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I-95125 Catania, Italy
(2) Bergische University of Wuppertal - Gaussstr. 20, Wuppertal, Germany

(ricevuto il 31 Ottobre 2009; approvato il 13 Gennaio 2010; pubblicato online l’8 Marzo 2010)

Summary. — Solutions of a new 2d semiconductor numerical model describing
the electron transport in semiconductors coupled with the heating of the crystal
lattice are presented. The model equations have been obtained with the use of
the maximum entropy principle. Numerical simulations of a nanoscale MOSFET
and inverter circuit are presented and the influence of self-heating on the electrical
characteristics is analyzed.

PACS 63.20.-e – Phonons in crystal lattices.
PACS 46.15.-x – Computational methods in continuum mechanics.
PACS 85.35.-p – Nanoelectronic devices.
PACS 47.11.St – Multi-scale methods.

1. – Introduction

Influence of the thermal heating of the carriers and crystal lattice on the performance
of semiconductor devices increases as the miniaturization is more and more progress-
ing and density of the transistor increases. Consequently the analysis of the thermal
effects becomes more and more important for the validation of device and circuit be-
havior. Therefore new approaches are required for analysis of influence of circuit self-
heating. Typically in commercial circuit simulators semiconductor devices are modeled
with empirical functions but such an approximation might produce not accurate re-
sults for nanoscale devices. In this paper a numerical integration of a new coupled
electro-thermal model for semiconductors, developed recently in [1, 2], is performed. At
macroscopic level, several heuristic models of lattice heating have been proposed in the
literature. They are represented by the lattice energy balance equation and differ for
the proposed form of thermal conductivity and energy production, e.g. [3-8]. Here we
consider a macroscopic model which has been formulated starting from the semiclassical
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description based on the Boltzmann equations describing the electron-phonon system.
The closure relations have been obtained with the maximum entropy principle (hereafter
MEP). The electrons are described with the 8-moment system. The phonons are consid-
ered as two populations: acoustic and non polar optical. The non-polar optical phonons
are described with the Bose-Einstein distribution while the acoustic ones are described
by the MEP distribution function in the 9-moment approximation. Explicit constitu-
tive relations have been obtained with coefficients depending on the electron energy W
and crystal temperature TL and related to the scattering parameters (see [1] for more
details).

In this paper a new 2D coupled electro-thermal numerical model is developed and
simulations are performed. Results for a nanoscale MOSFET coupled electro-thermally
with a circuit are presented and the influence of the thermal effects on the electrical
performance is analyzed.

2. – Mathematical model

The model is represented by the set of equations

∂n

∂t
+ div(nV) = −R,(1)

∂p

∂t
+ div(pVp) = −R,(2)

∂(nW )
∂t

+ div(nS) + nqV · ∇φ = nCW ,(3)

ρcV
∂TL

∂t
− div[K(TL)∇TL] = H,(4)

E = −∇φ, εΔφ = −q(ND − NA − n + p).(5)

n and p are the electron and hole density, respectively, W is the electron energy, TL the
lattice temperature, φ the electrostatic potential and E = −∇φ the electric field. ND

and NA are the donor and acceptor density, respectively (assumed as known functions
of the position). q is the elementary charge, ρ the silicon density, cV the specific heat,
CW the energy production term, which is in a relaxation form CW = −W−W0

τW
, with

W = 3/2kBTL and τW (W ) the energy relaxation time. kB is the Boltzmann constant
and ε is the dielectric constant.

The closure relations for the electron velocity V, the energy flux S, the thermal
conductivity K(TL) and the crystal energy production term H have been obtained in [1,9]
by employing MEP. The holes are described by a standard drift-diffusion model with
constant mobility. Vp is the hole velocity.

In the MEP model the expressions of the electron velocity V and the energy flux S
are given by

V = D11(W,TL)∇ log n + D12(W,TL)∇W + D13(W,TL)∇φ,(6)

S = D21(W,TL)∇ log n + D22(W,TL)∇W + D23(W,TL)∇φ,(7)
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with

D11(W,TL) = DV

[
c
(e)
12 F − c

(e)
22 U

]
, D12(W,TL) = DV

[
c
(e)
12 F ′ − c

(e)
22 U ′

]
,(8)

D13(W,TL) = DV

[
c
(e)
22 e − c

(e)
12 eG

]
, DV (W,TL) =

1

c
(e)
12 c

(e)
21 − c

(e)
22 c

(e)
11

,(9)
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The coefficients c
(e)
ij arise from the momentum and energy-flux production terms and

depend on W and TL. The complete expressions are reported in [1]. Since the electron
production terms are slowly changing with respect to kBTL, we adopt the simplification
that they are evaluated at TL = 300 K.

The phonon energy production is given by

H = −(1 + PS)nCW + PS J · E,(12)

where PS = −c2 τR c
(p)
12 plays the role of a thermopower coefficient and τR is the phonon

relaxation time in resistive processes. In [1, 9] a more general model for H has been
proposed but in the steady state the two expressions are equivalent.

R is the generation-recombination term (see [10] for a complete review) which splits
into the Shockley-Read-Hall (SRH) and the Auger contribution (AU): R = RSRH + RAU

with

RSRH = (np − nini)/(τp(n + n1) + τn(p + p1)), RAU = (Ccnn + Ccpp)(np − nini).

We will take the values Ccn = 2.8×10−31 cm6 s−1 and Ccp = 9.9×10−32 cm6 s−1. In our
numerical experiments we set n1 = p1 = ni, ni being the intrinsic concentration. The
expressions of τp and τn we will use are [10]

(13) τn =
τn0

1 + ND(x)+NA(x)

Nref
n

, τp =
τp0

1 + ND(x)+NA(x)

Nref
p

,

where τn0 = 3.95 × 10−4 s, τp0 = 3.25 × 10−5 s, N ref
n = N ref

p = 7.1 × 1015 cm−3.
On source and drain contacts the Robin boundary condition −kL

∂TL

∂n = R−1
th (TL −

Tenv) is assumed, Rth being the thermal resistivity of the contact and Tenv the environ-
ment temperature. We use no-flux condition for temperature on the lateral boundary
and oxide silicon interface and Dirichlet condition on the bulk contact. The electron en-
ergy on the source, drain and bulk contact is set equal to lattice energy. Other boundary
conditions in the MOSFET model are described in [11].

3. – The numerical method

Crystal lattice temperature TL changes much slower than other variables. For instance
the typical relaxation time for the temperature in our simulations is several thousand
picoseconds, while relaxation time of the other fields is several picoseconds. We exploit
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this double-scale behavior applying a variant of the multirate integration scheme [12]
which is a popular choice in coupled electro-thermal circuit simulation [13]. For the
analysis of the transient response of the model we solve the balance equations by adopting
the following multirate integration scheme:

– Step 1. We integrate the balance equations for electrons and holes, with the crystal
lattice energy and the electric field, obtained by solving the Poisson equation, frozen
at the previous time step, obtaining the electron and hole density and energy at
the next time step. Schematically this step can be written as

(14)
∂Uk

∂t
+ F

(
Uk, φk−1, T k−1

L

)
= 0,

with U = (n, p,W, φ), where k = 1, . . . , N is the index of the integration interval
[tk−1, tk], tk = tk−1 + Δt, Δt being the time size of the synchronization window.

– Step 2. We integrate the lattice energy balance equation with n and W given by
the step 1:

(15) ρcV
∂T k

L

∂t
− div[K(T k

L)∇TL] = H(Uk, T k
L).

For step 1 and step 2 different time steps for numerical integration over the interval
[tk−1, tk] are used. Typically the time step for integration of (15) we can use is 100 times
larger than the time step for (14). This sequence can be considered as steps of a splitting
technique [14] with time step Δt and we can expect that such a numerical scheme is
stable and provides us with a first-order approximation with respect to time.

The numerical scheme for solution of electrical part is based on an exponential fitting
like that employed in the Scharfetter-Gummel scheme for the drift-diffusion model of
semiconductors. The basic idea is to split the particle and energy density currents as the
difference of two terms. Each of them is written by introducing suitable mean mobilities in
order to get expressions of the currents similar to those arising in other energy-transport
models known in the literature. A simple explicit discretization in time with constant
time step proves satisfactorily efficient avoiding the problem related to the high nonlinear
coupling of the discretized equations. The model equations are spatially discretized on
a regular grid. The details of numerical scheme can be found in [11].

To solve a lattice energy equation (15) a coordinate splitting technique [14] is used. For
the space approximation in every direction an implicit time scheme with the three points
stencil is chosen. The obtained linear system can be solved efficiently with tridiagonal
matrix factorization procedure. We remark that usage of the implicit time scheme for
lattice energy operator significantly improves overall simulation time.

4. – Numerical simulation of crystal heating in MOSFET

In this section we present the numerical simulations of the heating of the crystal
lattice in a MOSFET described by the MEP model and a solution of an inverter circuit
containing a nano-scale MOSFET. For the single MOSFET the steady-state solution is
analyzed while for the coupled device-circuit system the transient is simulated.

Concerning the physical parameters, we have modeled the thermal conductivity
with the fitting formula K(TL) = 1.5486(TL/300K)−4/3 VA/cm K, assumed cV =
703 m2/s2 K (see [10]) and set Tenv = 300 K. The hole low field mobility is set equal
to 500 cm2/V s.



SIMULATION OF ELECTRON DEVICES BY THE MEP MODEL FOR SEMICONDUCTORS 227

Fig. 1. – Schematic representation of a bidimensional MOSFET.

The shape of the device is depicted in fig. 1. The length of the channel is 50 nm, the
gate length is 45 nm, source and drain are 25 nm long. The source and drain depths are
0.1 μm. The gate oxide is 5 nm thick. The substrate thickness is 0.4 μm. The environment
temperature Tenv is set equal to 300 K. In our numerical experiments we take the thermal
resistivity Rth = 10−8 Km2/W as in [15]. The doping concentration is

(16) ND(x) − NA(x) =

{
1017 cm−3 in the n+ regions
−1014 cm−3 in the p region

with abrupt junctions. The gate voltage is VDG = 0.8 V.
The steady-state solutions of the electron density and energy and the electrostatic

potential, have a qualitative behaviour similar to the case when TL is kept constant at
the equilibrium value (the interested reader can see [11]), as shown in figs. 2-4.

The stationary solution of the crystal temperature is plotted in fig. 5. In the most part
of the device there is a clear departure of the crystal temperature from the equilibrium

Fig. 2. – Stationary solution for electron density in MOSFET with 50 nm channel in logarithm
scale.
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Fig. 3. – Stationary solution for electron energy in MOSFET with 50 nm channel.

Fig. 4. – Stationary solution for voltage in MOSFET with 50 nm channel.

Fig. 5. – Stationary solution for lattice temperature distribution in MOSFET with 50 nm channel
length.
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Fig. 6. – Drain current with constant and simulated lattice temperature for MOSFET with
50 nm channel n+ = 1018 cm−3, Rth = 10−8. VDG = 0.4, 0.6, 0.8, 0.9 V. The current increases
as VDG increases.

value. In particular the lattice temperature raises more than 400 K in the area near the
gate where there is the maximum for the electron energy. This is of crucial importance in
the design of electron devices because the presence of hot spot can damage the MOSFET.
Such an effect is not relevant in devices of order of microns or few tenths of micron,
but by shrinking the dimension of the device to nanoscales, the crystal heating effects
have also a non-negligible influence on the current through the device. In fig. 6 current
voltage characteristics for the device with n+ = 1017 cm−3 are shown. As the electric
field increases there is a significant difference between the characteristic curves with
constant lattice temperature and those with varying TL, influencing the performance of
the transistor, especially when coupled with other devices in a complex circuit.

To analyze this fact we simulate the heating of a transistor in the electrical circuit
representing an inverter. The inverter circuit is plot in fig. 7. Input voltage on the
gate contact is (in Volt) Vin = 0.3 cos(ωt) + 0.5, with frequency ω = 2π 109 rad/s and
power voltage Vdd = 1 V. Load capacitance C = 0.1 fF and R = 2 103 Ω. The width
of the transistor (length in the orthogonal direction with respect to the considered 2D
cross-section) is set equal to 200 nm. Modified nodal analysis gives us for the output
voltage Vout:

(17) C
dVout

dt
+

Vout − Vdd

R
+ j(Vin, Vout, t) = 0,

where current through the transistor j(Vin, Vout, t) is computed by the energy-transport
model. We refer for instance to [15] for details of device-circuits coupled modeling

Fig. 7. – Simulated inverter circuit.
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Fig. 8. – On the left input and output voltages vs. time. On the right maximum value of the
lattice temperature in the MOSFET vs. time.

algorithm. The output voltage simulated with and without transistor self-heating and
maximum temperature in the transistor are plot in fig. 8. One can see that lattice
temperature in the transistor does not achieve 400 K as we have observed in the single
transistor simulation. It can be explained with smaller average voltage at the gate and
consequently smaller average electrical field. However there is still a shift in the minimum
values of the output voltage and a clear indication of the crystal heating.
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