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Summary. — I discuss a few selected topics related to the reconstruction of the
mass of the top quark at hadron colliders. In particular, the relation between the
measured top mass and theoretical definitions, such as the pole or MS mass, is
debated. I will also summarize recent studies on the Monte Carlo uncertainty due
to the fragmentation of bottom quarks in top decays.

PACS 14.65.Ha – Top quarks.
PACS 12.38.Bx – Perturbative calculations.

The top quark is an essential ingredient of the Standard Model of the fundamental
interactions and the determination of its properties provides important tests of the strong
and electroweak interactions. In particular, the top quark mass (mt) plays a crucial role
in the precision tests of the Standard Model, as the combination of mt with the W -boson
mass mW constrains the mass of the Standard Model Higgs boson (see, e.g., the updated
results from the LEP electroweak working group [1]). Moreover, the top mass, along
with mW and the mass of a possibly discovered Higgs boson, is a relevant parameter
to discriminate among New Physics scenarios, such as the Minimal Supersymmetric
Standard Model [2]. The latest top mass measurement at the Tevatron accelerator is
mt = (173.3 ± 1.1) GeV [3]. However, it is often unclear how to relate the measured mt

to a consistent mass definition.
In fact, from the theoretical point of view, several mass definitions exist, according to

how one subtracts the ultraviolet divergences in the renormalized self-energy Σ(p,mt, μ),
where p is the momentum of the top quark, assumed to be off-shell, and μ the renormal-
ization scale. The pole mass, often used in decay processes of on-shell particles, is thus
defined by means of the conditions Σ(p) = 0 and ∂Σ/∂ �p = 0 for �p = mt. The pole mass
works well for leptons, such as electrons, whereas, when dealing with heavy quarks, it
presents the so-called non-perturbative ambiguity, i.e. an uncertainty Δm ∼ ΛQCD. In
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other words, after including higher-order corrections, the self-energy, expressed in terms
of the pole mass mt, exhibits in the infrared regime a renormalon-like behaviour:

(1) Σ(mt) ∼ mt

∑
n

αn+1
S (2β0)n n!,

where β0 is the first coefficient of the QCD β-function.
Another definition of top mass which is often used is the MS mass, namely m̄t(μ),

corresponding, e.g., in dimensional regularization with D = 4 − 2ε dimensions, to sub-
tracting off the renormalized self-energy the quantity 1/ε + γE − ln(4π), γE being the
Euler constant. The MS mass is a suitable mass definition in processes where the top
quarks are off-shell; in fact, by means of this definition, one is able to reabsorb in m̄t(μ)
contributions ∼ ln(μ2/m2

t ), which are large if μ is taken of the order of the hard scale
Q and Q � mt. For tt̄ production at threshold, nonetheless, the MS mass is not an
adequate mass scheme, since it exhibits contributions ∼ (αS/v)k, v being the top quark
velocity, which are enhanced for v → 0. Of course, one can always relate pole and MS
masses by means of a relation like [4]

(2) mt = m̄t(μ)
[
1 + αS(μ)c1 + α2

S(μ)c2 + . . .
]
,

where the coefficients ci depend on ln[m̄2
t (μ)/μ2].

Besides pole and MS schemes, other mass definitions for heavy quarks have been
proposed. For example, in the potential-subtracted (PS) mass a counterterm δmt is
constructed in such a way to remove the renormalon ambiguity in the infrared regime at
the factorization scale μF . It is given by [5]

(3) mt,PS(μF ) = mt − δmt(μF ),

where the subtracted term reads

(4) δm(μF ) =
1
2

∫
|q|<μF

d3q

(2π)3
Ṽ (q),

Ṽ (q) being the Fourier transform of the tt̄ Coulomb potential. More generally, one can
define several short-distance masses in terms of a parameter, usually called R, corre-
sponding, e.g., to the factorization scale μF or the MS mass, so that the pole mass mt

can be expressed in terms of a R-dependent renormalized mass and a counterterm [6]:

(5) mt = mt(R,μ) + δmt(R,μ).

In eq. (5) δmt(R,μ) can be expanded as a series of the strong coupling constant, whereas
mt(R,μ) satisfies a renormalization-group equation:

(6) δmt(R,μ) = R

∞∑
n=1

n∑
k=0

ankαn
S(μ),

dm(R,μ)
d lnμ

= −Rγ[αS(μ)],

with γ[αS(μ)] playing the role of the anomalous dimension [6].



THEORETICAL ISSUES ON THE TOP MASS RECONSTRUCTION AT HADRON COLLIDERS 83

Top Mass (GeV)
150 160 170 180 190

 (
p

b
)

ttσ

4

6

8

10

12

14
+X)τ ll & l+→+X t t→p(pσ

Experimental uncertainty

NNLO approx Moch and Uwer

NLO+NLL Cacciari et al.

Top Mass (GeV)
150 160 170 180 190

 (
p

b
)

ttσ

4

6

8

10

12

14
-1DØ, 1 fb 

4

6

8

10

12

14

16

140 145 150 155 160 165 170 175 180

Tevatron

MSTW 2008 NNLO

NLO

NNLOapprox

m(m)

σ 
[p

b]

Fig. 1. – Left: extraction of the top pole mass by comparing the D0 cross section with the
computations [8, 9]. Right: determination of the MS mass following [9].

In order to make a statement on the top quark mass which is extracted from the data,
in principle one should compare the measurement of a quantity depending on the top mass
with a calculation which uses a consistent definition, e.g., the pole or the MS mass. The
D0 Collaboration [7] compared the measured total tt̄ cross section with the calculations [8]
and [9]. Reference [8] computes the tt̄ cross section at next-to-leading order (NLO)
and resums soft/collinear contributions in the next-to-next-to-leading logarithmic (NLL)
approximation. The calculation [9] is NLO, resums the Sudakov logarithms of the top
velocity α4

S lnk v, with k ≤ 4, and includes Coulomb contributions ∼ 1/v and ∼ 1/v2 to
next-to-next-to-leading order (NNLO). Comparing the experimental cross section with
the formulas in refs. [8, 9], one can extract the top mass employed in such calculations.
Using the pole mass, which is a reasonable assumption since top quarks are slightly above
threshold at the Tevatron, one obtains the following results [7]: mt = 171.5+9.9

−8.8 GeV,
according to [8], mt = 173.1+9.8

−8.6 GeV when using [9].
Furthermore, in ref. [9] the computation was carried out in the MS renormalization

scheme, and m̄t(m̄t) was extracted from the comparison with the measured cross section.
Figure 1, taken from refs. [7,9] shows the main results of such a comparison. From m̄t(m̄t)
one can determine the pole mass mt: the central values are reported in table I, whereas
the errors are quoted in [9]. Reference [9] also found out that using the MS top mass leads
to a milder dependence of the cross section on factorization and renormalization scales,
with respect to the pole mass. This result is indeed quite cumbersome, since, in principle,
at the Tevatron top quarks are almost at threshold; the possible full inclusion of NNLO
terms should probably shed light on the uncertainty when using pole or MS masses.

Table I. – Extracted values of the pole and MS top mass comparing the computation [9] with
the D0 tt̄ cross section. See [9] for the errors on the quoted numbers.

m̄t(m̄t) mt

LO 159.2 GeV 159.2 GeV

NLO 159.8 GeV 165.8 GeV

NLO+ NNLO approx. 160.0 GeV 168.2 GeV
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Although the D0 determination of the top mass by using fixed-order and possibly
resummed calculations is surely very interesting, the standard Tevatron analyses [3],
such as the template or matrix-element methods, are driven by Monte Carlo parton
shower generators, such as HERWIG [10] and PYTHIA [11]. Such algorithms simulate
multiple radiation in the soft/collinear approximation and are possibly supplemented
by matrix-element corrections to include hard and large-angle emissions. Moreover, the
yielded total cross section is LO, whereas differential distributions are equivalent to
leading-logarithmic soft/collinear approximation, with the inclusion of some NLLs [12].
The hadronization transition is finally implemented according to the cluster model [13]
in HERWIG and the string model [14] in PYTHIA.

The template and matrix-element methods rely on the Monte Carlo description of top
decays. As discussed above, when looking at top decays near threshold, the reconstructed
top mass should be close to the pole mass and the world average actually agrees, within
the error ranges, with the pole mass extracted from NLO cross section calculations.
However, as parton shower generators are not NLO computations, there are several
uncertainties which affect the correspondence between the mass which is implemented
and any mass definition and renormalization scheme. Monte Carlo algorithms neglect
width and interference effects, but just factorize top production and decay; this is a
reasonable approximation as long as one sets cuts on the transverse energy of final-
state jets much higher than the top width Γt. Nevertheless, the quoted systematic and
statistical errors on the top mass [3] are competitive with the top width. Furthermore,
top decays (t → bW ) in both HERWIG and PYTHIA are matched to the exact tree-level
t → bWg calculation [15, 16], but the virtual corrections in the top-quark self-energy,
which one must calculate to consistently define a renormalization scheme, are included
only in the soft/collinear approximation by means of the Sudakov form factor. Also,
other uncertainties are associated with the flow of the colour of the top quarks and with
the hadronization corrections, since all measured observables are at hadron-level.

In principle, higher-order calculations are available even for top decays: refs. [17, 18]
calculated the b-quark spectrum in top decay at NLO and included NLL soft/collinear
resummation in the framework of perturbative fragmentation functions. Nevertheless,
such calculations are too inclusive to be directly used in the Tevatron analyses; also,
the results are expressed in terms of the b-quark (B-hadron) energy fraction in top rest
frame, which is a difficult observable to measure. Reference [19] recently computed
several quantities relying on top decays at NLO using the top pole mass: a comparison
of this calculation with Tevatron or LHC data, though not carried out so far, should
possibly provide another consistent determination of the pole mass.

An attempt to associate the Monte Carlo top mass with a formal mass definition
has been carried out in [6, 20-22] in the framework of Soft Collinear Effective Theories
(SCET). According to this approach, valid in the regime Q � mt � Γt � ΛQCD, where
Q is the process hard scale, one can factorize the double-differential cross section in terms
of the top (Mt) and antitop (Mt̄) invariant-mass squared as follows:

(7)
dσ

dM2
t dM2

t̄

= σ0HQHm

∫
d
+d
−B+

(

+,Γt

)
B−

(

−,Γt

)
S(
+, 
−).

In eq. (7), HQ and Hm are hard-scattering coefficient functions at scales Q and mt,
B± are the so-called heavy-quark jet functions, describing the evolution of top quarks
into jets, S(
+, 
−, μ) is named soft function and is a non-perturbative fragmentation
function, depending on soft radiation and ruling the dijet and mass distributions. When
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Fig. 2. – Left: double differential resummed cross section with respect to the top and antitop
invariant masses. Right: R-evolution from the Tevatron top mass, corresponding to R � 1 GeV,
to the MS mass, i.e. R � m̄t(m̄t).

writing a factorization formula like in (7), large logarithms of the scale ratios, such as
ln(Q/mt) or ln(mt/Γt), clearly arise: the jet function has been resummed to NNLL
in e+e− annihilation, the soft one to NLL [20]. The peak value of the distribution
d2σ/(dM2

t dM2
t̄ ), displayed in fig. 2 in the NLL approximation for e+e− → tt̄ processes,

is independent of the mass scheme and can be expressed in terms of a short-distance
mass m, Γt, Q and ΛQCD:

(8) Mpeak
t = m + Γt(c1αS + c2α

2
S + . . .) +

c3QΛQCD

m
,

where the term ∼ Γt depends on the jet function and the one ∼ ΛQCD on the soft
function. The jet mass is thus constructed as a short-distance mass, defined following
eq. (5), with the parameter R ∼ Γt and the counterterm δmJ depending on the jet
function. Expressing Mpeak

t in terms of the pole (mt) and jet (mJ) masses, one can
finally relate mt and mJ(μ) [21]:

(9) mt = mJ(μ) + eγE Γt
αS(μ)CF

π

(
ln

μ

Γt
+

1
2

)
+ O(α2

S).

One can note that a correction ∼ Γt arises in the difference between the pole and jet
masses: in fact, it was pointed out above that the top width was one of the ambiguities
when associating the top mass reconstructed from final-state decay observables, e.g. the
jet mass, with the pole mass. Reference [22] then assumed that the jet mass should
correspond to the mass in the event generators and measured at the Tevatron with μ
being of the order of the hadronization scale (shower cutoff), i.e. μ � Q0 � 1 GeV. Using
the R-evolution equations (5), with mJ(Q0) � 172 GeV, one can finally obtain the MS
mass m̄t(m̄t) � 163.0 GeV [22] (see fig. 2). References [6,21,22] seem therefore to indicate
a possible strategy to relate the mass parameter in the Monte Carlo codes to pole and
MS masses. However, as discussed also in [22], the situation at hadron colliders is more
complicated and, before drawing a final conclusion, one would need to take into account
effects, such as initial-state radiation, hadronization and underlying event, which are
included in Monte Carlo event generators, but not yet in the factorization formula (7),
which has been worked out for e+e− annihilation. Further studies aiming at extending
the factorization (7) to hadron colliders are certainly worth to be pursued.
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Fig. 3. – B-lepton invariant mass distribution in top decay, according to HERWIG (a) and
PYTHIA (b), using default and tuned versions, for mt = 171 and 179GeV.

In fact, the theoretical error on the top mass determination is a crucial issue, even for
the sake of the Standard Model precision tests. Reference [23] presents an analysis aimed
at assessing the uncertainty due to the treatment of bottom-quark fragmentation in top
decays in HERWIG and PYTHIA. For this scope, one should tune the cluster and string
models to the same data sets: ref. [24] found out that the default parametrizations are
unable to reproduce LEP and SLD data on B-hadron production in e+e− annihilation,
but it was necessary to fit the hadronization models to obtain an acceptable description of
such data. As in [23], an interesting observable is the invariant mass mB� in the dilepton
channel, where B is a b-flavoured hadron in top decay and 
 a lepton from W decay
W → 
ν. A reliable description of mB� is essential in the study [25] (see also Chapter 8
in ref. [26]), wherein the top mass is reconstructed by means of the mJ/ψ� spectrum,
with the J/ψ coming from B → J/ψ decays, and in the analysis [27], which investigates
semileptonic decays B → μX and extracts the top mass from the mμ� distribution.
Moreover, the B-lepton invariant mass was employed in [28] to gauge the impact of the
implementation of hard and large-angle radiation in the simulation of top decays; also,
mB� is one of the observables calculated in the NLO approximation in ref. [19].

Figure 3 presents the mB� spectra using tuned and default versions of HERWIG
and PYTHIA, whereas tables II and III quote the first few Mellin moments of mB� for
171GeV < mt < 179GeV, according to tuned HERWIG and PYTHIA. From fig. 3 one
learns that the tuning has a relevant impact on such spectra; tables II and III show that

Table II. – First four Mellin moments of the mB� spectrum according to HERWIG tuned to
LEP and SLD data, as in [24], for 171 GeV < mt < 179 GeV.

mt (GeV) 〈mB�〉 (GeV) 〈m2
B�〉 (GeV2) 〈m3

B�〉 (GeV3) 〈m4
B�〉 (GeV4)

171 78.39 7.01 × 103 6.82 × 105 7.02 × 108

173 79.52 7.22 × 103 7.12 × 105 7.43 × 108

175 80.82 7.45 × 103 7.46 × 105 7.91 × 108

177 82.02 7.67 × 103 7.79 × 105 8.37 × 108

179 83.21 7.89 × 103 8.13 × 105 8.86 × 108
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Table III. – As in table II, but employing the PYTHIA code.

mt (GeV) 〈mB�〉 (GeV) 〈m2
B�〉 (GeV2) 〈m3

B�〉 (GeV3) 〈m4
B�〉 (GeV4)

171 77.17 6.85 × 103 6.62 × 105 6.81 × 108

173 78.37 7.06 × 103 6.94 × 105 7.23 × 108

175 79.55 7.27 × 103 7.25 × 105 7.67 × 108

177 80.70 7.48 × 103 7.56 × 105 8.12 × 108

179 81.93 7.71 × 103 7.91 × 105 8.61 × 108

visible differences between HERWIG and PYTHIA are still present, even after the fits to
LEP and SLD data. To relate such a discrepancy to an uncertainty on the Monte Carlo
top mass, one can try to express 〈mB�〉, or even the higher moments, in terms of mt by
means of a linear fit using the least-square methods. The best-fit straight lines read:

〈mB�〉H � −25.31GeV + 0.61mt; δ = 0.043GeV,(10)
〈mB�〉P � −24.11GeV + 0.59mt; δ = 0.022GeV,(11)

where the subscripts H and P refer to HERWIG and PYTHIA and δ is the mean
squared deviation in the fit. Equations (10) and (11) correspond to the straight lines
in fig. 4: given the slopes of such lines, the difference between HERWIG and PYTHIA
Δ〈mB�〉 � 1.2 GeV implies an uncertainty Δmt � 2 GeV, if one reconstructed mt from
a possible measurement of 〈mB�〉. Reference [23] also pointed out that if one restricted
the analysis to the range 50GeV < mB� < 120GeV and computed truncated moments,
the induced uncertainty would be reduced to about Δmt � 1.5 GeV. Since such numbers
are comparable with the current error on the top mass world average, the conclusion
of [23] is therefore that it is advisable using the tuned versions of Monte Carlo genera-
tors, and ultimately even the HERWIG++ code [29], as it fares pretty well with respect
to B-hadron data.

Before concluding this paper, it is worthwhile discussing the work [30], wherein the top
mass is reconstructed as the W + b-jet combination in the lepton+jets channel, using kT

Fig. 4. – Average value of the B� invariant-mass spectrum in terms of mt, according to the
best-fit straight lines yielded by the tuned versions of HERWIG and PYTHIA.
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and cone (PxCone, infrared-safe) algorithms. It was found out that the spectra obtained
by using the kT algorithm are mostly affected by initial-state radiation and underlying
event, whereas the cone algorithm turns out to be sensitive, above all, to final-state
radiation and hadronization. The recommendation of [30] is that using both algorithms
will be compelling for the sake of a reliable estimation of the theoretical uncertainty.

In summary, I discussed a few topics relevant to the top mass reconstruction at hadron
colliders, taking particular care about the relation with the theoretical mass definitions
and the uncertainties on the top mass determination. In particular, I presented recent
work aimed at extracting the pole or MS masses by comparing cross section measurements
and precise QCD calculations and relating the mass implemented in Monte Carlo event
generators to the jet mass in the SCET framework, employing R-evolution. Furthermore,
progress has been lately achieved in the treatment of bottom-quark fragmentation in
top decays and Monte Carlo tuning, as well as in the understanding of the sources of
theoretical error, of both perturbative and non-perturbative origin.
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