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Summary. — When a microstructure contains finer details than the X-ray com-
puted tomography (CT) spatial resolution, the conventional techniques based on
segmentation become inadequate for separating the materials composing the sam-
ple. Data-constrained modeling overcomes this problem using multiple CT data sets
acquired with different X-ray beam energies. The volume fractions of the materials
contained into a single voxel are then determined by solving a linear system. The
ill-conditioned nature of the linear system reflects into a high sensitivity to the noise.
An alternative approach to the direct solution of the linear system, based on the
iterative application of the Expectation-Maximization algorithm, is here presented.
Different noise conditions are investigated for a random-generated single-voxel prob-
lem and for a more complex numerical phantom.

PACS 87.59.-e — X-ray imaging.
PACS 81.70.Tx — Computed tomography.

1. — Introduction

X-ray CT has been widely used for determining microstructures [1]. The application
of segmentation techniques to the CT data set, for extracting the three-dimensional
distribution of different materials, requires the assumption that a unique material is
contained into each voxel. This may not be valid for rock samples: they can contain
porosity on the sub-micron scale which is beyond the resolution of common commercial
CT scanners [2,3].

A data-constrained modeling (DCM) approach allows to relax the requirement that
each voxel contains only one material and enables the recovery of the volume fraction
information from multiple CT data sets [4,5]. Following a case study of interest already
presented [6], the attention is focused on the specific problem of determining the volume
fractions for a sample composed by three materials, namely void, quartz and kaolinite.
Those components of sandstone have similar X-ray absorption properties and the map-
ping of the materials by threshold segmentation of the CT images would be difficult [6].
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Instead of directly solve the linear system obtained using DCM, the solution is com-
puted by means of the iterative application of the Expectation-Maximization (EM) al-
gorithm. The method is studied on a single-voxel randomly generated problem and it is
subsequently applied to a numerical phantom.

2. — Method

DCM approaches the problem of determining the volume fractions of multiple known
materials in the following way. A number of CT scans, acquired at different X-ray beam
energies, represent the input of the method. The knowledge of the materials that compose
the sample allows to write, for each voxel, the linear system

(1) U= AW

that relates the volume fractions W to the measured attenuation coefficients U [6]. U,, are
the absorption coefficients measured with the CT scan for m = 2... M different energies,
U; = 1 by definition imposes that the sum of the various fraction is normalized to 1.
W, are the volume fractions of n = 1... N different known materials. The matrix A,,,
contains the absorption coefficient of the n-th material at the m-th energy (A, = 1, Vn).
Two basic assumptions are required:

— the total volume of the voxel is equal to the sum of the materials volume fractions,

— the total attenuation of the X-rays in one voxel is the sum of the attenuation of
each material, weighted with its fraction.

A solution of the linear system (1) can be obtained by the iterative application of the
set of equations (EM algorithm [7,8, p. 184]):
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k is the number of iterations and A’ is the transpose of A. The initial guess is to assign
equal volume fractions for each material (W = 1/N). The explicit form of the matrix
A of our problem is

11 1
(3) A= 0 22499 1.9562 |,
0 0.8394 0.7703

it contains the attenuation coefficient of void, quartz (SiOs, density 2.65 (gem™3)) and
kaolinite (AlySi;O5(OH)y, density 2.6 (gem™3)) at the energies of 30 and 50 keV [6].

3. — Single-voxel problem

The first step is to consider only a single voxel. The volume fractions are ran-
domly generated and this vector is our exact solution W', The exact measure-
ments vector Ut is computed and different amounts of noise are added. The
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TABLE 1. — Comparison between the exact and the optimum solutions, the relative error (percent)
with respect to the exact solution is reported in brackets.

Exact Noiseless o =0.1% o= 0.5% c=1% oc=5% oc=10%

void 0.1562 0.1562(0.0003) 0.157(0.20) 0.156(0.17) 0.15(5.1) 0.19(21)  0.24(57)
quartz  0.3067 0.3067(0.0011) 0.306(0.07) 0.307(0.05) 0.31(1.5) 0.41(34) 0.25(17)
kaolinite 0.5371 0.5371(0.0007) 0.537(0.03) 0.540(0.02) 0.54(0.6) 0.40(25) 0.50(6.7)

perturbations are randomly extracted from a normal distribution with 0 mean and
o =1{0.1%,0.5%,1%, 5%, 10%} times the value of the measurement.

In this simulation study the exact solution is known, this allows to evaluate the
convergence properties of the method. Without any noise contribution to the data the
algorithm is expected to converge to the exact solution. In the presence of noise the
iteration typically converges for a certain number of iterations and after this point the
approximation starts to diverge from the exact solution. This behavior is called semi-
convergence [8, p. 110]. These semi-convergence properties are evaluated using the root
square error as a figure of merit:

N
(4) L(k) = \| Y (Wgmaet — k)2,

n=1

Starting from a convergence situation in the noiseless case, less and less accurate
optimum (L(k) is minimum) approximation are obtained. These optimum solutions W*
are reported in table I.

4. — Numerical phantom and CT data simulation

To explore the performances of the algorithm when a large number of voxels has
to be analyzed, a numerical phantom has been used. It is composed by a matrix of
quartz with void and kaolinite inclusions allowing mixing of the materials at the inter-
faces (two materials at a time). The sample is cylindrical, with diameter 4 mm and
the image has 200 x 200 pixels. The CT data acquisition is then simulated for the two
monochromatic energies of 30 and 50keV using 720 parallel-beam projections over 180
degrees (0.25 degree steps). A simulated photon counting statistical noise of various
intensities {0.1%, 0.4%, 0.8%, 1%} is added to the projected intensity distributions. The
noisy projections are reconstructed with the conventional Filtered Back Projection CT
reconstruction algorithm using a dedicated software [9] (fig. 1).

The CT scans are then analyzed slice by slice. Equations (2) are then iterated si-
multaneously for each voxel contained into a slice. In this way we obtain the three-
dimensional distribution of the volume fractions of material that compose the phantom.
The quality of the computed distribution of volume fractions is quantified by means of a
cross-correlation value. The cross-correlation is defined as

1 (Wjd — Wi)(E — Ei)
5 C m: m m m m
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Fig. 1. — (Colour on-line) RGB representation of the exact fractions (R = void, G = quartz,
B = kaolinite) and simulated CT scan at 30keV with 0.4% photon counting statistical noise.

where the index m covers the different materials, W,/ represent the volume fraction of
the material m computed at the position (i, 5) into the slice and E¥ is the exact volume
fraction, for the same material at the same position. E¥ is the average value of F and
og its standard deviation. This cross-correlation is computed after each iteration. The
results, in the 0.1% and 1% noise cases, are plotted in fig. 2.

In order to evaluate the possibility to apply the method in a hypothetical real ex-
periment a stopping rule based on the discrepancy principle [10] has been used. After
each iteration k, the normalized Lo distance between the slice that can be computed
using the volume fractions and the measured distribution of attenuation coefficients ob-
tained through CT reconstruction is computed. This quantity (residual) is expected
to be a decreasing function of the number of iterations. When the residual becomes
equal or smaller than the average quadratic error which is present in the data the it-
eration is stopped. Both those quantities are summed over the number of different
energies at which the CT scans are acquired. The optimum EM solution, the EM solu-
tion selected with the stopping rule and the conventional DCM results are compared in

table II.
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Fig. 2. — Cross-correlation, for each material, as a function of the number of iterations. The

minimum and the maximum noise intensity are plotted.
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TABLE II. — Cross-correlation values (percent) for the warious photon counting noises: EM
optimum number of iterations (light gray), coventional DCM (medium gray), EM stopping rule
(dark gray). In the case of 1% noise the stopping rule was not able to stop the iteration (the
residual term did not reach the threshold in 10° iterations).

0.1% 0.4% 0.8% 1%
void 89 89 88 87 88 83 87 81
quartz 84 83 77 66 74 55 74 50
kaolinite 68 66 33 28 19 17 13 13

The void is the best reconstructed material and a small number of iterations (~ 10%)
is necessary to reach the maximum of the cross-correlation, even with 1% noise. The
quartz and kaolinite components are fairly reconstructed with low noise (0.1%) while the
accuracy for the kaolinite is poor with 1% noise. Note that after the optimum number of
iterations (C'¢™ is maximum) the solution starts to degenerate. This is due to the noise
in the data, at a certain point during the iteration the algorithm starts to diverge from
the best approximation. A comparison between the material distributions obtained with
the method presented and with segmentation is finally shown in fig. 3. Note that the
thresholding visualizes the void inclusion as encapsulated by kaolinite. This problem,
even if not completely solved in the DCM plus EM approach, is less predominant.

5. — Conclusion

The expectation-maximization algorithm has been applied to the solution of the ill-
posed linear system that has to be solved when a microstructure is to be determined
following the data-constrained modeling approach. The attention has been focused on the
material mixture that is typical for a hydrocarbon reservoir sandstone. The performance
of the algorithm has been tested on a single, randomly generated voxel and on a numerical
phantom. With the numerical sample, the whole process of CT data acquisition has

Fig. 3. — (Colour on-line) RGB representation of the computed volume fractions distributions
(0.4% noise; R = void, G = quartz, B = kaolinite). On the left-hand side the CT scan at 30 keV
has been thresholded using the mean values between the attenuation coefficient of the materials
as the thresholds. On the right-hand side the result for the DCM plus EM is shown.
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been simulated including photon counting statistical noise. When the noise is low the
algorithm is capable to reconstruct both the matrix (quartz) and the inclusions (void and
kaolinite) with good approximation. As the noise increases the accuracy for kaolinite is
rapidly lost while for void and quartz it is still acceptable up to 1% noise. In the
lower noise cases, the quality of the reconstructions is comparable with those obtained
with conventional DCM. With respect to the thresholding, the reconstructed material
distribution looks closer to the exact one in the voxels that effectively contain a mixture
of materials.
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