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Summary. — Discretization methods have been developed on the idea of replac-
ing the original Boltzmann equation (BE) by a finite set of nonlinear hyperbolic
PDEs corresponding to the densities linked to a suitable finite set of velocities. One
open problem related to the discrete BE is the construction of normal (fulfilling only
physical conservation laws) discrete velocity models (DVMs). In many papers on
DVMs, authors postulate from the beginning that a finite velocity space with such
properties is given and after that study the discrete BE. Our aim is not to study
the equations for DVMs, but to discuss all possible choices of finite sets of velocities
satisfying this type of restrictions. Using our previous results, i.e. the general algo-
rithm for the construction of normal discrete kinetic models (DKMs), we develop
and implement an algorithm for the particular case of DVMs of the BE and give a
complete classification for models with small number n of velocities (n ≤ 10).

PACS 51.10.+y – Kinetic and transport theory of gases.
PACS 05.20.Dd – Kinetic theory.

1. – Introduction

In this paper, we discuss a general problem related to spurious conservation laws for
discrete velocity models (DVMs) of the classical (elastic) Boltzmann equation (BE). This
problem is well known, models with spurious conservation laws appeared already at the
early stage of the development of discrete kinetic theory [1,2]. Making a transition from
the Boltzmann equation to its discrete version, we often gain some unphysical (spurious)
conservation laws. The well-known theorem of uniqueness of collision invariants [3] for
the “continuous” velocity space R

d very often does not work for a finite set of discrete
velocities. In 1985, Cercignani introduced [3] the word “normal” for DVMs, which do
not have unphysical conservation laws. This terminology became standard and we use it
in this paper. Such a condition is usually assumed in most of the mathematical papers
on DVMs (see for review [2], and also more recent works like [4,5]). The progress in the
construction of normal models was relatively slow. The inductive method of 1-extensions
was proposed in [6] and proved in [7, 8]. A practical criterion for “normality” was also
found [9]. However, these were some particular results which did not answer many
questions. In particular, it was not clear how to construct all normal DVMs with given
number of velocities, what sort of general classification can be introduced for such models,
etc. We addressed these and similar questions in our recent publications [10, 11]. The
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main goal of this paper is to address all questions related to classical DVMs without
trying to consider any generalizations. Most of our results (a complete description of
normal DVMs with small number of velocities) are obtained for the plane case. Similar
problems in 3d still remain unclear. However, our method can also be used in this case.

2. – Statement of the problem

We consider below the case of the elastic discrete velocity models (DVMs) and the
problem of classification and construction of all normal DVMs, when the dimension d
and the order n of the model are known. The general DVM of the BE reads [2, 1]

(1)
(

∂

∂t
+ vi ·

∂

∂x

)
fi(x, t) = Qi(f) = Qi(f1, . . . , fn), i = 1, . . . , n,

where x ∈ R
d and t ∈ R+ denote the position and the time, respectively, and

(2) V = {v1, . . . ,vn} ⊂ R
d, d = 2, 3, . . .

denotes a set of n distinct velocities of the model. The functions fi(x, t) are understood
as spatial densities of particles having velocities vi ∈ R

d. The collision operators Qi(f)
in (1) are given by

(3) Qi(f) =
n∑

j,k,l=1

Γkl
ij (fkfl − fifj) for i = 1, . . . , n.

This means that particles can change their velocities through pair collisions (reactions)

(4) (vi) + (vj) → (vk) + (vl)

with probabilities Γkl
ij , 1 ≤ i, j, k, l ≤ n, such that Γkl

ij = Γkl
ji = Γij

kl ≥ 0, with equality
sign unless the conservation laws

(5) vi + vj = vk + vl, |vi|2 + |vj |2 = |vk|2 + |vl|2

are satisfied. The elastic collision (4) satisfies (d+2) scalar conservation laws (one mass,
d momentum and one energy), and therefore the four velocities form a rectangle in R

d.

Definition 1. A DVM (1), (3) is called normal if any solution of the equations

(6) Ψ(vi) + Ψ(vj) = Ψ(vk) + Ψ(vl),

where indexes (i, j; k, l) take all possible values satisfying (5), is given by
Ψ(v) = a + b · v + c|v|2, for some constants a, c ∈ R and b ∈ R

d.

A practical criterion of the normality (non-existence of spurious conservation laws)
for any given DVM has been devised in [9] and generalized to discrete kinetic models
in [10,11]. Consider an arbitrary DVM and introduce a set of vectors of reactions [9]

(7) θkl
ij =

(
. . . , 1

(i)
, . . . , 1

(j)
, . . . ,−1

(k)
, . . . ,−1

(l)
, . . .

)
∈ R

n,Γkl
ij > 0,
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for any combination of indices (i, j; k, l) such that Γkl
ij > 0 (dots stand for zeros). The

conservation law (6) can be rewritten as Ψ · θkl
ij = 0, Γkl

ij > 0, where

(8) Ψ = (Ψ(v1), . . . ,Ψ(vn)) ∈ R
n.

The set of vectors of reactions (7) with Γkl
ij > 0 can be written, one vector-row under

another one, in the form of a matrix Λ. We call such matrix Λ the matrix of reactions
of the model and the corresponding set of vectors of reactions (7), the set of reactions of
the model (denoted by Λ̃). The rank of the matrix Λ cannot, by the construction of the
DVM, exceed (n − (d + 2)), since for v = (v(1), . . . , v(d)), the functions

(9) Ψ0(v) = 1; Ψα(v) = v(α), α = 1, . . . , d; Ψd+1(v) = |v|2

lead to (d + 2) linearly independent vectors (8) of conservation laws.
Hence, the DVM is normal if and only if the rank r(Λ) = n − (d + 2), provided that

the vectors (8), (9) are linearly independent. This idea helps to reject the “bad” (not
normal) DVMs; however, it says nothing about the way to construct normal models.

Our goal is to describe and construct all distinct non-degenerate normal DVMs for
elastic collisions {V,Λ(V )}, where V (2) is the velocity set and Λ(V ) represents the
matrix of reaction of the model, when the order n ≥ 4 and the dimension d ≥ 2 are
given. By “non-degeneracy” we mean the following.

Definition 2. The velocity set V of an elastic DVM is said to be non-degenerate if the
equalities a + b · vk + c|vk|2 = 0, b ∈ R

d, a, c ∈ R, k = 1, . . . , n, imply a = c = 0,
b = 0. Otherwise the set is said to be degenerate. The same terminology is used for
corresponding DVMs {V,Λ(V )}.

It is clear that each normal non-degenerate DVM in R
d has p = d + 2 basic linearly

independent invariants: u1(V ) = (1, . . . , 1), uα(V ) = (v(α−1)
1 , . . . , v

(α−1)
n ) where α =

2, . . . , d+1 and ud+2(V ) = (|v1|2, . . . , |vn|2), corresponding to the p = d+2 conservation
laws for the spatially homogeneous version of eq. (9)

(10)
n∑

k=1

fk(t)=const ∈ R+;
n∑

k=1

fk(t)vk =const ∈ R
d;

n∑
k=1

fk(t)|vk|2 =const ∈ R+.

Following [10, 11], we introduce the space of invariants U(V ) = Span{uα(V ), α =
1, . . . , d+2}, and the space of reactions L(V ) = Span{Λ̃(V )}, where Λ̃(V ) is the set of re-
actions of the model. Then, for any non-degenerate normal DVM, we obtain L⊕U = R

n,
dim U = d + 2, dimL = n − d − 2, where ⊕ denotes the orthogonal sum. The set Λ̃(V )
contains at most (n − d − 2) linearly independent vectors of reactions, which can be
chosen, generally speaking, in a non-unique way. We shall see below that any collection
of such vectors is sufficient to find the velocity set V , though there are some special
cases when this problem has several non-trivial solutions. Thus, we can characterise
any normal non-degenerate d-dimensional DVM by a “basic” set Λ̃

′
of (n − d − 2) lin-

early independent reactions, omitting all their linear combinations. The corresponding
(n−d−2)×n matrix Λ

′
, whose rows are the vectors of reactions, will be considered as the

matrix of reactions of the model. Primes are omitted below. The main idea behind the
description of all normal non-degenerate DVMs in R

d, with n velocities, is very simple.
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Any such model has exactly (n− d− 2) linearly independent vectors of reactions. These
vectors form a matrix with (n − d − 2) rows and n columns. Each row has only four
non-zero elements, two ones and two minus ones (7). It is obvious that the total number
N(d, n) of such matrices (with a given pair of numbers d ≥ 2 and n ≥ d + 2) is finite.
Moreover, this number can be significantly reduced if we note that all matrices obtained
by permutations of columns or rows correspond to the same model. The most general
method is to generate all such matrices by computer and then to decide, by using some
algorithm (see sect. 3), whether or not the given matrix is a matrix of reactions of some
“real” DVM. Each DVM is completely defined by its velocity set V , since all possible
elastic collisions are allowed. This motivates the following definition.

Definition 3. Two DVMs with the velocity sets V = {v1, . . . ,vn} ⊂ R
d and V

′
=

{v′

1, . . . ,v
′

n} ⊂ R
d are said to be equivalent if V

′
can be obtained from V by a sequence of

the following operations: a) change of numeration of velocities; b) rotations, reflections
and translations in R

d; c) scaling transformations v
′

i = αvi in R
d.

Our aim is to construct all distinct (non-equivalent) normal DVMs. The first step is to
reduce the number of possible sets Λ̃ of reactions by demanding that the model should
have exactly n distinct velocities.

Definition 4. The set Λ̃ of m linearly independent vectors is said to be admissible if
ek − el /∈ Span Λ̃, 1 ≤ k < l ≤ n, for any pair of unit vectors in R

n. A matrix Λ of
reactions is said to be admissible if the corresponding set of reactions Λ̃ is admissible.

Lemma 1. The condition vk �= vl for k �= l is fulfilled for all vi ∈ V (2), i = 1, . . . , n, if
and only if the corresponding set Λ̃ of reactions of the normal model is admissible.

Any DVM with n distinct velocities has an admissible set of reactions Λ̃. This leads to
certain restrictions on the set of possible matrices Λ for normal DVMs. In the plane case
d = 2, all normal models with n ∈ {7, 8} velocities can be obtained from two 6-velocity
models by 1-extentions. This is not true, however, for n ≥ 9, where we find “irreducible”
normal models (that can not be obtained by 1-extension of some normal model).

3. – General algorithm for the construction of normal DVMs

We consider a (n − d − 2) × n matrix Λ with (n − d − 2) linearly independent rows
of the form (7) and assume that Λ is a matrix of reactions of a non-degenerate DVM
{V,Λ(V )}. How to find the velocity set V = {v1, . . .vn} ⊂ R

d? Of course, such set is not
unique since rotations, reflections, translations and scaling transformations of velocities
do not change the matrix Λ. Our goal is to find at least one appropriate set V . We note
that we can always use a permutation of columns of Λ together with a corresponding
change of velocities. On the other hand, any matrix Λ has a rank r(Λ) = n− d− 2, and
can be transformed by permutation of columns to the form

(11) Λ =

⎛⎝ B(n−p)×p

∣∣∣∣∣∣ A(n−p)×(n−p)

⎞⎠ .

Note that the matrix B contains p = d + 2 columns which correspond to a subset of
velocities V1 = {v1, . . . ,vp}. The following statement explains in terms of V1 when the
above representation is valid.
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Fig. 1. – All normal DVMs with up to 8 velocities.

Lemma 2. Let Λ be a (n − p) × n matrix of a non-degenerate DVM. Then the condition
det A �= 0 in the representation (11) of Λ is valid if and only if the corresponding subset
V1 ⊂ V is non-degenerate (see Definition 2).

One can apply Lemma 2 to our problem of finding the velocity set V = {v1, . . . ,vn} for
a given matrix Λ. The method is presented in [12]. We present below the steps of the
general algorithm for the construction of normal elastic DVMs in any dimension and for
any number of velocities.

Step 1. Generate all (n − d − 2) × n Λ-matrices having as rows (n − d − 2) linearly
independent vectors of type (7). In addition, these matrices should be admissible. The
set Θ = {Λ1, . . . ,ΛN}, of all generated matrices Λ, is obviously finite.

Step 2. For j = 1, . . . , N take Λ = Λj ∈ Θ. Suppose that there exists a normal
discrete DVM with the matrix Λ of reactions and denote by X = (x1, . . . ,xn),xk ⊆ R

d,
k = 1, . . . , n, the vector of velocities of the model. Denote X̃ = (|x1|2, . . . , |xn|2). Check
the solvability of the system

(12)

{
ΛX = O(n−d−2)×d,

ΛX̃ = O(n−d−2)×1,

where Oi×j is the (i × j) null-matrix. A general way to check the solvability of the
system (12) is discussed in [12]. The case of small number of velocities n ≤ 10 is
discussed below.

4. – Normal plane elastic models with n ≤ 8 velocities

From the geometrical point of view, a normal plane elastic model is a lattice of rect-
angles. The simplest model has six vertices (velocities) and two independent rectangles;
for normal models, the number p of independent rectangles is given by the equality
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p = n−d−2, where n is the number of points and d is the dimension. All 6-velocity nor-
mal models contain two independent rectangles having two vertices in common. Hence,
they contain: (a) two rectangles that share one side; (b) two rectangles having a diagonal
in the first rectangle as a side in the second one; (c) two rectangles that share one diago-
nal. The last case represents a degenerate model. The two normal 6-velocity models are
illustrated in fig. 1 (first row) and their corresponding Λ -matrices are

(13) Λ(a) =
(

1 −1 1 −1 0 0
1 0 0 −1 1 −1

)
, Λ(b) =

(
1 −1 1 −1 0 0
1 0 −1 0 1 −1

)
.

Using the 1-extension method [7], we construct all distinct normal models [10] for n ≤ 8:
three 7-velocity normal models (fig. 1, second row) and eight 8-velocity normal mod-
els (fig. 1, last two rows). All normal models with n ≤ 8 are reducible [10], i.e. are
1-extensions [7]. This is however not true for n ≥ 9 as we shall see below.

5. – Algorithm for the construction of normal plane elastic models with small
number of velocities

One can prove [10] that all normal models of order n ≤ 10 contain a 6-velocity normal
model (fig. 1). Because of the invariance under rotations, reflections, translations and
scaling transformations, the first components of the vector X of phase points of the model
are: x1 = (0, 0); x2 = (1, 0); x3 = (1, θ); x4 = (0, θ), θ ∈ R+. Hence, we can partition
the normal models in two classes: i) models that contain a 6-velocity normal model of
type (a); ii) models that contain a 6-velocity normal model of type (b).

The system (12) can be then rewritten in the case i) as

(14)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = (0, 0); x2 = (1, 0); x3 = (1, θ); x4 = (0, θ), θ ∈ R+,

x5 = (μ, θ); x6 = (μ, 0), μ ∈ R\{0, 1},
xk = (a

′

k, b
′

k), k = 7, . . . , n,

ΛX = 0, X = (x1, . . . ,xn), xk ∈ R
2, k = 1, . . . , n,

ΛX̃ = 0, X̃ = (|x1|2, . . . , |xn|2)

and in the case ii), as the system (14) with modified x5 = (1−μθ, θ +μ), x6 = (−μθ, μ),
μ ∈ R\{0}. Since for n ≤ 10 all normal models have a corresponding Λ-matrix of reac-
tions which contains a 6-velocity model of type (a) or type (b), and since interchanging
rows or columns lead to equivalent models, we can state that all matrices corresponding
to normal models of order n can be expressed as

(15) Λ =

⎛⎝ Λ(a),(b)

B
′

(n−6)×6

∣∣∣∣∣∣
O2×(n−6)

A
′

(n−6)×(n−6)

⎞⎠ ,

where Λ(a),(b) is one of the matrices Λ(a) or Λ(b) in (13). Using Lemma 2 one can prove
that the matrix A

′
in (15) is invertible, i.e. det A

′ �= 0. The following algorithm contains
the same two steps as in the general case described in sect. 3.

Step 1A. Generate all admissible matrices Λj , j = 1 . . . N , for reducible models. To
find reducible models (1-extensions), only one new velocity is added to an already existing
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Fig. 2. – All 9-velocity normal DVMs.

(n− 1)-velocity normal model, i.e. to a given (n− 1)× (n− 5) matrix, corresponding to
an (n−1)-velocity normal model, we need to add one new column containing only zeros,
and then add one new row of length n. The last element in the new row must be either
1 or (−1). The rest of the row must be created in the way that, in total, it contains two
1 and two (−1), and the remaining elements are 0. We generate all possible rows and
add them to all (n− 1)-velocity models and get us all Λj matrices for 1-extensions, with
N = 105 for n = 8, N = 784 for n = 9, and N = 2520 for n = 10. Continue to step 2.

Step 1B. Generate all admissible matrices Λj , j = 1 . . . N , for irreducible models. We
divide all possible matrices in two cases, Case i) with Λa and Case ii) with Λb, as the
first two rows filled with zeros in the (n − 6) remaining columns. Then we generate all
possible outcomes of the remaining (n− 6) rows, where the following properties must be
fulfilled: a) each row must contain two (−1), two 1, and the rest 0; b) in two different
rows, one cannot have three nonzeros in common (since three vertices define completely
a rectangle); c) multiplying one row with (−1), makes no difference; d) interchanging
rows gives equivalent models; e) the matrix must be admissible (the model must have
exactly n distinct velocities (Lemma 1)): to check this, one row containing one element
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Fig. 3. – All 10-velocity normal DVMs.
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1, one element (−1), and the rest zero, is added to the n × (n − 4)-matrix; the new
n× (n− 3)-matrix should have a rank equal to (n− 3); f) in all columns we should have
at least two non-zeros (only one non-zero corresponds to possible matrices for 1-extension
models, already taken care of in Step 1A); g) det Λ(3 : n − 4, 7 : n) �= 0.

For n = 8 we obtain no matrices satisfying the conditions a)-g) (i.e. all 8-velocity
normal DVMs are 1-extensions). For n = 9 we get N = 7779 matrices (3486 from Case i)
and 4293 from Case ii)), and for n = 10 the number of matrices is N = 7515893 (3416565
from Case i) and 4099328 from Case ii)).

Step 2. Verify the solvability of the system (14), i.e. verify if a given matrix Λj gives a
normal n-velocity model. If the system has a solution (or solutions), a normal n-velocity
model(s) is found. Step 2 is repeated until all Λj are checked.

By implementing the above given algorithm we get the complete result for the cases
n ∈ {9, 10}: nine 9-velocity normal DVMs that are 1-extensions (first nine models in
fig. 2), six 9-velocity normal DVMs that are not 1-extensions (last six models in fig. 2),
nine 10-velocity normal DVMs that are 1-extensions (first nine models in fig. 3), six
10-velocity normal DVMs that are not 1-extensions (last six models in fig. 3).

6. – Conclusions

The main result of this paper is the complete classification (description of all different
models) of plane normal DVMs with small number of velocities (up to 10). All models
with up to 8 velocities are reducible (results of the 1-extensions method [6]). For n ≥ 9
we also find irreducible normal models. Our algorithm allows us to give a full description
of all possible non-equivalent normal DVMs in any dimension and with any number of
velocities. We hope to consider the related 3d problems in the future publication.
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