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Summary. — The process of photon emission by high energy electrons or positrons
moving in a bent single crystal was considered. The spectrum of energy losses by
particles and polarization of emitted photons were calculated. The corrections due to
multiphoton emission were obtained. Photoproduction process via electron-positron
pairs in a bent single crystal was also studied. Total cross-section at different bending
radii was calculated for different initial polarization states of high energy photons.

PACS 61.85.+p – Channeling phenomena (blocking, energy loss, etc.).
PACS 78.70.-g – Interactions of particles and radiation with matter.

1. – Introduction

It is well known that an ordered location of atoms in single crystals creates periodic
microscopic electric fields. The entering charged particle in a single crystal moves inter-
acting with these fields. Processes arising at interaction of a particle with such electric
fields are mostly coherent. The coherent processes take place in both straight and bent
single crystals. In particular, the coherent scattering (volume reflection) of relativistic
protons by bent crystallographic planes was observed in a recent experiment [1]. For
light leptons (electrons and positrons) the volume reflection is accompanied by power
photon emission. For the first time this process was calculated in [2] and then was mea-
sured in experiments [3,4]. The results of experiments are in satisfactory agreement with
calculations.

These calculations (see [2-4]) were performed on the basis of the quasiclassical ap-
proach developed in [5]. There are many computing difficulties for solution of the prob-
lem under consideration with the help of this method. In this paper we propose a more
simple method for calculation of photon emission in planar fields of a bent single crys-
tal. This method may be applied for electron or positron beams with energies up to
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several hundreds GeV and a crystal thickness of several millimeters. The method has a
common enough feature but we illustrate it under the conditions of the recent CERN
experiment [6].

2. – Calculation of radiation intensity

It is well known that the process of radiation of a relativistic particle at quasiperiodic
motion may be characterized with the help of parameter ρ = 2γ2〈(v(t) − vm(t))2〉/c2,
where γ is the Lorentz factor, v(t), vm are the current (as a function of time t) and mean
transversal velocities of a particle, c is the velocity of light, the brackets 〈. . .〉 mean the
averaging over time. The radiation process has a dipole (interference) character when
ρ � 1 and a synchrotron-like one when ρ � 1. When ρ ∼ 1 is an intermediate case.

Further consideration of the problem will be based on the results of the paper [7]
which present the investigation of particle motion in bent planes of a single crystal. In
this case, ultrarelativistic particles intersect a set of parallel crystallographic planes, and,
because of this, their transversal velocities oscillate. The peculiarities of such motion are
aperiodicity and amplitude variations of oscillations. However, on a short part of the
particle trajectory these variations of period and amplitude are insignificant (for large
enough bending radii). It allows us to calculate the ρ-parameter for every oscillation.
These calculations (for 120 GeV positrons moving in the (110) silicon plane) show that
the ρ-parameter is less than 2 and exceeds 1 only for several oscillations in the vicinity
of a critical point. Further we will suppose that radiation process has a dipole character.

Our consideration is based on the assumption that the conditions for the coherent
bremsstrahlung take place on a short part (about several periods) of the particle trajec-
tory. It means that

(1)
d2E
dEq

(t) =
dI

dEq
(θ̃(t))cdt =

dI

dEγ
(θ̃(t))cdt,

where dE/dEe is the differential energy losses of positrons at time t, Eq = E0−Ee = Eγ ,
E0 and Ee are the positron energies before and after radiation, Eγ is the photon energy, θ̃
is the averaged (see below) angle with respect to crystallographic planes, c is the velocity
of light. For dI/dEγ(θ) = nEγdσγ/dEγ function (n is the number atoms per volume
unit and σγ is the cross-section of the process) we take the corresponding relation from
the theory of coherent bremsstrahlung [5, 8]. Besides, this equation is valid for large
enough bending radii of a single crystal.

For usage of eq. (1) one needs to know the dependence of θ̃ on time, or, in other
words, we should find the equation of motion in bent single crystals. In particular, this
problem was considered in [7]. As was shown, in our case the problem is reduced to
one-dimensional motion in the transversal direction. One can describe the variation of
the transversal coordinate x by the following equation:

(2) t =

√
E0

2c2

∫ x

x0

dx√
E − U(x) − E0x/R

,

where U(x) is the periodic interplanar potential, R is the bending radius and E =
E0θ0/2 + U(x0) + E0x0/R is the total transversal energy and t = 0 corresponds to x0.
Here we put the relative total particle velocity (in comparing with c) equal to 1.
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The transversal coordinate xc and time tc corresponding to the point of particle
reflection satisfy the equation

(3) E − U(xc) − E0xc/R = 0.

The particle angle (with respect to the crystallographic planes) θ is equal to 1
c

dx(t)
dt .

At particle motion this angle performs oscillations and accordingly to the theory of dipole
radiation we should insert in eq. (1) its value averaged over the oscillation period, or,
in other words, the θ̃-angle. One can describe the variation of transversal averaged over
oscillations coordinate of the moving particle by the following equation:

(4) x = x0 + ṽ0(x0)t −
c2t2

2R
,

where

(5) ṽ0(x0) = c
√

θ2
0 + 2(U(x0) − U(xc))/E0 ,

and x0, θ0 are the initial transversal coordinate and the angle.
From here, the averaged mean angle θ̃ is approximately equal to

(6) θ̃ =
ṽ0

c
− ct

R
.

However, this approximation works from t = −∞ until t = tc. As was considered in [7]
at t = tc particle undergoes the volume reflection and the direction of its transversal
velocity is changed. For t > tc (using the symmetry properties of the volume reflection
process) we can write

(7) θ̃ =
2ctc
R

− ṽ0

c
− ct

R
.

From here, we see that the averaged angle θ̃ is a linear function of time from t = −∞
until tc and from tc until +∞, and it is changed by leap at t = tc. Then the absolute
value of angle variation is equal to θmin = |ṽ0/c − ctc/R|. From [7] one can find that
θmin = |α(E)|/2, where α(E) is the angle of volume reflection of a particle with the
transversal energy E. As was shown in [7] α-value depends weakly on E at large enough
bending radii, and one can take the mean value α (averaged over one period of E) for
calculations. Taking this and eq. (1) into account we can calculate the radiation energy
losses of particle from t1 until t2 (t1 < tc < t2):

(8)
dE
dEq

(Eq) = R

∫ −θmin

θ1

dI

dEq
(θ̃)dθ̃ + R

∫ θ2

θmin

dI

dEq
(θ̃)dθ̃,

where θ1 < −θmin and θ2 > θmin are the entrance and exit angles. In the case when
t2 < tc (t1 > tc) one plain integral should be used. Note one can find the function I(θ)
in the literature, see, for example [5, 8].

In straight single crystals (if we do not take into account multiple scattering) the
energy losses of ultrarelativistic particles are equal to I(θ)L. It means that the form
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of spectrum is independent of the thickness of a single crystal. Our calculations show
that in bent single crystals the form of spectrum depends on the thickness and bending
radius.

It should be noted that at fixed angle θ0 the particle trajectories depend on initial x0

(see term U(x0) in eq. (5)), but for large enough bending radii this dependence is very
weak, and it is possible not to take it into account.

3. – Taking into account multiplicity of photon emission

It is obvious that eq. (8) is valid only for thin enough single crystals, when the
probability of emission of two and more photons by one electron is small in comparison
with one. The simulations for conditions of the experiment [6] by Monte Carlo method
based on the above-mentioned description of the radiation process have shown that the
mean number of photons with energy more than 1 GeV per positron was about 1.5. This
fact requires to correct our description and to take into account this possibility. As a
result for radiation energy losses we get

(9)
dE
dE′ (ε, E

′, z0) = (E0 − E′)
(

dN1e

dE′ (ε, E′, z0) +
dN2e

dE′ (ε, E′, z0)
)

,

where E′ is the positron energy on the exit of a single crystal with thickness equal to z0

and ε is the photon cutting energy (see below). The N1e, N2e functions are

dN1e

dE+
(ε, E+, z0) =

∫ z0

0

d2Ne

dzdE+
(ε, E+, z) exp

[
−n

∫ z0

z

σγ(ε, E+, z)dz

]
dz,(10)

dN2e

dE′ (ε, E′, z0) =(11)

=
∫ z0

0

∫ E0−ε

E′+ε

d2Ne

dzdE+
(ε, E+, z)

{
1 − exp

[
−n

∫ z0

z

σγ(ε, E+, z)dz

]}

×ρ(ε, E+, E′, z)dE+dz,

where E+ and E′ are the positron energies after the first and second photon emission
(with the photon energy Eγ in the range from ε up to E0), n is the number atoms per
unit of volume and σγ(ε, E+, z) is the cross-section of coherent bremsstrahlung [5, 8] on
the current thickness z ≤ z0 of a single crystal and it is coupled with the intensity on the
same coordinate by the equation dσγ/dEγ = 1

Eγ
dI/dEγ and the angle θ is determined

by the current coordinate z = ct. One can find the Ne and ρ-functions from the relations

(12)
d2Ne

dzdE+
(ε, E+, z) = exp

[
−n

∫ z

0

σγ(ε, E0, z)dz

]
nσγ(ε, E0, z)ρ(ε, E0, E+, z),

with the function

(13) ρ(ε, E0, E+, z) =
1

nσγ(ε, E0, z)
dσγ(ε, E0, E+, z)

dE+
.
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For small thickness (when n
∫ z0

0
σγ(ε, E′, z)dz � 1) eq. (9) gives the result

(14)
dE
dE′ (ε, E

′, z0) = (E0 − E′)n
∫ z0

0

dσγ

dE′ (ε, E0, E
′, z)dz.

Under the conditions of the experiment n
∫ z0

z
σγ(ε, E′, z)dz ∼ 1 and hence we should

use eqs. (9)–(12) for calculations. This consideration allows one to take into account:
1) the nonlinear (exponential decrease) character of the process as a function of thickness;
2) the multiplicity of photon emission by one positron. Our consideration works for the
case when only not larger than two high energy photons may be emitted. Of course,
it is easy to obtain similar relations for more multiplicity but there are difficulties of
calculations of multidimensional integrals.

Besides, for a correct work of the method the value ε should be defined correctly.
Our choice of this value can be understood from the following simple arguments. In the
experiment only the more than 2 GeV energy losses were fixed. Besides, the momentum
spread of the positron beam was about 1 percent. It allows us to put ε equal to 1.2 GeV.
Thus, we do not take into account the emission of low energy photons. Results of calcula-
tions should be practically independent of ε-value. Really, for variations of ε in the range
from 0.12 up to 1.2 GeV the calculated spectra of energy losses are very close in between.
Besides, under the conditions of the experiment [6] the energy losses are determined
mainly by a coherent part of the cross-section, which is a finite value. Calculations with
zero incoherent cross-section (and ε = 0) demonstrate insignificant differences of results.

There was additional amorphous material in the beam line and this material gave
radiation energy losses of positrons which are not coupled with the studied process. It
is a usual situation in similar experiments. Due to this fact, we introduce approximate
calculations of the influence of an additional material on energy losses spectra. As already
noted, the total differential cross-section of the investigated process is the sum of coherent
dσc and incoherent dσa terms. We believe that the additional material may be a taken
into account by a corresponding increasing of dσa.

Note our calculations were performed on the basis of atomic form factors taken from
X-ray measurements [9, 10].

4. – Calculation and comparison with measurements

Here we illustrate the developed method of calculations for conditions of the re-
cent CERN experiment [6]. The experiment was performed at positron energy equal to
120 GeV. The silicon single crystal of the (110) orientation, 2 mm of thickness was used
in measurements at two values of bending radii (4.7 and 11 meters). Figure 1 illustrates
the calculated spectra ((a), (b) for bending radii 11 m and 4.7 m, correspondingly) and
degree of linear polarization ((c), the curves 1 and 2 for bending radii 11 m and 4.7 m,
correspondingly). The curves 1 and 2 correspond to the two cases. The first case is
calculation for a pure crystal in the beam and the second one is for the sum of crystal
and background from an additional substance in the beam line. Measurements (without
crystal and with nonoriented crystal) give the value equal to ≈ 0.7 for ratio of energy
losses. The circles and squares are the results of measurements for oriented and nonori-
ented positions. The curves 1 and 2 in fig. 1(a,b) are the result of the averaging over the
angle divergence of positron beam, which was ±50 and ±173 μrad relative to the central
coming angle, correspondingly. Note our calculations show that averaged spectra are
close to the spectra calculated for the central angle. This is true also for the polarization
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Fig. 1. – Calculations of radiation energy losses (a, b) and linear polarization (c) of 120GeV
positrons in the (110) plane of a silicon single crystal (2 mm of thickness) as functions of energy.
In (a, b) the curves 1 present results of calculation of the energy losses in the experiment
(crystal + background), while the curves 2 correspond to a pure crystal. In (c) the curves 1 and
2 present linear polarization as a function of photon energy for bending radii 11 and 4.7 meters,
respectively. For additional information, see the text.

dependences. The curves 3 (in fig. 1(a,b)) are (multiplied on 0.65 and 0.85, correspond-
ingly) the energy losses calculated with the help of eq. (14) and hence do not take into
account multiphoton production.

We have employed the proposed here method for calculation of energy losses of 180
GeV positrons and electrons [4]. Figure 2 illustrates these calculations.

In a whole we see good enough agreement between calculations and measurements.
Some disagreement in fig. 2 can be explained as at 180 GeV the condition for dipole
radiation is more violated than at 120 GeV. Calculations presented here for crystals of
1-2 mm of thickness show also importance taking account the multiphoton character of
emission. From this point of view it is easy to understand why discrepancy between
measurements and calculations carried out in one-photon approximation (curves 3 in
fig. 1 and curves 2 in fig. 2) is less for smaller bending radii which correspond to smaller
photon multiplicity. The process of coherent bremsstrahlung in bent single crystals was
also studied in the papers [11-13] but these results do not take into account the conditions
for volume reflection. Because of this, one can expect enhancement of a soft part of
photon spectrum (see, for example [13], where the calculated soft part exceeds strongly
corresponding experimental data).
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Fig. 2. – Calculations of radiation energy losses of positrons (a) and electrons (b) in the (111)
planes of silicon single crystals. The curves marked as 1 are new calculations, the curves 2 are
previous ones [4]. Symbols are measurements.

Fig. 3. – The probabilities of pair production in the (110) bent planes of silicon single crystals
as a function of the entrance angle θ0. Curves 1 and 2 are the probabilities for photons with the
linear polarization along and perpendicular with respect to the planar electric field and curve 3
is their difference. The thin straight line is the probability in a nonoriented single crystal. The
bending radius is 10 m. The photon energies and the thickness of the crystal are 120 GeV and
1 cm (a) and 1000GeV and 0.1 cm (b).

5. – Photoproduction of electron-positron pairs in bent single crystals

The process of photoproduction of electron-positron pairs in bent single crystals was
investigated in the paper [14]. In many respects this consideration is similar to the
coherent radiation process. Figure 3 illustrates the probability of e± pair production for
photons with energies equal to 120 and 1000 GeV.
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6. – Conclusions

The results obtained here allow us to draw the following conclusions:

1) A simple method of calculations of photon emission by electrons (positrons) moving
in a planar field of bent single crystal was proposed.

2) The results of simulations and experimental data are in good agreement.

3) The consideration may be expanded on the axial case of orientations.

4) The process of photoproduction of e±-pairs in bent single crystals was investigated.

5) The polarization dependences for both the processes were presented.
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