Colloquia: IFAE 2010

Light meson production in $\gamma\gamma$ interactions with KLOE

C. TACCINI on behalf of the KLOE COLLABORATION

Università Roma Tre and INFN, Sezione Roma Tre - Rome, Italy

(ricevuto l'8 Ottobre 2010; pubblicato online l'8 Febbraio 2011)

Summary. — Preliminary studies on $\gamma\gamma$ processes with the KLOE experiment without tagging of electrons/positrons are presented.

PACS 12.39.-x – Phenomenological quark models. PACS 13.66.Bc – Hadron production in e^-e^+ interactions.

The coupling of the photon to scalar and pseudoscalar mesons brings information on their quark structure and can be measured directly in e^+e^- colliders via the reaction $e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-X$. Of particular interest is the measurement of the $\gamma\gamma$ partial width of the $\sigma(600)$ meson, the lowest level of the nonet of scalar mesons [1]. If the e^+e^- beams have energy E, the cross section for production of the X state is

(1)
$$\sigma(e^+e^- \to e^+e^-X) = \int \frac{\mathrm{d}L}{\mathrm{d}z} \,\sigma_{\gamma\gamma\to X}(z) \,\mathrm{d}z,$$

where z = w/2E and w is the $\gamma\gamma$ invariant mass. In case of no e^+e^- tagging, the differential $\gamma\gamma$ luminosity can be expressed in the Equivalent Photon Approximation [2,3], and for a narrow resonance of spin 0 and mass M_X the resulting cross section is

(2)
$$\sigma_{e^+e^- \to e^+e^- X} = \frac{16\alpha^2 \Gamma_{X\gamma\gamma}}{M_X^3} \left(\ln \frac{E}{m_e} \right)^2 \left((z^2 + 2)^2 \ln \frac{1}{z} - (1 - z^2)(3 + z^2) \right).$$

DAΦNE is an e^+e^- collider operating at $\sqrt{s} \simeq 1-1.02 \text{ GeV}$. The KLOE detector consists of a large-volume drift chamber surrounded by a lead and scintillating-fibers calorimeter. Charged-particle momenta are reconstructed with resolution $\sigma_p/p \simeq 0.4\%$ for large-angle tracks. Energy clusters are reconstructed with energy and time resolution of $\sigma_E/E = 5.7\%/\sqrt{E(\text{GeV})}$ and $\sigma_t = 57 \text{ ps}/\sqrt{E(\text{GeV})} \oplus 100 \text{ ps}$. The sample used for the present analyses consists of data taken by KLOE at $\sqrt{s} = 1 \text{ GeV}$, which allows reduction of the background from ϕ decays, with an integrated luminosity of 240 pb⁻¹. Data are processed with a dedicated $\gamma\gamma$ filter allowing for a significant amount of missing energy. A search for the $e^+e^- \rightarrow e^+e^-\eta$ process is performed, with $\eta \rightarrow \pi^+\pi^-\pi^0$. The selection of these events asks for two photons, constrained to originate from a π^0 decay, and two tracks with

© Società Italiana di Fisica

Fig. 1. – Left: fit of the M_{miss}^2 distribution for the $e^+e^- \rightarrow e^+e^-\eta$ analysis. Main contributions are: $e^+e^-\gamma$ at negative M_{miss}^2 values due to the pion mass assigned to e^+e^- tracks, $\eta\gamma$ at $M_{miss}^2 \sim 0$, signal events at high M_{miss}^2 values. Middle: fit of the monochromatic photon energy spectrum for $e^+e^- \rightarrow \eta\gamma$ events. The $\eta\gamma$ peak at about 350 MeV and the $\omega\gamma$ peak at about 180 MeV are visible; the broad distribution is due to $\omega\pi^0$ events. Right: $M_{4\gamma}$ spectrum for events selected in the $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$ data analysis, compared with the sum of the expected backgrounds from Monte Carlo. The $K_S \rightarrow \pi^0\pi^0$ peak and structures related to other processes with two π^0 are visible: $\omega(\rightarrow \pi^0\gamma)\pi^0$ and $f_0(980)(\rightarrow 2\pi^0)\gamma$. The cut on $M_{4\gamma} < 900$ MeV is due to the requirement on the total energy in the calorimeter to reject $e^+e^- \rightarrow \gamma\gamma$ events.

opposite curvature coming from the collision point. The charged pion mass is assigned to the two tracks and a least squares function based on Lagrange multipliers imposes that $\pi^+\pi^-\pi^0$ come from an η decay. Therefore most background events are suppressed, except for the irreducible process $e^+e^- \rightarrow \eta\gamma \rightarrow \pi^+\pi^-\pi^0\gamma$, with the monochromatic photon lost in the beam pipe. Figure 1 (left) shows the distribution of M_{miss}^2 for data fitted with the superposition of MC shapes for signal and background. An independent fit is performed with the distribution of p_L . Both fits show the same yields for the background processes and more than 600 signal events. Figure 1 (middle) shows the distribution of the energy of the monochromatic photon for a control sample of $e^+e^- \to \eta\gamma \to \pi^+\pi^-\pi^0\gamma$ events, selected asking for three photons in the final state and after performing a kinematic fit requiring energy and momentum conservation. Finally, a search for $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$ events is performed, motivated by the interest in the $\gamma\gamma \rightarrow \sigma$ dynamics [4]. The main requirements of the data analysis are: four photons originated from $2\pi^0$ decays, no tracks in the drift chamber, photon energy fraction $>0.8,\,p_{T\,4\gamma}<80\,{\rm MeV},\,{\rm energy}$ sum of the 2 least energetic photons > 60 MeV. The spectrum in the 4γ invariant mass compared with the expected backgrounds is shown in fig. 1 (right). From the plot, an excess is evident at low $M_{4\gamma}$ values, consistent in shape with expectations from $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$ events. These results are encouraging in view of the forthcoming data-taking campaign of the KLOE-2 project [5], when both low- and high-energy e^{\pm} tagging devices will be available.

REFERENCES

- [1] AMSLER C. et al. (PARTICLE DATA GROUP), Phys. Lett. B, 667 (2008) 1.
- [2] BRODSKY S. J., KINOSHITA T. and TERAZAWA H., Phys. Rev. D, 4 (1971) 1532.
- [3] Low F., Phys. Rev., **120** (1960) 582.
- [4] NGUYEN F., PICCININI F. and POLOSA A. D., Eur. Phys. J. C, 47 (2006) 65.
- [5] AMELINO-CAMELIA G. et al., arXiv:1003.3868 [hep-ex].