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Summary. — I review recent developments in Monte Carlo tools for top physics
at hadron colliders, with particular attention to the interfacing of next-to-leading
order results with shower Monte Carlo.

PACS 14.65.Ha – Top quarks.

Monte Carlo event generators are essential tools for physics studies at the Tevatron
and at the LHC. In the case of top production, cross section measurements rely on the
generators ability to model the production phenomenon, in order to estimate the effect of
acceptance cuts on the top sample. In top mass measurements, we rely on Monte Carlo
generators for estimating how mass sensitive observables depend upon the top mass. It
is clear that the precision that we achieve in the simulation of the production and decay
process should be reflected in the error on the measured mass. At the LHC, tt̄ production
is a background to Higgs and to several new physics searches. Here again, Monte Carlo
generators are used for background estimates.

The basic simulation tools for top production processes are the all-purpose shower
Monte Carlo Generators, like PYTHIA [1, 2], HERWIG [3, 4] and HERWIG++ [5]. These gen-
erators use leading-order matrix elements for the basic production processes. Further
radiation, including the production of extra jets, is generated using the collinear approx-
imation, and, to a limited extent, the soft approximation. Thus, for example, in the case
of tt̄ production, jets at small angle with respect to the collision axis are well described,
and, to a lesser extent, soft jets. So, we should expect a fair description of relatively
small pT jets in the forward and backward region; we should be more suspicious of soft
jets in the central region, and we should not trust at all the description of the production
of jets with large transverse momentum.

Since the top quark decays before hadronization, the angular distribution of its decay
products are correlated with the whole kinematics of the event. Some Shower Monte
Carlo programs (HERWIG++, for example), include methods to treat these spin correlations
correctly at leading order.
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1. – Matrix elements and parton showers

The very basic accuracy reached by standard MC tools contrasts with the existence
of methods to compute very high multiplicity processes at the parton level, and with
the existence of several next-to-leading results relevant for top physics. In recent years,
considerable theoretical progress has taken place for the inclusion of these higher-order
processes in the framework of Shower Monte Carlo generators. On one side, methods for
interfacing high multiplicity, tree level matrix element calculations with shower Monte
Carlo programs (ME+PS) have become available [6], following the work of ref. [7]. Using
these methods, one can easily prepare samples of events for a given basic process, in-
cluding a relatively large number of associated jets. Thus, for example, in tt̄ production
(a process of order α2

S), corrections of order α3
S , α4

S , etc., are added, although only at
the tree level (i.e. not including virtual loops). These higher-order effects amount to
the addition of processes with a higher number of final state partons, all computed at
the tree level. Several collaborations provide these ME+PS generators [8-11]. Most of
them are meant to be interfaced to standard parton shower generators, like Herwig and
Pythia. The SHERPA Monte Carlo [8] provides instead its own showering and hadroniza-
tion mechanism, thus constituting a full standalone generator with ME+PS capabilities.
Spin correlations in decays are also easily included, and furthermore, within the same
framework one can generate extra jet produced in the decay process (in case the decay
involves coloured particles). An example along these lines is given in fig. 14 of ref. [12].

2. – NLO and parton showers

The first proposal for merging NLO results and parton showers is the MC@NLO one,
of ref. [13]. Subsequently, the POWHEG method has been proposed [14]. Other proposals
have appeared in the literature [15-18]; however, at present, only MC@NLO and POWHEG
have reached a mature enough stage to be useful for everyday collider physics needs. In
the following I will illustrate the basics of approaches along the lines of MC@NLO or POWHEG.

The basic concept of NLO+PS is better clarified by considering the example of a process
with a single massless coloured parton involved (one can think, for example, of top decay,
assuming the W to be stable and neglecting the b mass). In a Shower Monte Carlo, the
radiation of a final state light parton is generated with an algorithm that resums all
leading log corrections to the Born process. The hardest emission in a shower Monte
Carlo is well described by the following formula [14]:

(1) dσ = B(ΦB)dΦB

[
ΔMC

t0 (ΦB) + ΔMC
t (ΦB)

RMC(Φ)
B(ΦB)

dΦMC
r

]
,

where t is the radiation transverse momentum, t0 is the minimum allowed value for
t (typically of the order of a hadronic scale), B(ΦB)dΦB is the Born differential cross
section, and RMCdΦBΦr is the real radiation differential cross section in the Monte Carlo
(MC from now on) approximation. It is assumed that the full phase space Φ including
radiation is parametrized in terms of the Born phase space ΦB and the radiation phase
space Φr, i.e. Φ = Φ(ΦB ,Φr). We refer to ΦB as the underlying Born configuration
associated with Φ. In typical MC’s, the radiation phase space is determined by three
variables characterizing the collinear splitting process, like, for example, the splitting
angle, the momentum fraction and the azimuth. The radiation transverse momentum
t is a function of ΦB and Φr. It can be defined as the momentum component of the
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radiated parton orthogonal to the momentum of the radiating parton. The MC Sudakov
form factor

(2) ΔMC
tl

(ΦB) = exp
[
−

∫
t>tl

RMC(Φ)
B(ΦB)

dΦMC
r

]

represents the probability for not having radiation harder than tl.
The basic idea in NLO+PS is to improve formula (1) in such a way that NLO accuracy

is reached. One replaces formula (1) with the following one:

(3) dσ = B̄(ΦB)dΦB

[
Δs

t0(ΦB) + Δs
t (ΦB)

Rs(Φ)
B(ΦB)

dΦMC
r

]
+ [R(Φ) − Rs(Φ)]dΦ,

where Φ is the full phase space, with dΦ = dΦBdΦr, and R is the exact radiation cross
section. We have also defined

(4) B̄(ΦB) = B(ΦB) +
[
V (ΦB) +

∫
Rs(Φ)dΦr

]
,

where V is the virtual NLO correction to the Born process. Notice that soft and collinear
singularities in V cancel against those arising from the integral of Rs in the square bracket
of eq. (4). The Sudakov form factor is now

(5) Δs
tl
(ΦB) = exp

[
−

∫
t>tl

Rs(Φ)
B(ΦB)

dΦr

]
.

Both POWHEG and MC@NLO implement formula (3), although the two methods are in prac-
tice very different.

In POWHEG, we require that R → Rs in the soft and collinear limit, and that Rs ≤ R,
so that the last contribution in the square bracket of eq. (3) is non-negative. The choice
Rs = R is also possible, and it is quite common.

The phase space factorization in the POWHEG formula needs not to match that of any
shower Monte Carlo. One only requires that in the soft and collinear limit the full phase
space Φ is related to the Born phase space ΦB in the correct way, i.e. they are identical
in the soft limit once the soft particle is removed, and they are identical in the collinear
limit once the collinear particles are merged. The POWHEG formula (3) can be viewed
as an improvement of the Monte Carlo formula (1), such that the Born cross section is
replaced with an NLO inclusive cross section, and high transverse momentum radiation
is corrected so that it becomes exact at large angles. In fact, for large t the Sudakov
form factor becomes 1, and the POWHEG cross section reduces to

(6) dσ = B̄ × Rs

B
dΦ + [R − Rs]dΦ ≈ RdΦ,

since B̄/B = 1 + O(αs). At small t the POWHEG formula becomes equal to that of a
standard shower MC, up to higher-order terms. However, since by construction

(7) Δs
t0 +

∫
θ(t − t0) Δs

t

Rs(Φ)
B(ΦB)

dΦMC
r = 1

the POWHEG formula maintains NLO accuracy for integrated (i.e. inclusive) quantities.
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Formula (3) also describes the radiation of the hardest parton in MC@NLO, provided
Rs is identified with the shower Monte Carlo (i.e. HERWIG’s) approximation of the real
emission cross section. In fact, in MC@NLO two types of events are generated, called S
and H events. S events correspond to the term proportional to B̄. In MC@NLO the
corresponding underlying Born kinematics is generated with a probability B̄(ΦB)dΦB ,
while the hardest radiation kinematics is generated by the HERWIG shower algorithm. It
was demonstrated in ref. [14] that the hardest radiation in HERWIG corresponds to the
factor in square bracket multiplying B̄ in eq. (3). The H events correspond instead to the
R−Rs term in eq. (3). However, since Rs is now given by the HERWIG shower algorithm,
there is no guarantee that the difference R − Rs should be positive, and this is why
negative weighted events are an essential feature of MC@NLO. Notice also that it is not
guaranteed that the difference R − Rs vanishes in the soft limit. Shower Monte Carlo’s
like HERWIG, in fact, have only limited accuracy in the description of soft radiation. So,
in MC@NLO a matching procedure is adopted in the soft limit, that effectively cuts off the
divergence that would arise if formula (3) was used as is.

The fact that both in MC@NLO and POWHEG the hardest radiation can be described by
a similar formula has allowed a better understanding of the agreement and discrepancies
between the two approaches. First of all, one understands why most distributions com-
pare very well in the two schemes (see, for example, [19-22]). A first area of discrepancy
has emerged following the work of ref. [23]. In tt̄ production, a dip in the rapidity distri-
bution of the hardest jet of MC@NLO was found, that is not present neither in ALPGEN nor
in POWHEG. It was shown later [21,24] that this dip is a feature of MC@NLO that is present
in several processes. The origin of this dip has been clarified in several papers [25, 26],
and will not be further discussed here. I simply stress that these differences are well un-
derstood, so that we do have a fair understanding of the similarities and the differences
of the two methods.

3. – Available NLO generators for top production

While for ME+PS generators, given the matrix element, an ME+PS implementation re-
quires essentially no further work, in the case of NLO+PS the available generators lag
behind the available NLO calculations for top production. NLO+PS generators exist for
tt̄, single top, tW and even tH (top in association with a charged hoggs) do exist. How-
ever, in all cases spin correlations are only included witht the approximate method of
ref. [27]. Furthermore, top decays always involve coloured particles in the final state, and
yet, NLO radiative corrections to the decays are not included in the available shower pro-
grams, in spite of the fact that NLO calculations that include full spin correlations and
NLO corrections to the decay are available [28], and that there are indications that final
state NLO corrections may affect top mass measurements [29]. Notice also that NLO
corrections to the production of a tt̄ pair in association with a jet is also available [30],
and that NLO corrections to tt̄ production in association with two jets have also been
presented at this conference [31].

The status of NLO+PS generators for top production can be summarized as follows.
Top pair production is implemented in both MC@NLO and POWHEG [32, 20]. Single top
production (s and t channel processes) is also implemented in both codes [33,22]. Single
top production in association with a W is available in MC@NLO [34], and is in prepara-
tion in POWHEG [35]. Top production in association with a charged Higgs is available
in MC@NLO [36] and is in progress in POWHEG. In all implementations, spin correlations
are treated in an approximate way, along the lines of ref. [27]. In refs. [20] and [22],
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Fig. 1. – Transverse momentum (left) and rapidity (right) of the B̄ meson in single top produc-
tion: POWHEG and PYTHIA compared.

an extensive comparison between MC@NLO and POWHEG results was performed. In the case
of tt̄ production, a remarkable agreement was found among the two methods. The only
area of discrepancy has to do with the rapidity distribution of the hardest jet, which was
mentioned earlier. Even better agreement was found in single top production on most dis-
tribution, although, it must be said good agreement was found also with PYTHIA, suitably
rescaled with a constant K-factor. In figs. 1 and 2 we show comparisons between POWHEG,
PYTHIA and MC@NLO for some distributions that do display some noticeable differences.

First of all, we see that the transverse momentum of the B̄ is much softer in PYTHIA
than in POWHEG. This is to be expected. In t-channel single top production, in the primary
partonic process a b quark coming from the hadron structure function converts into a
t quark. The associated b̄ quark is generated by the backward evolution shower of the
MC. It is thus described accurately only in the collinear limit (i.e. for small transverse
momenta) and it is not surprising that it fails at large transverse momentum. On the
other hand, in POWHEG, when the b̄ has large transverse momentum it is generated as the
hardest radiation, and thus it has full tree level accuracy.

We also notice a considerable difference in the rapidity distribution of the B̄ meson
when HERWIG rather than PYTHIA is used for subsequent showering. This problem is

Fig. 2. – Transverse momentum (left) and rapidity (right) of the B̄ meson in single top produc-
tion: POWHEG and MC@NLO compared.
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inherited from a known HERWIG problem, in the build up of backward evolution when
heavy flavours are involved. Of course, in POWHEG an accurate tree-level correction comes
into play when the hardest radiation is associated with the formation of the bb̄ pair.
However, the hardest radiation may also be simply a radiated gluon from an incoming
b quark, so that the initial formation of the bb̄ pair takes place earlier in the shower
development. Thus, for at least part of the event, it is HERWIG that determines the
formation of the heavy flavoured pair. In MC@NLO this problem is even more present,
since in this case it is HERWIG that generates a large fraction of the hardest radiation (in
the so called S events). The problem is not present in POWHEG interfaced to PYTHIA.

4. – Merging ME+PS and NLO+PS approaches

Given the fact that ME+PS and NLO+PS cover complementary aspects of the production
process, the natural question arises: can they be merged? This is undoubtedly a difficult
problem. There are several proposals in the literature [15-17]. At present, none of these
methods has achieved useful results for hadron collider physics. In ref. [37], a practical
approach to this problem has been pursued, and proven in the framework of W production
and tt̄ production.

In order to illustrate the findings of ref. [37], let us focus upon our simple example,
of t → Wb, treating the b quark as massless and the W as stable. In this framework
we just have a single jet to worry about. In a standard Shower approach, the b quark
will undergo collinear splitting recursively, according to the shower algorithm. We will
have a final state of several light partons. Appliying a kT clustering algorithm to the
final state, we will basically reconstruct the skeleton of the splitting process. In the
ME+PS approach, we also apply a clustering algorithm to the final state partons, that
are computed in this case using exact tree level matrix elements. We thus reconstruct
a shower skeleton, and, according to the CKKW approach, we modify the tree level
ME cross section by substituting each power of the coupling constant with one running
coupling for each skeleton vertex, and by supplying Sudakov form factor to each inter-
mediate line of the skeleton. The initial line of the skeleton is always the b quark from
t decay, and the first skeleton vertex will be given by the b radiating a gluon. Thus, in
the ME+PS case we can associate with each final state configuration a hardest radiation
configuration Φ, corresponding to the skeleton kinematics up to the first splitting in the
reconstructed skeleton. Given the hardest radiation configuration, we can associate with
it an underlying Born configuration ΦB , using the same definition that we adopt in a
NLO+PS approach to this decay problem. It has been demonstrated in ref. [37], that in
order to achieve NLO accuracy in the ME+PS result (i.e. the same accuracy that a NLO+PS
generator would achieve) one should reweight the ME+PS result with a K(ΦB) factor, i.e.
with a K-factor dependent upon the underlying Born. A detailed discussion of this point
is given in ref. [37]. Here I will only give a brief argument to support this conclusion.
If we sum over all possible final states of the ME+PS result keeping fixed the underlying
Born configuration ΦB , we will get a result that equals the Born cross section, up to a
factor K̃(ΦB) = 1+ k̃1(ΦB)αs +O(α2

s) that embodies the effect of higher-order emission
included in the ME+PS approach. In other words, the ME+PS cross section, differential in
the underlying Born kinematics, differs from the Born cross section by subleading terms
in the coupling constant. On the other hand, also the NLO cross section, differential
in the underlying Born kinematics, differs from the Born cross section by a NLO factor
K̄(ΦB) = 1 + k̄1(ΦB)αs + O(α2

s). It is clear now that, in order to get the correct NLO
result from the ME+PS generator, we should supply a factor K(ΦB) = K̄(ΦB)/K̃(ΦB).
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Fig. 3. – Left: rapidity of the second hardest jet relative to the tt̄ system. Right: azimuthal
distance of the hardest jet with respect to the direction of the tt̄ system.

The effective computation of the K(ΦB) factor is a difficult task, mainly becaus K̄ is
hard to compute. In ref. [37], a simple recipe is suggested that, although it does not give
a theoretically satisfactory solution of the NLO+PS and ME+PS merging problem, gives
nevertheless a satisfactory solution in practice. It is a recipe for merging event sam-
ples obtained with a ME+PS approach and with POWHEG. The recipe is represented by the
following equation:

(8) dσ = dσPW(0) +
σME(1)

σME(≥ 1)
σPW(≥ 1)
σPW(1)

dσPW(1) +
σPW

σME
dσME(≥ 2).

The arguments (j) and (≥ j) represent the subsample in the matrix element (ME) or
POWHEG (PW) samples containing exactly J or at least J jets. The construction of the
sample is summarized by the following rules: i) events with no jets are always taken
from the POWHEG sample; ii) events with one jet are also taken from the POWHEG sample.
However, their cross section is reweighted, in such a way that the ratio of events with
at least one jet, relative to those with one jet, agrees with the ME+PS result; iii) Events
with at least two jets are always taken from the ME+PS sample. However, their cross
section is reweighted with a K factor that is equal to the POWHEG rate for at least one
jet relative to the corresponding ME+PS rate. In the tt̄ study of ref. [37], the NLO+PS
sample is generated using POWHEG, and the ME+PS sample is generated with Madgraph [10]
interfaced to virtuality ordered PYTHIA. A 20 GeV generation cut was used, and the scale
used to count jets in the ME+PSNLO+PS merging (menlops from now on) was 30 GeV. Few
highlights of the results are given in the figures below. Several quantities are plotted
and studied in the original paper [37]. Here I only report two plots, that represent well
how the method works. In fig. 3, on the left panel, the rapidity of the second hardest
jet relative to the tt̄ system is displayed. There we see that the menlops result matches
in shape the prediction of the ME+PS rather than POWHEG. This is as desired, since in
the POWHEG sample the second hardest jet is generated by the Shower Monte Carlo in
the collinear approximation. On the right plot, the azimuthal distance of the hardest
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jet with respect to the direction of the tt̄ pair is displayed. In this case, the NLO+PS
contribution dominates the large angular separations (corresponding to the hardest jet
being back-to-back to the tt̄ pair), while away from the back-to-back region, the ME+PS
result dominates. This is again as desired, since the region away from the back-to-back
configuration is dominated by the radiation of a relatively hard second jet.

∗ ∗ ∗
The work presented in these proceedings was done in collaboration with S. Alioli,

K. Hamilton, C. Oleari and E. Re.
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