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Summary. — Two Higgs Doublet Model at different values of parameters real-
izes ground state (vacuum) with different properties. The parameters of the Gibbs
potential are varied during cooling down of the Universe after Big Bang. At this
variation properties of vacuum state can vary, Universe suffers phase transitions.
The evolution of phase states and chains of phase transitions can be much more di-
verse than in Standard Model with single Higgs doublet. We analyzed phase history
of earlier Universe for each set of parameters and find sets of modern parameters,
responsible for different chains of thermal phase transitions.

PACS 11.10.Wx – Finite-temperature field theory.
PACS 11.30.Qc – Spontaneous and radiative symmetry breaking.
PACS 12.15.-y – Electroweak interactions.
PACS 98.80.Cq – Particle-theory and field-theory models of the early Universe (in-
cluding cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe,
etc.).

More complete version of this paper is given in [1]. We use some equations and
notations from [2,3].

1. – Lagrangian

The spontaneous electroweak symmetry breaking via the Higgs mechanism is de-
scribed by the Lagrangian

(1) L = LSM
gf + LH + LY with LH = T − V.

Here LSM
gf describes the SU(2) × U(1) Standard Model interaction of gauge bosons and

fermions, LY describes the Yukawa interactions of fermions with Higgs scalars ϕi =
( ϕ†

i

ϕ0
i

)
and LH is the Higgs scalar Lagrangian; T is the Higgs kinetic term and V is the Higgs
potential.
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The most general renormalizable Higgs potential of Two Higgs Doublet Model
(2HDM) has form

V = −V2(xi) + V4(xi); V2(xi) =
[
m2

11x1 + m2
22x2 +

(
m2

12x3 + h.c.
)]

/2,(2)

V4(xi) =
λ1x

2
1 + λ2x

2
2

2
+ λ3x1x2 + λ4x3x

†
3 +

[
λ5x

2
3

2
+ λ6x1x3 + λ7x2x3 + h.c.

]
,

x1 = ϕ†
1ϕ1, x2 = ϕ†

2ϕ2, x3 = ϕ†
1ϕ2.

1.1. Z2 symmetry of potential and its violation. Natural choice. – At m2
12 = 0,

λ6 = λ7 = 0, the (φ1, φ2) mixing is forbidden at all distances. This potential is invariant
under transformations φ1 × φ2 → −φ1 × φ2. Such invariance is usually called as Z2

symmetry.
If m2

12 �= 0 and λ6 = λ7 = 0, the (φ1, φ2) mixing is allowed but only at large distances.
That is the case of softly violated Z2 symmetry. In this case renormalization in all orders
does not generate nonzero λ6 and λ7. The generalized rotation in the (φ1, φ2)-space
makes λ6, λ7 �= 0. That is the case of hidden softly violated Z2 symmetry. In this case
mixing angles restoring softly Z2 violated form of potential do not vary in iterations of
perturbation theory and with the scale of distances [4].

If λ6 �= 0 and (or) λ7 �= 0 and these coefficients cannot be eliminated by suitable
generalized rotation in the (φ1, φ2)-space, we are dealing with the case of hardly violated
Z2 symmetry. In this case the mixed kinetic term also appears in the iterations of
perturbation theory with running coefficient, the mixing angles, the restoring diagonal
form of the kinetic term become running [4]. We consider this situation as un-natural.

1.2. Working potential . – That is why we consider evolution of the vacuum for the
potential with softly broken Z2-symmetry. We limit ourself by explicitly CP -conserving
potential which is realized at all real λi, m2

ij :

V2(xi) = −m2
11x1 + m2

22x2 + m2
12(x3 + x†

3)
2

,(3a)

V4(xi) =
λ1x

2
1 + λ2x

2
2

2
+ λ3x1x2 + λ4x3x

†
3 +

λ5(x2
3 + x†2

3 )
2

.

All phases and phase transitions that can happen in the most general case can be mapped
to phases and transitions in this model [5]. In particular, the classifications of regions
in the parameter space and sequences of phase transitions derived below coincide with
those obtained in the general case.

To make some equations shorter, we also introduce the following notation for certain
combinations of λi:

λ345 = λ3 + λ4 + λ5, λ̃345 = λ3 + λ4 − λ5, Λ3± =
√

λ1λ2 ± λ3.(3b)
Λ345± =

√
λ1λ2 ± λ345, Λ̃345± =

√
λ1λ2 ± λ̃345.

The description of many properties of minimum of potential at given m2
ij depends not

on their absolute values, but on their ratios. Therefore, it is useful to introduce a special
parametrization for the V2 term:

(4) m2
11 = m2(1 − δ), m2

22 = k2m2(1 + δ), m2
12 = μkm2; k

def= 4
√

λ2/λ1.
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1.3. Positivity constraints. – To have a stable vacuum, the potential must be positive
at large quasi-classical values of fields |φk| (positivity constraints) for an arbitrary direc-
tion in the (φ1, φ2)-space. This translates into V4 > 0 for all non-zero values of the fields,
which places restrictions on possible values of λi. For the potential (3) such restrictions
have a simple form (see, e.g., [6, 7])

(5) λ1 > 0, λ2 > 0, Λ3+ > 0, Λ345+ > 0, Λ̃345+ > 0.

1.4. Yukawa sector . – In order for the Z2 symmetry to survive through the pertur-
bation series, the Yukawa interactions LY must connect each right-handed fermion to
only one scalar field φ1 or φ2 (in particular, Models I or II for Yukawa sector, see [8] for
details of the definitions).

2. – Temperature dependence

At finite temperature, the ground state of a system is given by the minimum of the
Gibbs potential

(6) VG = Tr
(
V e−Ĥ/T

)
/Tr

(
e−Ĥ/T

)
≡ V + ΔV ≡ −V2(T ) + V4(T ).

Corrections ΔV , to the first nontrivial approximation, are given by simple loop diagrams.
It is calculated with the Matsubara diagram technique at T 2 � m2

i [9]. In this approx-
imation the quartic term V4(T ) coincides with that of basic potential (3), V4(T ) = V4,
while the mass term V2(T ) evolves with temperature:

m2
11(T )=m2

11(0) − 2c1m
2w, m2

22(T )=m2
22(0) − 2k2c2m

2w, m2
12(T )=m2

12(0),(7a)

ci = cs
i + cg

i + cf
i ; w = T 2/(12m2).

The scalar loop contributions cs
i and the gauge boson loop contributions cg

i are

(7b) cs
1 =(3λ1 +2λ3 +λ4)/2, cs

2 =(3λ2 +2λ3 +λ4)/(2k2), cg
1 =k2cg

2 = 3(3g2 +g′2)/8,

with g and g′ being the standard electroweak coupling constants. The fermion loop
contributions cf

i depend on the form of the Yukawa sector. For the Model II and Model
I, the main contributions to these coefficients can be written in natural notation as

(7c) cf
1 (II) = 3g2

t /2, cf
2 (II) = 3g2

b/(2k2); cf
1 (I) = 3(g2

t + g2
b )/2, cf

2 (I) = 0.

Simple algebra allows us to express temperature-dependent parameters of the poten-
tial (4) m(T ), δ(T ), μ(T ) via their “zero-point” (i.e. modern zero-temperature) values
m, δ, μ:

(8) m2(T ) = m2[1 − (c2 + c1)w], μ(T ) = μ
m2

m2(T )
, δ(T ) =

m2

m2(T )
[δ − (c2 − c1)w].

The thermal evolution of system is described by a straight rays in the (μ, δ)-plane.
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3. – Extrema and phase transitions

The Higgs potential can have several extrema. The extremum with the lowest value
of the energy, the global minimum of potential, realizes the vacuum state. The other
extrema can be either saddle points or maxima or local minima of the potential.

The extrema of the potential define the values 〈φ1,2〉 of the fields φ1,2 via equations

(9) ∂V/∂φi|φi=〈φi〉 = 0, ∂V/∂φ†
i |φi=〈φi〉 = 0.

For each extremum one can choose the z-axis in the weak isospin space along 〈φ1〉
direction, so that

(10) 〈φ1〉 =
1√
2

(
0
v1

)
, 〈φ2〉 =

1√
2

(
u

v2e
−iξ

)
; u, v1, v2 > 0.

In the considered case, the classification of different extrema can be established:

– Electroweak symmetry extremum (EWs): u = v1 = v2 = 0. In this extremum
electroweak symmetry is not broken, gauge bosons and fermions are massless.

– Neutral CP conserving (CPc) extremum: u = 0, ξ = 0.

– Neutral spontaneously CP violating (sCPv) extremum: u = 0, ξ �= 0.

– Charged extremum (ch): u �= 0.

4. – CPc vacua and the first-order phase transition

The CPc extrema are realized in the entire space of parameters λi. One can transform
two cubic equations representing conditions (9) into relations for quantities v2 = v2

1 + v2
2

and τ = kv1/v2. For potential (3) these equations, together with expression for extremum
energy can be written as

√
λ1λ2μτ4 + (Λ345− − δ · Λ345+)τ3 − (Λ345− + δ · Λ345+)τ −

√
λ1λ2μ = 0,(11)

v2 = m2(k2 + τ2)
1 − δ + μτ

λ345τ2 +
√

λ1λ2

,(12)

ECPc = −m4k2

8
· (1 − δ + μτ)[1 − δ + 2μτ + τ2(1 + δ)]

λ345τ2 +
√

λ1λ2

.

At δ = 0 eq. (11) is factorized and easily solved:

(τ2 − 1)
(√

λ1λ2μ(τ2 + 1) + Λ345−τ
)

= 0 ⇒ τA± = ±1,(13)

τB± =
−Λ345−
2μ

√
λ1λ2

(
1 ±

√
1 − 4μ2λ1λ2

Λ2
345−

)
.

The energies of extrema, that correspond to the solutions τA±, τB± are

(14) ECPcA = −m4k2

4
· (1 ± μ)2

Λ345+
, ECPcB± = −m4k2

4

(
1

2
√

λ1λ2

− μ2

Λ345−

)
.
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Fig. 1. – Evolution of physical parameters at first-order phase transition.

One can see that the solutions B+ and B− are degenerate in energy. This degeneracy is
a result of additional discrete symmetry of potential (not Lagrangian!) φ1 ↔ kφ2, that
appears at δ = 0.

Consider the case when δ(T ) crosses δ(T ) = 0 at certain temperature, and at that
temperature B± is a vacuum. Then one can show that the phase with the lowest ex-
tremum energy switches from B+ to B− (or vice versa). That is a phase transition from
the phase B± to the phase B∓.

Figure 1 shows the dependence of extremum energy (left plot), and v (middle plot),
tan β = v1/v2 (right plot) on temperature parameter w (7a) in the considered case. Thick
line represents the values in vacuum state. Thin lines on the left plot show the energies
of other extrema.

Points of phase transitions are marked by a small star. The first-order nature of the
phase transition is evident on these plots, as the quantities v and tan β jump at the
transition point.

Realization of the degenerate situation can only happen at certain parameters of
potential. The constraints for B± to be minimum together with the constraint on the
existence of solution τB± in (13) can be written as

(15) Λ345− < 0, Λ3− < 0, Λ̃345− < 0; 2|μ| ≤ |Λ345−|/
√

λ1λ2, δ = 0.

Note that constraints on quartic parameters λi are independent of quadratic parameters
μ and δ. The same pattern will follow for the other types of phase transitions.

5. – Transition through sCPv vacuum

In the case of sCPv extremum one can find the value of cos ξ first. After that the
system (9) transforms into a system of two linear equations (see [10]). The solution of
this system can be written explicitly:

(16) v2
1 = k2m2

[
1

Λ̃345+

− δ

Λ̃345−

]
, v2

2 = m2

[
1

Λ̃345+

+
δ

Λ̃345−

]
, cos ξ =

μkm2

2λ5v1v2
.

To make sure that sCPv extremum exists, one must require that | cos ξ| < 1. This
constraint and the conditions for this extremum to be vacuum are

(17) λ5 > 0, λ5 > λ4, Λ̃345− > 0;
μ2

b2
1

+
δ2

b2
2

< 1, b1 =
2λ5

Λ̃345+

, b2 =
Λ̃345−

Λ̃345+

.
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Fig. 2. – Evolution of physical parameters in case of transition through sCPv vacuum.

One can say that if quartic parameters satisfy the presented relations, then the quadratic
parameters μ and δ should lie inside the ellipse with semiaxes b1 and b2 on a (μ, δ)-plane.

Evolution of physical parameters during transition through sCPv vacuum is presented
in fig. 2. Notation and description of these plots are the same as for the previous case
fig. 1. The rightmost figure now represents the behavior of the order parameter for sCPv
case, sin2 ξ, which is non-zero only for the sCPv phase, and shows typical behavior of
the order parameter during 2nd-order phase transitions.

6. – Transition through charged vacuum

The charged vacuum is not a modern state of our Universe, but it is possible that
the Universe passes this state during cooling after Big Bang. The conditions for this
extremum can be rewritten as a linear system on quadratic combinations of vev’s. The
solution of this system can be written explicitly:

(18) v2
1 = k2m2

[
1

Λ3+
− δ

Λ3−

]
, u2 +v2

2 = m2

[
1

Λ3+
+

δ

Λ3−

]
, v1v2 =

m2kμ

λ4 + λ5
.

It can be proven (see [10]) that if charged extremum exists, then it is a vacuum state of
the model. The conditions for the existence of the extremum can be reduced to the form
similar to (17):

(19) λ4 ± λ5 > 0, Λ3− > 0;
μ2

a2
1

+
δ2

a2
2

< 1, a1 =
λ4 + λ5

Λ̃3+

, a2 =
Λ̃3−

Λ̃3+

.

Figure 3 presents the evolution of physical parameters in case of transition through
charged vacuum. On the right figure the evolution of the order parameter ζ = u/v2 is
presented.

Fig. 3. – Evolution of physical parameters in case of transition through charged vacuum.
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7. – Discussion

We presented the phases and thermal phase transitions in 2HDM with softly broken Z2

symmetry. This case is representative for the most general form of 2HDM Lagrangian [5].
We obtained a rich picture of possible phase transitions. Higher-order effects will modify
our results, but we believe that with these modifications the picture can only become
richer. And even the picture obtained looks very interesting.

Let us now discuss some general features of the picture obtained.

7.1. Possible sequences of phase states. – Thermal evolution can be split into two
stages whose properties are rather decoupled from each other. First—is the evolution
at very high temperatures at m2(T ) < 0. At these temperatures restoration of EW
symmetry can occur. Or it is possible to have non-restoration of EW symmetry or even
transition through EW symmetric vacuum (see analysis in [1]). At the second stage it is
possible to have different sequences of transitions between EW-violating extrema, which
was discussed above.

(20)

(a) EWs

(b) CPc

(c) CPc
II−→ EWs

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

II−→

CPc (I)
CPc

II−→ charged II−→ CPc (II)
CPc1 I−→ CPc2 (III)
CPc

II−→ sCPv (IV)
CPc

II−→ sCPv
II−→ CPc (V)

The sequence (EW II−→ CPc II−→ charged) was omitted from this list. Each possible
sequence from the left column can be combined with any possible sequence from the right
column. In the case (b) + (I), the history of the Universe contains no phase transition
at all.

7.2. Regions of parameters allowing for different paths of phase evolution. – In ref. [1]
we presented a method how to describe regions in the space of the zero-temperature
parameters of the model that lead to each specific type of thermal evolution of the
Universe. To cast them into the corresponding regions of observables, such as masses
and couplings constants, is a natural task for continuation of this work.

7.3. Rearrangement of particle mass spectrum. – In most examples considered here the
value of tanβ ≡ v1/v2 changes strongly. If the Model II for Yukawa sector is considered,
then the fermion mass spectrum within one generation can be rearranged. Under these
circumstances, it is possible that in the past the decay t → Wb was suppressed, and
W → tb decay was allowed or even that the b-quark was heavier than t-quark.

Another interesting opportunity, which can be realized in many cases, is a non-
monotonic dependence of masses of particle on temperature, when they start from zero
at EWSB phase transition, grow and overshoot their today’s values and drop down after
subsequent phase transitions.

This rearrangement of fermion masses can be viewed as yet another phase transition
in fermion subsystem, with own fluctuations, etc. The study of this possible phase
transition goes beyond the approach developed in this paper.

There exists a possibility that the last phase transition took place relatively lately in
the history of the Universe. In this case the possible rearrangement of the quark mass
spectrum could have even more spectacular effects. For example, if the Universe lived
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long enough in an intermediate phase with md < mu, then the proton could be lighter
than the neutron and could even decay into it during this intermediate stage, which has
profound cosmological consequences.

7.4. Possible relations to cosmology

1) Different phenomena discussed here can give rise to new effects in the structure
of Cosmic Microwave Background radiation and other cosmological observables.
Feasibility of their observation is a subject for future studies.

The cases with new phase transitions in addition to the standard EWSB lead to
additional stages in the early history of the Universe with strong fluctuations near
the phase transition points. For example, in many cases there exist either a meta-
stable local minimum state or other extrema just above the vacuum state. Possible
virtual transitions to these states can enhance fluctuations and their observable
effects.

2) If the charge-breaking vacuum state was indeed an intermediate stage of the evo-
lution of the Universe, then a number of unexpected effects appear and they can
strongly influence the modern situation. First of all, in the charge-breaking phase
all the gauge bosons are massive, and electric charge is not conserved, the local
electric neutrality of medium can be strongly violated. After a phase transition to
the modern charge-conserving vacuum, strong deviations from the local electroneu-
trality, originating from the charge-breaking phase, can occur. They will result in a
strong relative motion of separate parts of the Universe, which can result either in
strong mixing and averaging of matter or in production of structures like caustics
(proto-galaxies). The restoration of the electric neutrality can go on during a very
long time after the phase transition to neutral vacuum.

3) In the standard approach the temperature of the phase transition is unavoidably
set by the electroweak scale. In our model the same is valid for the first EWSB
transition. However, the temperature of the last phase transition can be sufficiently
low. Certainly, for a detailed description of such situation our approximation must
be improved.
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