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Summary. — The exact analytical solution of the Dirac equation for axial chan-
neled electrons, with taking into account the spin direction of the channeled electron
is found. It is shown that the longitudinal polarization manifests itself as the split-
ting of every energy level into two sublevels.

PACS 75.25.-j – Spin arrangements in magnetically ordered materials (including
neutron and spin-polarized electron studies, synchrotron-source X-ray scattering,
etc.).
PACS 61.85.+p – Channeling phenomena (blocking, energy loss, etc.).
PACS 03.65.-w – Quantum mechanics.

1. – Introduction

When relativistic charged particle enters a crystal at small angle with respect to
crystal plane or axis, its interaction with separated crystal atoms can be described by
continuous (averaged) potential of the crystal plane or axis [1]. In such situation the
relativistic charged particle can be trapped into the channeling state [1-3]. The motion
of channeled particle typically can be divided into transverse (perpendicular to the crystal
plane or axis) and longitudinal motions (parallel to the crystal plane or axis). Channeled
particle has the transverse discrete energy levels. If the particle is a high energy one,
its motion should be described by the Dirac equation. Usually the Dirac equation is
transformed to approximate Schrödinger-like equation. But within this approximation
the information about particle spin is lost. In order to clarify spin problems one should
solve the Dirac equation. The spin problem for planar channeled electrons and positrons
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was considered in [4,5], where it was shown that in planar case spin effects in interaction
of relativistic charged particles are negligibly small.

In the present report we study the spin effects in the interaction of relativistic chan-
neled electrons with a crystal in axial case. Several theoretical works were dedicated to
the solution of the Dirac equation for relativistic channeled electrons (see, e.g., refs. [3,6,7]
and references therein), but it seems that the problem has not been investigated in details
yet. Here, we obtain the exact solution of the Dirac equation for relativistic electrons
with orbital momentum and spin. We consider axial channeling of relativistic electrons,
and use an axial model of continuous potential V (r) = const/r, where r is the distance
from the electron to the crystal axis. The solution is found with the help of variables
separation in cylindrical coordinates.

In order to estimate the role of electron spin, we define the bound energy levels of
channeled electron and transition energies between these levels.

2. – Dirac equation for axial channeling

Within the framework of quantum theory the motion of relativistic electron is de-
scribed by the Dirac equation

(1) (γμPμ − mc)Ψ = 0,

where γμ is the Dirac matrix, Pμ = ih̄∂μ−(e/c)Aμ is the operator of generalized momen-
tum, Aμ = (ϕo, �A) is the 4-vector potential with the scalar potential ϕo and the vector
potential �A of the electromagnetic field, e is the electron charge and m is the electron
rest mass.

Due to axial cylindric symmetry of averaged axial potential it is convenient to use
cylindrical coordinates. We assume that the crystal axis is directed along the OZ coor-
dinate axis.

When relativistic electron moves in the axial channeling regime, the longitudinal (par-
allel to the crystal axis) momentum of electron is a constant as well as the total energy.
It is mean that electron motion along the crystal axis is free; therefore we can consider
its wave function Ψ(r, ϕ, z, t) as a product of transverse wave (which describes electron
motion in a plane perpendicular to the crystal axis) and free plane wave propagates along
the crystal axis (OZ axis)

(2) Ψ(r, ϕ, z, t) =
(

χ1(r, ϕ)
χ2(r, ϕ)

)
exp

[
i
h̄

(pz − Et)
]

.

Here χ1(r, ϕ) and χ2(r, ϕ) are two-component spinors of the transverse wave function.
After substitution of wave function (2) into the Dirac equation (1) we derive

(3)
(E − mc2 − V (r))χ1(r, ϕ) − cpσ3χ2(r, ϕ) + ich̄D̂⊥χ2(r, ϕ) = 0,

(E + mc2 − V (r))χ2(r, ϕ) − cpσ3χ1(r, ϕ) + ich̄D̂⊥χ1(r, ϕ) = 0.

Here V (r) = eϕo(r) is the potential energy of the electron in the electrostatic field of the
axis and also we have used the operator as in [6], D̂⊥ = σ1z∂̂r + (1/r)σ2z ∂̂ϕ.
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3. – Solution of spin equation for axial channeling

In order to find the solution of the Dirac equation with a fixed spin, we use spin
covariant operator as obtained in [8]. This spin operator commutes with the Dirac
equation and therefore has common eigenfunctions. In the absence of magnetic field, the
component of the spin perpendicular to the electric field will be the integral of motion.
In our case it is a Z-component of the spin Ŝz = ρ3σ3z − (ih̄/mc)ρ1∂z [8]. Now the
equation describing the electron spin can be written as follows:

(4) ŜΨ(r, ϕ, z, t) = ρ3σ3zΨ(r, ϕ, z, t) − ih̄
mc

ρ1∂zΨ(r, ϕ, z, t) = λ3Ψ(r, ϕ, z, t),

where λ3 are the eigenvalues of the spin operator Ŝz, and σ1z, σ2z, σ3z are the Pauli
matrixes in cylindrical coordinates, and

(5) ρ1 =
(

0 1
1 0

)
, ρ3 =

(
1 0
0 −1

)
.

After substitution of the channeled electron wave function (2) into eq. (4) we find

(6)
pχ2(r, ϕ) = mc[λ3χ1(r, ϕ) − σ3zχ1(r, ϕ)],

pχ1(r, ϕ) = mc[λ3χ2(r, ϕ) + σ3zχ2(r, ϕ)].

Therefore, in order to study the spin problem for the axially channeled electron we
have to find a common solution of the system of eqs. (3) and (6). Following [6], we choose
the spinor χ1(r, ϕ) in the form

(7) χ1(r, ϕ) =

(
u0(r)eiνϕ

u1(r)ei(ν+1)ϕ

)
,

here ν is the orbital quantum number. Using (5) it is easily to find from the first equation
of system (6) that

(8) χ2(r, ϕ) =
mc

p

(
(λ3 − 1)u0(r)eiνϕ

(λ3 + 1)u1(r)ei(ν+1)ϕ

)
.

Substituting χ2(r, ϕ) of the form (8) into the second equation of system (6) and some
algebra we find the relation between electron momentum p and eigenvalues λ3 of the spin
operator

(9) λ3 = ξ

√
1 +

( p

mc

)2

= ξγ, ξ2 = 1.

Here γ is the relativistic factor of the channeled electron. The value ξ = +1 cor-
responds to the spin vector direction as the longitudinal momentum of the channeled



114 K. B. KOROTCHENKO and YU. P. KUNASHENKO

electron, while ξ = −1 corresponds to the spin vector in the opposite direction. As
follows from eq. (9) the χ2(r, ϕ) has the form

(10) χ2(r, ϕ) =

(
κu0(r)eiνϕ

(1/κ)u1(r)ei(ν+1)ϕ

)
, κ =

√
λ3 − 1
λ3 + 1

.

4. – Solution of Dirac equation with fixed spin for axial channeling

After substitution of the spinors χ1(r, ϕ) and χ2(r, ϕ) in the forms (8), (10) into (3)
we obtain that now the Dirac equation depends only on one variable r for the arbitrary
potential function V (r):

(11)

⎧⎨
⎩

(E − mc2 − V (r) − cpκ)u0(r) + ich̄ [u1(r)(1 + ν)/r + ∂ru1(r)] /κ = 0,

(E + mc2 − V (r) + cpκ)u1(r) + ich̄κ [−u0(r)ν/r + ∂ru0(r)] = 0,⎧⎨
⎩

(E + mc2 − V (r) − cp/κ)u0(r) + ich̄ [u1(r)(1 + ν)/r + ∂ru1(r)] /κ = 0,

(E − mc2 − V (r) + cp/κ)u1(r) + ich̄κ [−u0(r)ν/r + ∂ru0(r)] = 0.

A similar result was obtained in [7]. The structure system of eq. (11) is similar
to the structure system of the equation for electron motion in a spherically symmetric
field [9, 10].

For further calculation we use the continuous potential of the separated crystal axis
in the form

(12) V (r) = −Ze2

r
,

here r is the distance from the axis, Z is the atomic number of crystal atoms. Approxima-
tion (12) for the crystal axis potential was used for example in [3,6]. This approximation
is valid when the average distance from the electron to the crystal axis is greater than
the root mean-square displacement of the crystal atoms from equilibrium positions.

Following the well-known method [10], we find the common solution of first and second
pairs of eq. (11):

u0(r) = − i
κμ

e−
r
α rs−1

[(
π + s

q + s
+ C

)
U

(
π + s, 2s,

2r

α

)
(13)

− 2r

α

π + s

q + s
U

(
1 + π + s, 1 + 2s,

2r

α

)]
,

u1(r) = e−
r
α rs−1

[(
C − π + s

q + ν

)
U

(
π + s, 2s,

2r

α

)

− 2r

α

π + s

q + ν
U

(
1 + π + s, 1 + 2s,

2r

α

)]
.
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Here C is the normalization constant, U(a, c, r) is the confluent hypergeometric func-
tion, and

q =
β

2

(
μ +

1
μ

)
+

1
2

, π =
β

2

(
μ − 1

μ

)
− 1

2
(14)

s =
1
2

+

√(
1
2

+ ν

)2

− β2, β =
Ze2

ch̄
.

In order to write the solution of the first and second pairs of eqs. (11) by the same
formulas, we introduced different notations for the first and second pairs of eq. (11). For
the first pair we introduced

(15) α =
ch̄√

−(E − mc2 − cpκ)(E + mc2 + cpκ)
, μ =

√
1 − E − mc2 − cpκ

E + mc2 + cpκ

and for the second pair

(16) α =
ch̄√

−(E + mc2 − cpκ)(E − mc2 + cpκ)
, μ =

√
1 − E + mc2 − cp/κ

E − mc2 + cp/κ
.

The solution, which satisfied the condition at infinity, is obtained only for negative
integer (or zero) values π+s = −n in a first confluent hypergeometric function, when this
function reduces to a polynomial one. Otherwise it diverges at infinity. This condition
results in formulae for electron energy levels with fixed spin orientation (left for the first
pair, right for the second pair):

(17) Enκ1 = EnD

(
1 +

pκ

mc

)
, Enκ2 = −EnD

(
1 − p

mcκ

)
, D = (+,−).

Here,

(18) En+ = mc2/
√

1 + (β/ns)2, En− = mc2/
√

1 − (β/ns)2,

where ns = n + s − 1/2. It should be mentioned that formula (18) for energy En+

is similar to the well-known formula for the electron energy in a Coulomb field [9] and
formulae (18) for energies En+ and En− differ from each other only in the 4th order by β:

(19) En+ = En− = mc2(1 − (β/ns)2/2) + O(β4).

As noticed in [9], further terms of the expansion have no meaning, since radiative
corrections are more than these terms.
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Fig. 1. – Relative difference of transverse energies of the axially channeled electron with the spin
directed in the direction of longitudinal electron momentum and with the spin directed in the
opposite direction as a function of the relativistic factor of electron γ for Si (Z = 14).

5. – Numerical results

Using notations (14)–(16) formulas (17) for an axially channeled electron with fixed
spin direction can be rewritten as (left for the first pair of eq. (11), right for the second
pair)

(20) ENξ1 = (mc2 + EN )(1 − ξ + γ), ENξ2 = (mc2 − EN )(1 + ξ − γ),

here EN (β � 1) is the energy of the electron, obtained from the two-dimensional
Schrödinger equation with potential (12) [11]:

(21) EN = − mc2β2

2(N − 1/2)2
.

Here we follow ref. [10] where N = 1+ν +n is denoted as a principal quantum number.
It should be mentioned that expressions (20) for electron energies describe the total

relativistic energy of the channeled electron. From a practical point of view it is more
convenient to consider transverse energy εNξ1 (εNξ2). The transverse energy is obtained
by subtraction of the energy of the longitudinal motion mc2γ from the total energy (20),
then the result is shifted on the constant ±mc2:

εNξ1 = EN (1 − ξ + γ),(22a)
εNξ2 = −EN (1 + ξ − γ).(22b)

Figure 1 shows the relative difference of the transverse energies εNξ1 (and εNξ2) of
the axially channeled electron with the spin directed in the direction of longitudinal
electron momentum and with the spin directed in the opposite direction as a function of
the relativistic factor of electron γ for Si (Z = 14). The result does not depend on the
principal quantum numberN . The calculation was done using both eqs. (22a), (22b); the
results are very close.
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Fig. 2. – Left: the energies of axially channeled electron: εN↑1 —left lines, εN↓1—right lines,
εN0 = εNγ—central lines. Right (as on the left, but for the second set of energies): εN↑2, εN↓2
and εN0 = εNγ.

In fig. 2 we show the energies of axially channeled electron with and without taking
into account electron spin direction. In both the pictures there are three lines: left lines
correspond to electron energies with spin directed in the direction of electron momentum
εN↑I (I = 1, 2), right lines correspond to electron energies with opposite spin direction
εN↓I (I = 1, 2), central lines are the energies of unpolarized electrons calculated by the
formulas obtained in [6], εN0 = ENγ.

6. – Conclusion

We have derived the exact analytical solution of the Dirac equation for an axially
channeled electron for the model continuous potential V (r) = const/r, with taking into
account spin effects. From this solution it follows that the longitudinal polarization
manifests itself in the splitting of every energy level into two sublevels that corresponds
to two possible spin projections onto the channeled electron longitudinal momentum. In
principle, one could observe the splitting of spectral lines in the channeling radiation
spectrum (emitted at fixed angle) from axially channeled electrons; the problem lies
mainly in the experimental equipment enabling to separate these lines.

A similar result was obtained in [9]. The advantage of this work is that we have
obtained the exact analytical solution of the Dirac equation.

There are two different solutions, which give different formulas for electron energies.
Both formulas result in approximately the same value of the electron energy splitting due
to the spin interaction. Unfortunately, it is not clear which solution should be chosen.
The reason of the existence of two formulas for electron energy is connected with the
dependence of energy on the electron longitudinal momentum p. In the limit p = 0 both
formulas are identical.

In the future we plan to calculate the radiation spectrum from axially channeled
polarized electrons and to use a more real approximation for crystal axial potential.
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