there is a matrix C commuting with every matrix of the
representation, i.e. CDg = DgC for any g ∈ G, then C is a constant times the identity
matrix.

Example 2.3 (Irreps of flux on the boundary). Let V be a square, and along its four faces
the entering current be I−i (r, E), i = 1, 4; or writing the entering current along the bound-
ary as a single vector I−. Using (1), we decompose the entering currents into irreps and
obtain

I− = c−A1(r, E)(1, 1, 1, 1) + c−B1(r, E)(1,−1, 1,−1)(2)
+c−E1(r, E)(0,−1, 0, 1) + c−E2(r, E)(−1, 0, 1, 0),

where the subscripts refer to the given subspace. When the entering currents are face av-
eraged, the entering currents are I− = (I−1 , I−2 , I−3 , I−4 ) and using (1), the decomposition
is

I− = c−A1(1, 1, 1, 1) + c−B1(1,−1, 1,−1)(3)
+c−E1(0,−1, 0, 1) + c−E2(−1, 0, 1, 0).

Note that the difference between the two decompositions is only in the coefficients, the
pattern is the same. Note that the entering currents are, in either case, in a four dimen-
sional space and the number of linearly independent components is four. The structure
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Fig. 1. – Irreducible components on the boundary of a square.

obtained by decomposition (1) is independent of the physical model and is also called
irrep, shown in fig. 1, where inward arrows and outward arrows refer to positive and
negative numbers, respectively.

3. – Selected reactor physics problems

Most applications in reactor physics include two problems. In an iteration we solve
an eigenvalue problem but in each node, we face a source problem because the entering
currents are the exiting currents of the neighboring nodes. Also, volumetric source from
other groups may be known. We assume that in a node the homogeneous problem has
only the trivial solution as a node must be subcritical.

3.1. Source problem. – Let us consider a given, homogeneous volume V , with a known
source Q(r), which may be the contribution from other energy groups. We have to solve

(4) AΨ(r) = Q(r); r ∈ V,

for Ψ(r). We decompose the source into irreps using (1):

(5) Q(r) =
∑

i

Qi(r) Ψ(r) =
∑

i

Ψi(r),

and instead of solving one big problem, we solve a couple of smaller problems:

(6) AΨi(r) = Qi(r).

Here i is the subscript of the irreducible components.
When the boundary condition is non-homogeneous [16], and the homogeneous prob-

lem has only the identically zero function as solution, we seek the solution of

(7) AΨ(r) = 0, r ∈ V, BΨ(r) = q(r), r ∈ ∂V.

The procedure is similar, we decompose q(r) into irreps and because A,B are linear
operators, we split the original problem into smaller ones:

(8) AΨi(r) = 0, r ∈ V, BΨi(r) = qi(r), r ∈ ∂V.
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Fig. 2. – Irreducible components on the boundary of a regular hexagon.

Here subscript i labels the irreps of q. In reactor physics, ∂V consists of faces and
it suffices to approximate q(r) along a face by a low-order polynomial. Polynomial
approximation corresponds to a polynomial approximation along each face [17,18].

3.2. Eigenvalue problem. – Now we consider the following eigenvalue problem in V :

(9) AΨ(r) = λΨ(r),

and use the decomposition (1) of Ψ. Because of the orthogonality of the components, we
get for each component i

(10) AΨi(r) = λΨi(r).

When the eigenspace associated with λ is one dimensional, only one irrep is present in Ψ.

3.3. Analytical solution to the diffusion equation. – In diffusion theory, the energy-
dependent neutron flux is a vector Φ(r), its components are the group fluxes Φk(r),
k = 1, . . . , NG, where NG is the number of energy groups. The operator

(11) A = DΔ + Σ

is used to describe the neutron balance in the energy groups. Here D is a diagonal
matrix, its entry is the diffusion coefficient in the given energy group. Σ includes all
processes resulting in energy change. We assume V to be homogeneous thus neither D
nor Σ depend on the position. The general problem may involve volume source Q and
boundary source q:

AΨ(r) = Q(r), r ∈ V,(12)
Ψ(r) = q(r), r ∈ ∂V.(13)

We decompose Q and q into irreps, and solve the diffusion equation for each irrep sep-
arately. The irreps bear physical meanings. Regard for example the irreps of q for a
square, shown in fig. 1. The first component (A1) models a symmetric surrounding, the
second (E1) and third (E2) model the x and y component of a gradient field, and the
fourth component (B1) is a representation of a cross-flow (second gradient). In a regular
hexagon node, the cross-flow is even more complicated, see fig. 2.
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For a given irrep, the analytical solution is expressed by the eigenfunctions of the
Laplace operator

(14) Δfk(r) = −λ2
kfk(r), k = 1, . . . , NG,

and the eigenvectors of the Σ matrix:

(15) Σtk = λ2
ktk, k = 1, . . . , NG.

The general solution is [19]

(16) Φ(r) =
NG∑
k=1

tkfk(r)ck ≡ T〈f(r)〉c,

where 〈 〉 is a diagonal matrix, columns of matrix T are the vectors tk. The general form
of the scalar eigenfunction of the Laplacian is

(17) fk(r) =
∫
|e|=1

w(e) exp [iλker] de.

In order to create a function transforming as a given irrep, we choose the weight function
w(e) appropriately. Let the parameter of unit vector e be its direction θ. In a regular
n-gon, we form a step function wk = w(θ), (k − 1)π/n ≤ θ ≤ kπ/n, k = 1, . . . , 2n. This
can be done because a transformation Rg of r in (17) amounts to a transformation of
R−1

g applied to vector e. It suffices to give the index of the interval and the constant
value of the weight on the interval. The weights are given in table I. Remember, in the
symmetry group of the square there are five irreducible subspaces, four of them, viz.,
A1, A2, B1, B2 are one dimensional. In a two-dimensional subspace there are two basis
vector pairs E1, E2 and E3, E4 that are equivalent from the point of view of symmetries.
Here we give, in one energy group, some operators often used in diffusion theory:

Φ =
∫

V

Φ(r)dr − integrated flux,(18)

I−(r) =
1
4

(Φ(r) + 2D∂nΦ(r)) + entering current,(19)

I+(r) =
1
4

(Φ(r) − 2D∂nΦ(r)) − exiting current,(20)

Jnet(r) = I+(r) − I−(r) − net current.(21)

From the above-defined quantities, response matrix R is formed, e.g.,

J(r) = RI(r),

and analogous expressions hold for the above expression integrated along a face or the
entire boundary of V . When J(r) and I±(r) transform according to a given irreducible
component, the response matrix R connecting them is diagonal (i.e. a number), see
Schur’s lemma. It means that if the boundary condition transforms according to a
given irrep, any response matrix mentioned above is diagonal. Simply, any physical
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Table I. – Weight functions in a square for the irreducible subspaces.

Irrep 1 2 3 4 5 6 7 8

α = 1, A1 1 1 1 1 1 1 1 1

α = 2, A2 1 −1 1 −1 1 −1 1 −1

α = 3, B1 1 1 −1 −1 1 1 −1 −1

α = 4, B2 1 −1 −1 1 1 −1 −1 1

α = 5, E1 0 0 −1 −1 0 0 1 1

α = 5, E2 −1 1 0 0 1 −1 0 0

α = 5, E3 0 0 −1 1 0 0 1 −1

α = 5, E4 −1 −1 0 0 1 1 0 0

quantity represented by an operator that commutes with the symmetries of V inherits
the symmetry of the boundary condition.

Example 3.1 (Eight boundary currents). It is possible to average the entering currents
over a half faces of the square, thus we have eight entering currents given on the boundary
of the square. Then,

(22) I− = (I−1 , . . . , I−8 ).

The irreps are obtained again from (1), and they turn out to be the eight-tuples in the
rows of table I, that we write as wi, here i refers to the row i in table I. Thus the
decomposition of the entering current is

(23) I− =
8∑

i=1

c−i wi.

As to the exiting current, the analogous expression is

(24) I+ =
8∑

i=1

c+
i wi.

The definition of the R response matrix is

(25) I+ = RI−.

We know from the Schur lemma that the response matrix is diagonal when we use irreps
thus

(26) c+
i = Ric

−
i , i = 1, . . . , 4;

and because lines 5 and 6, 7 and 8 of table I are components of two, equivalent, two-
dimensional irreps,

(27)

(
c+
i

c+
i+1

)
=

(
R5 R6

R7 R8

)(
c−i

c−i+1

)
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Table II. – Irreps of moments of partial currents.

Moments

Representation m = 0 m = 1 m = 2

A1 (I0
1 + I0

2 + I0
3 + I0

4 )/4 0 (I2
1 + I2

2 + I2
3 + I2

4 )/4

A2 0 (I1
1 + I1

2 + I1
3 + I1

4 )/4 0

B1 (I0
1 − I0

2 + I0
3 − I0

4 )/4 0 (I2
1 − I2

2 + I2
3 − I2

4 )/4

B2 0 (I1
1 − I1

2 + I1
3 + I1

4 )/4 0

E1 (I0
1 − I0

3 )/2 (I1
1 − I1

3 )/2 (I2
1 − I2

3 )/2

E2 (I0
2 − I0

4 )/2 (I1
2 − I1

4 )/2 (I2
2 − I2

4 )/2

for i = 5, 7. We have less matrix elements to be parametrized in a production code and
the calculation is faster when irreps are used.

Let the moments of the entering currents with respect to Legendre polynomial of degree
m along face k of the square be Im

k ,m = 0, 1, 2. Then Im
k ,m > 0 are overtones [18],

as their face averages give zero. The irreducible components of the entering currents
are shown in table II. We have 12 entering currents per energy group (four faces and
three moments of entering current per face) that allows for the following approximation
in (17):

(28) w(e) =
8∑

j=1

wjδ(e − ej) +
12∑

j=9

wjδ(e − ej),

where ej vectors make an orbit(2) of a general position e vector under the symmetries
of the square, and ej , j > 8 form an orbit of length four (this is the case when e is on a
symmetry line). Then using table II one can determine the wi weights solving four sets
of equations for the 12 weights. To carry out the calculations, we need the relationship
between moments of entering currents and weights. The former are calculated from fk(r),
which is connected to the weights as

(29) fk(r) =
∫
|e|=1

w(e) exp[iλker]de =
8∑

j=1

wj exp[iλkeir] +
12∑

j=9

wj exp[iλkejr].

Consequently, any spatial moment is a linear expression in the weights wj and the 12
moments at the boundary can be satisfied with a suitable choice of weights, to this end
a system of linear equations has to be solved.

We remark only here that it is possible to include higher moments, and work out an
algorithm that uses a solution that satisfies the diffusion equation at each point and also
the boundary condition to a prescribed accuracy.

(2) Images g · e, g ∈ G are called orbit.
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4. – Selengut principle

Selengut [12] formulated the following principle: if the response matrix of a given V
can be substituted by the response matrix of a homogeneous material in V , there exist an
equivalent homogeneous material with which one may replace V . This principle simplifies
the calculation considerably and therefore has been widely used in reactor physics. Below
we investigate [20,17] and the Selengut principle more closely.

The analysis is based on the analytical solution derived in the previous section. The
problem is considered in the few group approach, the boundary flux F is a vector, as
well as the volume-averaged flux Φ̄. Using that solution, we are able to derive matrices
mapping into each other the volume-integrated fluxes, the surface-integrated partial and
net currents. First we present the corresponding matrices. Our basis is the boundary
flux, that we derive for each irrep i from (16) as

(30) F i = T〈fi〉ci.

The normal component of the net current Jnet is given in irrep i as

(31) Jnet,i = −DT〈gi〉ci.

We eliminate ci to get

(32) Jnet,i = −DT〈gi/fi〉T−1F i ≡ RiF i.

Here

(33) gi = −∇nfi(r).

The volume-integrated flux Φ̄ is obtained after integration from (16) as

(34) Φ̄ = T〈FA1〉cA1, F̄A1 =
∫

f(r)dr,

and the integration runs over a face. Note that only irrep A1 contributes to the average
flux. After eliminating cA1 from (30), we get a response matrix to determine volume-
integrated flux Φ̄ from face-integrated flux FA1:

(35) Φ̄ = T〈FA1/fA1〉T−1〈F 〉 ≡ W〈F 〉.

This assures that V is completely described by matrix W and diagonal matrices
〈F (r)〉, 〈f(r)〉, 〈g(r)〉 for each irrep. For example, we are able to reconstruct the cross-
section matrix Σ from them. Note that WT = T〈F/f〉, the eigenvectors of matrix W are
the eigenvectors of Σ. Now we need solely a numerical procedure to find the eigenvalues
λk from 〈F/f〉.

The question is, under what conditions the above-mentioned calculations are feasible.
We count the number of response matrices in the general case: the matrix elements we
need to characterize V may be all different and the number of matrices depends on the
shape of V . The number of irreducible components of the involved matrices depends
on the geometry. In a square-shaped homogeneous V , we have four Ri matrices and
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one W. Altogether we have to determine 5NG ∗ NG elements. In an inhomogeneous
hexagonal volume, there are 6 ∗ NG ∗ NG matrix elements, whereas the homogeneous
material is described by NG ∗ (NG + 1) parameters as in a homogeneous material there
are altogether NG∗NG cross-sections and NG diffusion constants. Therefore Selengut’s
principle is not exact it may only be a good approximation under specific circumstances.
The homogenization recipes [21] preserve only specific reaction rates but they do not
provide general equivalence.

5. – Concluding remarks

The present work is a summary of applications of group theory in reactor physics.
Since then, point groups have been used in the following areas of physics:

– Field reconstruction (error estimation, pinpoint false measurement, etc.). The field
to be reconstructed can be classified by the symmetries of the core and there is a
class that can be reconstructed without loss of information [22].

– Investigation of iteration process. In the usual iteration we approximate the volume
source by a polynomial, the partial current at the boundary by another polynomials
and the two approximations may turn out to be inconsistent [16].

– Algebraic description of a composite volume [23]. If one assigns a graph to a large
discretized volume, it is possible to decide if two discretizations are isomorphic and
the solution can be transplanted from one to the other.

– Transfer of measurements to other simply connected volumes. If the measured
value belongs to a one-dimensional eigenspace of a linear operator, it is possible to
derive the results of measurement on another simply connected region [24].

Further applications of point group theory include:

– Determination of Green’s function for some finite 2D regions using Sunada’s theo-
rem [25].

– Non-symmetric operators. When material properties are space dependent, the
operator itself has to be decomposed into irreps. This results in a product repre-
sentation [26].

– Non-symmetric regions (domain reduction). Faster algorithm is obtained when
the solution domain is reduced. Reduction is achievable even in an apparently
completely asymmetric domain [26].

– Find equispectral volumes [23]; stability investigation of nonlinear equations [27].
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