
DOI 10.1393/ncc/i2011-10973-y

Colloquia: Channeling 2010

IL NUOVO CIMENTO Vol. 34 C, N. 4 Luglio-Agosto 2011

Pair photoproduction in a constant and homogeneous
electromagnetic field

V. M. Katkov(∗)

Budker Institute of Nuclear Physics - 630090 Novosibirsk, Russia

(ricevuto il 22 Dicembre 2010; pubblicato online il 21 Settembre 2011)

Summary. — The process of pair photoproduction in an electromagnetic field
of arbitrary configuration is investigated. At high energy the correction to the
standard quasiclassical approximation (SQA) of the process probability has been
calculated. In the region of intermediate photon energies where SQA is inapplicable
the new approximation is used. The influence of weak electric field on the process
in a magnetic field is considered. In particular, in the presence of this field the
root divergence in the probability of pair creation on the Landau energy levels is
vanished. For smaller photon energies the low energy approximations have been
derived. At very low photon energy the found probability describes the absorption
of soft photon by the particles created by the field. At low photon energy the electric
field action dominates and the influence of the magnetic field on the process occurs
because of its interaction with the magnetic moment of creating particles.

PACS 12.20.-m – Quantum electrodynamics.
PACS 13.60.Le – Meson production.

1. – Introduction

The pair photoproduction in an electromagnetic field is the basic QED reaction which
can play a significant role in many processes. This process was considered first in a
magnetic field. The investigation was started in 1952 independently by Klepikov and
Toll [1,2]. In Klepikov’s paper [3], which was based on the solution of the Dirac equation,
the probability of photoproduction had been obtained on the mass shell (k2 = 0, k is the
4-momentum of photon. We use the system of units with � = c = 1 and the metric
ab = aμbμ = a0b0 − ab). In 1971 Adler [4] had calculated the photon polarization
operator in a magnetic field using the proper-time technique developed by Schwinger [5]
and Batalin and Shabad [6] had calculated this operator in an electromagnetic field using
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the Green’s function found by Schwinger [5]. In 1975 the contribution of charged-particles
loop in an electromagnetic field with n external photon lines had been calculated in [7].
For n = 2 the explicit expressions for the contribution of scalar and spinor particles
to the polarization operator of photons were given in this work. Making use of the
imaginary part of this operator for spinor particles the pair photoproduction probability
was analyzed in the pure magnetic [8] and the pure electric [9] field.

The probability of pair photoproduction in a constant and homogeneous electric field
in the quasi-classical approximation had been found by Narozhny [10] using the solution of
the Dirac equation in the Sauter potential [11]. Nikishov [12] had obtained the differential
distribution of this process also using the solution of the Dirac equation in the indicated
field.

In the present paper we consider the integral probability of pair creation by an un-
polarized photon in a constant and homogeneous electromagnetic field of an arbitrary
configuration basing on the polarization operator [7]. In sect. 2 the exact expression
for this probability has been received for the general case k2 �= 0. In sect. 3 the stan-
dard quasi-classical approximation (SQA) [13,14] is outlined for the high-energy photon
ω � m (m is the electron mass). The corrections to SQA, determined also the applica-
bility region of SQA, have been calculated. The found expressions, given in the Lorentz
invariant form, contain two invariant parameters. In sect. 4 the new approach has been
developed for the relatively low energies where SQA is not applicable. This approach
is based on the method proposed in [8]. The obtained probability is valid in the wide
interval of photon energy, which is overlapped with SQA. In sect. 5 the case of the “non-
relativistic” photon ω � m is analyzed. In particular, in the energy region ω � eE/m
where the previous approach is inapplicable, the low energy and the very low energy
approximations have been developed basing on the analysis in [9]. In turn the found
results have an overlapping region of applicability with the previous approach and with
each other. So just as in [9] we have four overlapping approximations which include all
photon energies. At the photon energy ω � eEm/(m2 + eE) the probability has been
found for arbitrary values of electric E and magnetic B fields.

2. – General expressions for the probability of process

Our analysis is based on the general expression for the contribution of spinor particles
to the polarization operator obtained in a diagonal form (Baier, Katkov, Strakhovenko,
1975). The imaginary part of the eigenvalue κi of this operator on the mass shell (k2 = 0)
determines the probability per unit length Wi of the e−e+ pair creation by the real photon
with the polarization ei directed along the corresponding eigenvector. The consideration
realizes in the frame where the electric E and magnetic B fields are parallel and directed
along the axis 3. The probability of pair creation by the unpolarized photon has the
form

W =
αm2r

2πiω
μν

∫ 1

−1

dv

∫ ∞−i0

−∞−i0

f(v, x) exp[iψ(v, x)]xdx;(1)

r =
ω2 − k2

3

4m2
, ν =

eE

m2
=

E

E0
, μ =

eB

m2
=

B

B0
,(2)

E0 = 1.32 · 1016 V/cm, B0 = 4.41 · 1013 G.
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Here

f(v, x) =
cosh(νx)(cos(μx) − cos(μxv))

sinh(νx) sin3(μx)
+

cos(μx)(cosh(νx) − cosh(νxv))
sin(μx) sinh3(νx)

,(3)

ψ(v, x) = 2r
(

cosh(νx) − cosh(νxv)
ν sinh(νx)

+
cos(μx) − cos(μxv)

μ sin(μx)

)
− x.(4)

After all calculations have been fulfilled we can return to a covariant form of the
process description using the following expressions:

(5) ν2 − μ2 = 2F =
E2

E2
0

− B2

B2
0

, νμ = G =
EB

E0B0
.

The SQA is valid for ultrarelativistic created particles (r � 1) and can be derived
from eqs. (1)-(4) by expanding the functions f(v, x), ψ(v, x) over x powers. Retaining
the leading powers of x one obtains

W (SQA) =
αm2

3
√

3πω

∫ 1

0

9 − v2

1 − v2
K2/3(z)dv, z =

8
3(1 − v2)κ

,(6)

κ2 = 4r(μ2 + ν2) = − e2

m6
(Fμνkν)2 .

To get the correction to the probability in SQA we shall keep the next powers of x. We
have

(7) W (1) = − αm2F
30
√

3πωκ

∫ 1

0

dv

1 − v2
G(v, z),

where

(8) G(v, z) = 2(1 + v2 − 27z2)K1/3(z) + 3(7 − v2)zK2/3(z).

It is seen that in this order of decomposition the correction does not depend on the
invariant parameter G, because G is the pseudoscalar. The asimptotics of the integrals
incoming in the correction terms have been given in Appendix C [8]. The asymptotic at
κ � 1 will become necessary further

(9) W (1) =
6αm2F
5ωκ2

√
2
3

exp
[
− 8

3κ

]
,

W (1)

W (SQA)
=

64F
15κ3

.

3. – Region of intermediate photon energies

In the field, which is weak in comparison with the critical field E/E0 = ν � 1,
B/B0 = μ � 1 and at the relatively low photon energies r � ν−2/3, the standard quasi-
classical approximation is non-applicable. At these energies, if the condition r � ν2 is
fulfilled, the saddle-point method can be applied to integration over x. In this case the



4 V. M. KATKOV

small values of v contribute to the integral over v. So one can expand the phase ψ(v, x)
over v and extend the integration limit to the infinity. We get

(10) W =
αm2r

2πiω
μν

∫ ∞

−∞
dv

∫ ∞

−∞
f(0, x) exp

[
−i

[
ϕ(x) + v2χ(x)

]]
xdx,

where

ϕ(x) = 2r
(

1
μ

tan
μx

2
− 1

ν
tanh

νx

2

)
+ x,(11)

χ(x) = rx2

(
ν

sinh(νx)
− μ

sin(μx)

)
.(12)

From the equation ϕ′(x0) = 0 we find the saddle point x0

(13) tan2 νs

2
+ tanh2 μs

2
=

1
r
, x0 = −is.

At r � 1 we have

(14) W =
3αm2κ

16ω

√
3
2

exp
[
− 8

3κ
+

64F
15κ3

]
.

This expression is valid at κ � 1 and coincides with eq. (9) for F � κ3. So the
overlapping region of both approximations exists.

It is interesting to consider the photon energy region |r − 1| � 1 in the presence of a
weak electric field (ν � μ) where in the absence of an electric field the approach under
consideration is valid if the condition r − 1 � μ is fulfilled. In this case the following
approximate equations are valid:

ξ2y2
0

16
� exp[−y0] +

1 − r

4
, y0 = μs, ξ =

ν

μ
;(15)

y0 � 2 ln
2

ξ ln 4
ξ

(
1 − r − 1

2ξ2 ln 2
ξ ln3 4

ξ

)
, |r − 1| � ξ2;(16)

y0 � ln
4

r − 1

(
1 − ξ2

4(r − 1)
ln

4
r − 1

)
, r − 1 � ξ2;(17)

ξy0 = νs � 2
√

1 − r, 1 − r � ξ2.(18)

The applicability of the using saddle-point method is connected with the large value of
the coefficient to the second power (y − y0)2 of the decomposition in the phase ϕ(x). In
the energy region under consideration we have

(19) iϕ′′(x0)(x − x0)2/2 � ξ2

4μ

[
y0 +

y2
0

2
+

2(r − 1)
ξ2

]
(y − y0)2.

So, in the case ν/μ = ξ � 1, |r − 1| � ξ2 this approximation is valid if the condition
ξ2/μ � 1 is fulfilled. In the case 1 � r − 1 � ξ2 the condition r − 1 � μ has to
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be available for that. And in the case 1 � 1 − r � ξ2 the condition
√

1 − rξ/μ =√
(ξ2/μ)(1 − r)/μ � 1 is necessary.
At energy r � 1 (ν2 � r � ν2/3) we have νs � π − 2

√
r,

(20) W =
αm2μ

4ω
√

r
coth(πη) exp

[
−1

ν

(
π − 4

√
r +

2r

η
tanh

πη

2

)]
.

At η � 1 the probability W has been increased by the factor ηπ exp[πr/ν] in comparison
with the case of the absence of magnetic field.

4. – Approximations at low photon energy

At r ∼ ν2 the above approximation becomes non-applicable and another approach
has to be applied. We close the integration over x contour in the lower half-plane and
represent eq. (1) in the following form:

(21) W =
αm2r

2πiω
μν

∫ 1

−1

dv
∞∑

n=1

∮
f(v, x) exp[iψ(v, x)]xdx,

where the path of integration is any simple closed contour around the point −iπn�ν. Let
us choose the contour near this point in the following way νx = −iπn+ξn, |ξn| ∼

√
r ∼ ν

and expand the function entering in over the variables ξn. In the case ν � 1, because of
the appearance of the factor exp[−iπn�ν], the main contribution to the sum gives the
term n = 1. Near the point −iπ�ν the main terms of expansion (ξ ≡ ξ1) are

(22) f =
2i
ξ3

coth(πη) cos2
πv

2
, ψ =

4r

ξν
cos2

πv

2
− ξ

ν
+

iπ
ν

.

Using eq. (7.3.1) and eq. (7.7.1 (11)) in [15] we find after integration over ξ and v

(23) W =
αm2

ω
ηπ coth(πη) exp

[
−π

ν

]
I2
1 (z), z =

2
√

r

ν
,

where In(z) is the Bessel function of the imaginary argument. The found probability is
applicable for r � ν.

For r � ν2 the asymptotic representation In(z) � exp[z]�
√

2πz can be used. As a
result one obtains eq. (20) if in the exponent of the last one leaves out the term ∝ r/ν.
At very low photon energy r � ν2, using the expansion of the Bessel functions for the
small value of argument, we have

(24) W =
αm2r

ων2
ηπ coth(πη) exp

[
−π

ν

]
.

The probability under consideration draws the interest of theoreticians for arbitrary
values μ and ν. For r � ν2�(1 + ν2) one can conserve in the phase ψ(v, x) the term −x
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only. After integrating over v we get the following equation for the probability of photon
absorption:

W =
αm2r

iπω

∞∑
n=1

∮
F (yn) exp

[
−i

yn

ν

]
dyn, yn = −inπ + y,(25)

F (y) =
cosh(y) (ηy cos(ηy) − sin(ηy))

sinh y sin3 ηy
+

η cos(ηy)(y cosh y − sinh y)
sinh3 y sin(ηy)

.(26)

Summing the residues in the points yn = −inπ one obtains

W =
αm2r

ω

∞∑
n=1

exp
[
−πn

ν

]
Φ(zn), zn = ηπn,(27)

Φ(zn) =
zn

ν2
coth zn +

2
sinh2 zn

[ηzn

ν
+

(
1 + η2

)
zn coth zn − 1

]
.(28)

At η → 0, zn → 0 we have (compare with eq. (28) in [9])

Φ =
1
ν2

+
2

νπn
+

2
π2n2

+
2
3

,(29)

W =
αm2r

ω

[(
1
ν2

+
2
3

)
1

eπ/ν − 1
− 2

πν
ln

(
1 − e−π/ν

)
+

2
π2

Li2
(
e−π/ν

)]
,(30)

where Li2(z) is the Euler dilogarithm. In the opposite case η → ∞, zn → ∞ one obtains

(31) Φ =
πηn

ν2
, W =

αm2r

ων2

πη

4
sinh−2 π

2ν
.

5. – Conclusion

The probability of the process has been calculated using four different overlapping
approximations. In the region of SQA applicability the particles created by a photon
have ultrarelativistic energies. The role of fields in this case is to transfer the required
transverse momentum and the electric and magnetic field actions are equivalent. But
even in this case it is necessary to note the special significance of the weak electric field
E = ξB (ξ � 1) in the removal of the root divergence of the probability when the
particles of the pair are created on the Landau levels with the electron and positron
momentum p3 = 0. In the frame used, k3 = 0.

Generally speaking, at ξ � 1 the formation time tc of the process under consideration
is 1/μ. Here we use units � = c = m = 1. At this time the particle of the pair gets the
momentum δp3 ∼ ξ because of the electric field. If the value ξ2 becomes more larger than
the distance apart Landau levels 2μ (ν2 � μ3) all levels have been overlapped. Under
this condition the divergence of the probability is vanished and the new quasi-classical
approach is valid even in the energy region r−1 � μ where it has been inapplicable in the
absence of the electric field. In the opposite case ν2 � μ3 for the small value of p3 � √

μ
in the region where the influence of the electric field can be neglected, the formation time
of the process tf is 1/p2

3 and δp3 ∼ ν/p2
3 � p3. It follows from the above that in this

case the condition ν1/3 � p3 � √
μ has to be satisfied. At this condition the value of
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discontinuity is
√

tf/tc ∼ √
μ/p3. For ν1/3 � p3 the time tf is determined by the self-

consistent equation δε2 ∼ 1/tf ∼ ν2t2f , tf ∼ ν−2/3 and the value of discontinuity becomes
√

μtf ∼ (μ3/ν2)1/6 instead of
√

μ/p3. In the region ω � 2m (r � 1) the energy transfer
from the electric field to the created particles becomes appreciable and for ω � m it
determines mainly the probability of the process. At ω � eE/m the photon assistance
in the pair creation comes to an end and the probability under consideration defines
the probability of photon absorption by the particles created by electromagnetic fields.
The influence of the magnetic field on the process is connected with the interaction of
the magnetic moment of the created particles and magnetic field. This interaction, in
particular, has appeared in the distinction of the pair creation probability by field for
scalar and spinor particles [5].
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