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Exploding Sudakov form factors
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Summary. — Contrary to what naively expected, we find that in spontaneously
broken gauge theories the resummations of Sudakov double logs (in the presence
of an energy scale Q much larger than the mass scale v of the spontaneous gauge

breaking) are exponentiated also with a positive coefficient e
+α log2 Q2

v2 . The am-
plitudes affected by such a term are proportional to v and have a non-zero total
gauge charge. As a working example we consider a model with two Abelian gauge
groups U ′(1)⊗U(1) with large mass splitting MZ′ � MZ , and we compute leading
radiative corrections to the decay of the heavy extra Z′ boson into light fermions.

PACS 11.15.Bt – General properties of perturbation theory.
PACS 11.15.Ex – Spontaneous breaking of gauge symmetries.

1. – Description

The observation that the leading behavior of electroweak corrections at energies much
larger than the electroweak scale ∼ 100 GeV are dominated by the infrared structure
of the theory [1] has brought considerable interest in the infrared structure of broken
gauge theories [2-6]. This interest is motivated phenomenologically by the possibility
of having in a hopefully nearby future colliders operating at such very high energies.
Infrared/collinear logarithms account in this regime for a large fraction of the one-loop
radiative corrections and provide non-negligible higher-order corrections. Previous anal-
yses mostly convey their attention on charge-conserving amplitudes, which are the lead-
ing terms for high-energy phenomenology. The present paper is a review of the results
founded in collaboration with Marcello and Paolo Ciafaloni in the more complete pa-
per [7]. Here we investigate, at double-log level, the Sudakov form factor due to the
insertion of soft gauge bosons belonging to a broken gauge theory, for amplitudes whose
total gauge charge is not zero. These amplitudes are proportional to the vev responsible
of the breaking of the gauge group and in the high-energy regime are necessarily higher
twist. One may say they are unimportant, but their radiative corrections turn out to
have curious properties which make them at least theoretically relevant. The basic model
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we consider contains two chiral spontaneously broken gauge groups U ′(1) ⊗ U(1). We
assume a large mass splitting (M � mZ , M being the Z ′ mass), so that the Z ′-boson
does not participate to the IR dynamics. Thus, the U ′(1) allows to construct sim-
ple amplitudes with total gauge charge violation, in our case induced by the operator
ψ̄Z ′

μνσμν ψ (Z ′
μν = ∂μZ ′

ν − ∂νZ ′
μ) describing the magnetic dipole moment of the Z ′

gauge boson. More explicitly, since left and right fermion U(1) hypercharges need not be
the same, the amplitude connecting the Z ′ with a left fermion and a right antifermion
violates U(1) (hyper)charge conservation. We compute the all order

(
α log2 M2

m2
Z

)
dou-

ble leading logs (DLL), taking care of the leading mass suppressed corrections of order
O

(
m2

M2

)
, m being the fermion mass. We find that, among the form factors describing the

effective couplings of the Z ′ to the two light fermions, only the magnetic one can develop
exponentially growing Sudakov-like corrections. We start by writing the most general
Lagrangian describing the gauge bosons-fermion interactions (we assume usual kinetic
terms for the Abelian gauge bosons):

(1) ψ̄L(∂/ + i g yL Z/ + i g′ fL Z/′)ψL + ψ̄R(∂/ + i g yR Z/ + i g′ fR Z/′)ψR,

where ψL/R = 1±γ5
2 ψ, fL/R (yL/R) are the U ′(1) (U(1)) hypercharges for left/right

fermions. To implement, in a natural way, the spontaneous breaking of the gauge groups
U ′(1) ⊗ U(1) we need at least two complex Higgs fields, one, let us call φ′ = 1√

2
(h′ +

v′ + i ϕ′) with v′ the vev breaking U ′(1) and another scalar field, φ = 1√
2
(h + v + i ϕ)

with v involved into the breaking of U(1). The hierarchy MZ′ � mZ implies necessarily
v′ � v. The fermionic mass m being of order mZ will be induced by the Yukawa
interaction hf ψ̄R φ ψL + h.c. so that m = hf√

2
v and for charge conservation we need

both fφ = fR − fL = 2 fA and yφ = yR − yL = 2 yA. Note that if fA �= 0 also the scalar
field φ will participate to the breaking of U ′(1) and it will induce mixing between the
gauge bosons Z − Z ′ and the Goldstone modes ϕ′ − ϕ. To be as simple as possible we
decided to study a vector like U(1) group where fL = fR → fφ = 0. In order to clarify
the above considerations we write the Lagrangian for the scalar sector(1)

(2) |(∂μ + i g′ fφ′ Z ′
μ)φ′|2 + |(∂μ + i g yφ Zμ)φ|2 + (hf φ ψ̄R ψL + h.c.) + V (φ) + V(φ′)

and the Feynman Gauge as gauge fixing. Working in the limit mf,Z

M � 1 we prefer
to use the gauge eigenstate basis as propagating free fields with the mass shifts used
as perturbations. The Z ′ field has mass M2 = g

′ 2 f2
φ′ v

′ 2 while the Z field has mass
m2

Z = g2 y2
φ v2.

2. – Form factors for the vertex Z ′ → f̄ f

The amplitude for Z ′ decay Z ′
μ(p1 + p2) → f̄(p2) f(p1) is given by εμ(p1 +

p2)ū(p1)Γ
(Z′)
μ v(p2) where εμ(p) is the physical Z ′ polarization satisfying

∑
a εa

μεa
ν =

−gμν + pμpν

p2 . In order to compute the effect induced by the multi loops generated

(1) The scalar potentials V (φ) and V(φ′) are responsible for the generation of the spontaneous
symmetry-breaking scales v and v′.
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by integrating over soft Z-gauge bosons, we introduce the more general CP invariant
vertex:

ū(p1)Γ(Z′)
μ v(p2) = i g′ ū(p1)

[
γμ(FLPL + FRPR) +

m (p1 − p2)μ

(p1 · p2)
FM(3)

+
m (p1 + p2)μ

(p1 · p2)
FP γ5

]
v(p2),

where PR,L = 1
2 (1±γ5) and FM is usually named magnetic form factor and (p1 +p2)2 =

M2, p2
1,2 = m2. We also introduce FV = 1

2 (FR + FL) and FA = 1
2 (FR − FL), the

same relationships hold also for the tree level charges fi and yi. Defining ρ = m2

p1p2
,

the amplitudes squared for the various positive (+) and negative (−) helicity fermions,
summed over the Z ′ polarizations, are given by

|M++|2
4(p1p2)

=
(
FV − FA

√
1 − ρ

)2 |M−−|2
4(p1p2)

=
(
FV + FA

√
1 − ρ

)2

,(4)

|M+−|2
4(p1p2)

=
|M−+|2
4(p1p2)

= ρ
[
F 2

A + (FV − FM (1 − ρ))2
]
.(5)

The corresponding widths can be obtained multiplying by the appropriate phase space
factors. Notice that, since (p1 + p2)μεμ(p1 + p2) = 0, the form factor FP does not
contribute to physical amplitudes. In the next section we calculate the on-shell one-loop
form factors in the limit M � mZ , m, retaining only the DLL contributions. Since we
want to calculate the decay rates and the cross-sections up to O(ρ), we need the values
of FM to order ρ0 and of FL,R to order ρ1.

2.1. Form factors at one loop. – Let us see the result of the evaluation of the one-loop
amplitude at DLL approximation.

F
(1)
L = f

(
−y2

L +
ρ

2
(y2

R − y2
L)

)
L2; F

(1)
R = f

(
−y2

R − ρ

2
(y2

L − y2
R)

)
L2;(6)

F
(1)
M = yA f(yL − yR) L2; F

(1)
P = yA f(yL + yR) L2;(7)

where α
4π log2 M2

m2
Z
≡ L2; α = g2

4π . One can see that the IR double logs affect both O(ρ0)

and O(ρ) corrections; the latter are proportional to the yA charge of the fermions, that
is non-zero only for chiral U(1) gauge theories (clearly such double logs are not present
in QED [8] and QCD). There is another class of diagrams coming from Z-Z ′ mixing and
from the Higgs/Goldstone sector that gives DLL at order ρ potentialy interesting. We
demonstrated that they do not generate corrections to the anomalous Sudakov and in
any case in the limit of fφ = 0 and for hf � g2 they are totally negligible.

3. – All-order resummed form factors

Since we work in the regime M � mZ , our first-order calculations cannot be trusted
because L2 � 1, and we have to proceed to the resummation of all the DLL (L2n).
The dressing by soft boson insertions of the eikonal type can be explicitly taken into
account at all orders by making use of the eikonal identity (see [9] for instance). We
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illustrate this calculation by adopting the method of k⊥-ordering: the leading terms in
the resummed series are given by “ladder” insertions ordered in the soft variable k⊥,
which is the transverse momentum of the soft gauge boson(2). The resummation of the
soft gauge bosons for momenta in the range kinf

⊥ ≤ k⊥ ≤ ksup
⊥ is given by the following

Sudakov form factor [10]:

(8) Si,j [k
sup
⊥ , kinf

⊥ ] = exp

[
− α

2π
yi yj

∫ k2 sup
⊥

k2 inf
⊥

dk2
⊥

k2
⊥

log
M2

k2
⊥

]
,

where yi, yj are the relevant U(1) charges. In general terms we have only three possible
Sudakov structures: SLL, SRR and SL,R that after momenta integration will generate
three kinds of Sudakov exponents: e−y2

L L2
, e−y2

R L2
and e−yL yR L2

. While the first two
are exponentially suppressing their multiplicative factors, the last one (e−yL yR L2

), that
we call Anomalous Sudakov, depending on the sign of the charges yL,R can generate
exponential growing corrections (for yL yR < 0).

We obtain the following results coming from pure Z boson exchanges:

F
(Z)
L = f

(
e−y2

LL2 − ρ

2

(
e−y2

RL2 − e−y2
LL2

))
,(9)

F
(Z)
R = f

(
e−y2

RL2 − ρ

2

(
e−y2

LL2 − e−y2
RL2

))
,(10)

F
(Z)
M =

f

2

(
e−y2

LL2
+ e−y2

RL2
)
− f e−yL yR L2

,(11)

F
(Z)
P =

f

2

(
e−y2

LL2 − e−y2
RL2

)
(12)

from which we can extract the following results:

– the axial and vector form factors related to FL and FR receive, after resumma-
tion, only “standard” Sudakov form factors (e−y2

L L2
, e−y2

R L2
) that exponentially

suppress the amplitudes at very large energies.

– The magnetic dipole moment form factor FM gets dressed also with the Anomalous
Sudakov (e−yL yR L2

) whose exponent can be positive if yL yR < 0. If this is the
case, FM asymptotically dominates over FL, FR.

4. – Asymptotic dynamics

If yL yR < 0, the terms proportional to the exponentially growing form factor FM in
the squared amplitudes (4), (5) dominate over the terms in FL,R for M � mz, m. At
what energy scales M does this happen?

The helicity changing decay rate Γ+− becomes

(13) Γ+− � Γ0
+−

1
4

(
4e−2yLyRL2

+ e−2y2
RL2 − 2e−(y2

L+y2
R)L2

+ e−2y2
LL2

)
+ O(ρ2),

(2) We have checked that the explicit computation using the eikonal identity produces the same
results obtained by k⊥-ordering.
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where Γ0
+− is the tree level rate. The resummed expression is a combination of decreasing

and one potentially increasing (for yL yR < 0) exponentials. In the limit L2 � 1 and for
yL yR < 0 quickly the resummed value becomes twice as big as the tree level one, giving
a 100% radiative correction that puts in evidence the importance of the resummation.
This happens for scales such that

(14) e−2 yLyRL2
= 2 ⇒ M

mZ
= exp

[√
π log 2

−2yLyRα

]
.

For yL = −yR = 1, α ∼ 1/30 and mZ ∼ 100 GeV one obtains energies of the order of
30 TeV, which is a relatively low scale value!

For other observables like the full decay rate Γ̄ the expansion in ρ gives

Γ̄ ∝ f2
(
e−2y2

RL2
+ e−2y2

LL2
)

(15)

+2ρf2

(
e−2yLyRL2 − e−(y2

L+y2
R)L2

+
1
2

(
e−2y2

LL2
+ e−2y2

RL2
))

In this case the anomalous Sudakov is always multiplied by a power of ρ.
If we compare the ρ = 0 terms with the anomalous exponential corrections, we see

that they are of the same order when

(16) ρ e−2yLyRL2 ∼ e−2y2
R,LL2

and for m ∼ mZ (just to have the order of magnitude) this happens at mass scales

(17) M ∼ m e
2 π

α (yLyR−y2
L,R

) ,

that is of the same order of the Landau-Pole (LP) energy ELP ∼ m e
π

βα (where β is the
beta-function of the U(1) gauge group). Implementing the above results for the Standard
Model, it is straightforward to identify the chiral gauge group U(1) with U(1)Y , with
mZ exactly the gauge boson Z mass of 91 GeV. Then, from the analysis of the quantum
number of the SM fields we see that U(1) “anomalous” Sudakov form factors are present
only for the down quark sector where yL = 1

6 and yR = − 1
3 so that yL yR = − 1

18 < 0.
The phenomenological relevance of the above effects in this case results quite sup-

pressed first of all for the smallness of the gauge coupling αY ∼ 1
60 and secondarily also

for the smallness of the charges yL yR = − 1
18 .

The presence of anomalous Sudakov for the non-Abelian SU(2) part is at present
under study and results quite interesting because we naively expect phenomenological
relevant effects already at TeV scale (see eq. (14)) mainly due to the fact that the gauge
coupling is large (αW ∼ 2αY ) and the non-Abelian charges are naturally O(1) [11].

5. – Conclusions

In this work we showed the results for the form factors of a very heavy Z ′ gauge boson
of mass M into a fermion-antifermion pair in a simple U(1) ⊗ U ′(1) model, performing
the calculation up to order m2 in the fermion mass m and to all orders in the U(1) gauge
coupling at the double-log level (α log2 M2

m2
Z

)n. We conclude that while the axial and
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vector form factors feature a “standard”, energy decreasing Sudakov form factor, the
magnetic dipole moment features an “anomalous” exponential ∼ exp[−α yL yR log2 M2

m2
Z

]
term, which grows with energy for fermions having opposite left-right U(1) charges
(yL yR < 0). This feature belongs exclusively to broken gauge theories like the elec-
troweak sector of the Standard Model, and is a very unusual one. In fact the magnetic
dipole moment corresponds to the insertion of an effective dimension-five operator of the
form ψ̄L Z ′

μνσμν ψR (Z ′
μν = ∂μZ ′

ν − ∂νZ ′
μ), which explicitly breaks U(1) if yL �= yR and

is (must be) proportional to the U(1) vacuum expectation value. The expectation is that
at large energy scales, where symmetry is recovered, this symmetry-violating operator
gives negligible contribution to observables: this is by no means the case. While the
contribution is truly suppressed by fermion masses at tree level, the dressing by IR dy-
namics around the light Z mass makes this operator the leading one at very high energies.
This is a kind of “non-decoupling” in the sense that very high energies observables are
sensitive to the very low IR cutoff scale, whatever the ratio of the scales. This is due to
the high-energy behavior being dictated by the IR dynamics, and therefore sensitive to
symmetry breaking at any scale. These results open new questions about the realization
of the cancellation theorems [12] involving real and virtual corrections.
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