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Summary. — Starting from the appropriate quantum kinetic equation, with the
Boltzmann, Uehling and Uhlenbeck collision term, an expression is derived for the
time evolution of entropy and, upon time integration, a corresponding entropy in-
equality is obtained valid for quantum systems of particles following either the Bose-
Einstein, or the Fermi-Dirac statistics.

PACS 05.30.-d – Quantum statistical mechanics.
PACS 05.30.Fk – Fermion systems and electron gas.
PACS 05.30.Jp – Boson systems.

1. – Introduction

Clausius inequality is a cornerstone of Thermodynamics: however its traditional ap-
plicability is confined to conductive and convective heat transfer in classical systems.
Recent work has extended the inequality to include radiative transfer [1]. Still, the
question of applicability of the inequality to quantum gases remains open. The present
investigation aims at deriving the analogue of Clausius inequality for quantum systems,
viz., systems of particles following either the Bose-Einstein, or the Fermi-Dirac statistics.
To this effect, a volume V will be considered, bounded by a surface Σ, and containing an
assembly of either fermions or bosons. For simplicity, the volume will be considered fixed
in time. The particles may be subjected to an external force or to a self-consistent field,
with the sole limitation that the only velocity-dependent force be the Lorentz force.

The tool needed for the present purpose is a quantum kinetic equation (QKE) with an
appropriate collision term. To determine the required QKE, first recall how, according to
De Broglie, Bohm and others, quantum mechanics (QM) may be interpreted causally, the
wave function playing the role of the trajectory generating function. Hence, in contrast to
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the more usual Copenhagen interpretation, Bohm’s alternative view leads to individual
systems in precisely defined kinetic states, obeying deterministic laws. In this framework,
a QKE (quantum kinetic equation) can be derived exhibiting the familiar form of the
classical kinetic theory. As this derivation can be found in several papers by the present
authors, it will not be repeated here; the interested reader may find all further details in
refs. [2-5]. The final result will be utilized in the present work, i.e. the kinetic equation
for the single-particle distribution function f1, for particle of mass m, that is

(1)
∂f1

∂t
+ v · ∂f1

∂r
+

F
m

· ∂f1

∂v
=

(
∂f1

∂t

)
coll

,

where the force term F = FQ + Foth is to be interpreted as the sum of the force FQ due
to the quantum potential U
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and a possible force Foth due to any other source. In (2), R is the modulus of the wave
function and h̄ = h/2π, with h the Planck constant.

In the present case, close collisions are modeled with the Boltzmann, Uehling and Uh-
lenbeck (BUU) collision term which takes into account the effects of quantum statistics,
and that can be written as follows (see [6], p. 371, [7] p. 333):
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where the upper sign is to be taken for bosons, the lower one for fermions and the constant
g is given by

(4) g = γ
m3

h3
,

where γ is the statistical weight. Reduced quantities can be defined conveniently as
follows:
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The collision term then becomes
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and finally the dimensionless QKE is written as

(7)
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∂v
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2. – H-function for quantum systems

Define as follows the H-function for the present quantum case (see [8] p. 377, [9])
(once again, upper sign for bosons, lower one for fermions):

(8) HQ = g

∫
�3

{f ln f ∓ (1 ± f) ln(1 ± f)} d3v

and consider derivatives of HQ with respect to α, where α stands for any one of the
independent variables t, x, y or z:
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Applying the above prescription to the time derivative, and introducing the time deriva-
tive of the distribution function as given by (7),
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Consider now the three integrals in eq. (11) separately. The first
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d3v

can be seen to be always ≤ 0 (see, e.g., [10]). The third,

(13) I3 = −g

∫
�3

[ln f − ln(1 ± f)]
F
m

· ∂f

∂v
d3v

vanishes, just as in the classical case, for forces not depending on velocity (which is
the case for the Bohm force), and likewise for the Lorentz force; therefore it brings no
contribution in the present case (see, e.g., [11]). The second term is more conveniently
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written in terms of the peculiar velocity c = v − v0, with v0 the velocity averaged over
the distribution function.

I2 = g

∫
�3

[ln f − ln(1 ± f)]v · ∂f

∂r
d3v(14)
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∂
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·
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Now,
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since the term between brackets is the local value of HQ. To calculate the integral with
the peculiar velocity the following positions will be made:

(16) f = f0Φ1; 1 ± f = (1 ± f0)Φ2,

where f0 is the equilibrium distribution function (as usual, upper sign for bosons, lower
one for fermions)

(17) f0 =
1

e
− μ

KBT e
mc2

2KBT ∓ 1
.

Here no assumption is made on Φ1, which is left therefore completely general: on the
other hand, Φ2 is just a shorthand, and is connected to Φ1 by the following relation:

(18) Φ2 =
1 ± f0Φ1

1 ± f0
.

Introducing these quantities,

(19) f ln f ∓ (1 ± f) ln(1 ± f) = f ln
f0

1 ± f0
∓ ln(1 ± f0) + f ln Φ1 ∓ (1 ± f) ln Φ2

and, given the expression (17) for f0, the first logarithm on the r.h.s. of (19) is

(20) ln
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,

so that the first term on the r.h.s. of (19), once inserted in the integral on the r.h.s.
of (14), yields
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where q is seen to be the usual heat flux.
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The second term on the r.h.s. of (19) leads to a vanishing integral on the r.h.s. of (14),
since the integrand is an odd function in all three components of the peculiar velocity c,
so that

(22) g

∫
�3

c ln

⎡
⎣ e

− μ
KBT e

mc2
2KBT

e
− μ

KBT e
mc2

2KBT ∓ 1

⎤
⎦ d3c = 0.

The remainder of (19) yields a third term that has the dimensions of a flux and is
connected with the departure of f from the equilibrium distribution. In the following it
will be named Z:

(23) g

∫
�3

c [f ln Φ1 ∓ (1 ± f) ln Φ2] d3c = Z.

So finally the time derivative of the H-function becomes
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3. – Entropy

Entropy per unit volume can be tied to the function HQ [12]:

(25) SV = −KBHQ

and hence the total entropy calculated as the integral over the volume V considered is
given by

(26) S =
∫

V

SV d3r = −KB

∫
V

HQd3r = −KBHq
0 .

This relation connects Hq
0 , as defined implicitly in (26), with the entropy when the gas is

in a uniform steady state: out of equilibrium, entropy is not defined in a thermodynamical
sense. Yet, the concept of entropy may be generalized to non-equilibrium states, if the
quantity is redefined by (25) and (26). The quantity so defined coincides with entropy
when the system considered is at equilibrium (see, e.g., [13], pp. 78-79, for an analogous
discussion).

Hence, the time derivative of S can be calculated as (recalling that the volume V is
fixed in time)
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Referring to the surface Σ enclosing the volume V , and using the divergence theorem:

dS
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= −KB
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+
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]
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Recalling that the integral between brackets in the first term of the r.h.s. is always non
positive, and hence that the volume integral is always less or equal zero, the above
expression can be rewritten as

dS
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− KB
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or in “Clausius inequality” form,

(30)
dS

dt
≥

∫
Σ

v0[KBHQ] · n̂dS −
∫

Σ

q
T

· n̂dS +
∫

Σ

KBZ · n̂dS.

The first term contains the quantity v0[KBHQ] = −v0SV which represents the convective
flow of the entropy per unit surface and time: then the integral represents the inflow of
entropy towards the volume V , carried by the incoming flow of particles (this term only
exists if a collective motion through the boundary is present, that is, if the system is
open).

The second term represents the inflow of the quantity q
T towards the volume V . This

is the conductive inflow of entropy, to wit, the one due to thermal exchanges across the
boundary. If, in particular, temperature does not vary over the surface Σ, the integral
gives the familiar Q̇

T term (where Q̇ is the heat flow, the positive direction being, as
usual, towards the volume V ).

In particular, for a closed system with a uniform temperature over the heat exchange
surface, (30) becomes simply

(31)
dS

dt
≥ Q̇

T
+

∫
Σ

KBZ · n̂dS.

4. – Conclusions

Starting from the QKE, an equation has been derived for the time evolution of the
Hq

0 function, and hence, through (26), of the generalized entropy, in quantum systems.
This equation highlights the various phenomena determining the behavior of the entropy
in time. Among the different contributions, it is noteworthy to remark the one due to the
flux Z: this term could not appear in balance equations for entropy that have macroscopic
equations as a starting point and therefore cannot account for effects connected with the
departure of the distribution function from equilibrium. The terms in (28) highlight the
processes leading, as a consequence, to the 2nd Principle of Thermodynamics. Finally, in
this work the Clausius inequality has been derived from the QKE for a quantum system
of bosons or fermions.
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