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Summary. — In the present work, the parametric X-radiation (PXR) and the
parametric radiation at a small angle relative to the velocity of a relativistic electron
(FPXR) crossing a single crystal plate in Bragg scattering geometry are investigated
within the framework of the dynamic X-ray diffraction theory. The expressions for
spectral-angular density of the named radiations are derived in the general case of
asymmetric reflection. The ratio of the contributions of these radiation mechanisms
as a function of reflection asymmetry is considered in this work.

PACS 41.60.-m – Radiation by moving charges.
PACS 41.75.Ht – Relativistic electron and positron beams.
PACS 42.25.Fx – Diffraction and scattering.

1. – Introduction

When a fast charged particle crosses a single crystal its Coulomb field pseudo pho-
tons scatter on the system of parallel atomic planes generating parametric X-radiation
(PXR) [1-3]. The theory of PXR of relativistic particle in a crystal forecasts the radia-
tion not only in Bragg scattering direction, but also in the direction of radiating particle
velocity (FPXR) [4-6], which represents the appearance of dynamical diffraction in PXR.
It is known that some attempts of the FPXR experimental research were made [7-11],
but the first report about its experimental discovery has appeared recently in ref. [11],
where the FPXR was registered in Laue scattering geometry. In the experiment [11]
the relativistic electron X-radiation was registered in the condition of FPXR generation,
nevertheless the sought-for peak became weakly apparent on the background of the ra-
diation generated by scattered electrons in the structural material of the experimental
setup. Thus the theoretical investigations of FPXR properties and the optimization of
viewing conditions for experimental observation of this dynamical effect remain topical
up to date.

The detailed theoretical description of dynamical effect of FPXR and its accompa-
nying transition radiation (TR), as a background, was made for the case of symmetrical
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Fig. 1. – Radiation process geometry.

reflection in the works [12-15]. Under condition of asymmetrical reflection of the rela-
tivistic electron Coulomb field the PXR, TR and DTR were theoretically investigated
in refs. [16-18] and FPXR in Bragg geometry in ref. [19]. The above-mentioned works
showed that the spectral-angular density of these radiation mechanisms depends essen-
tially on the reflection asymmetry and revealed the effects associated with it. The ratio
of PXR and FPXR yield in Laue scattering geometry was considered in [20], where it
was shown that the change of the reflection asymmetry cardinally changes the ratio.

In the present work the analytical expressions for spectral-angular density of FPXR
are derived in the framework of two-wave approximation of dynamic diffraction the-
ory [21] in general case of asymmetrical field reflection. Based on the obtained expressions
the ratio of PXR and FPXR yields is investigated as a function of reflection asymmetry
in Bragg scattering geometry.

2. – Dynamical expressions for electric fields in crystal target

Let us consider the radiation of a fast charged particle crossing a single crystal plate
with a constant velocity V (see in fig. 1). We will use the same table of symbols as in
the work [17].

While solving the problem, let us consider an equation for a Fourier image of an
electromagnetic field

(1) E(k, ω) =
∫

dtd3rE(r, t) exp[iωt − ikr].

Since the field of a relativistic particle could, to a good accuracy, be taken as be-
ing transverse, the incident E0(k, ω) and diffracted Eg(k, ω) electromagnetic waves are
determined by two amplitudes with different values of transverse polarization:

E0(k, ω) = E
(1)
0 (k, ω)e(1)

0 + E
(2)
0 (k, ω)e(2)

0 ,(2)

Eg(k, ω) = E(1)
g (k, ω)e(1)

1 + E(2)
g (k, ω)e(2)

1 ,

where the unit vectors of polarization e(1)
0 and e(2)

0 are perpendicular to vector k, and



ON THE RATIO OF THE RELATIVISTIC ELECTRON PXR IN BRAGG AND ETC. 245

vectors e(1)
1 and e(2)

1 are perpendicular to vector kg = k + g. Vectors e(2)
0 , e(2)

1 are

situated on the plane of vectors k and kg (π-polarization) and e(1)
0 , e(1)

1 are perpendicular
to this plane (σ-polarization); g is vector of the reciprocal lattice, defining a set of
reflecting atomic planes. The system of equation for the Fourier transform images of
electromagnetic field in two-wave approximation of dynamic theory of diffraction has the
following view [22]:

(3)

⎧⎨
⎩

(ω2(1 + χ0) − k2)E(s)
0 + ω2χ−gC(s,τ)E

(s)
g = 8π2ieωθV P (s)δ(ω − kV),

ω2χgC(s,τ)E
(s)
0 + (ω2(1 + χ0) − k2

g)E(s)
g = 0,

where χ0 = χ′
0 + iχ′′

0 is the average dielectric susceptibility, χg, χ−g are the coefficients
of the Fourier expansion of the dielectric susceptibility of a crystal over the reciprocal
lattice vectors g:

(4) χ(ω, r) =
∑
g

χg(ω)eigr =
∑
g

(
χ′

g(ω) + iχ′′
g(ω)

)
eigr.

The values Ñ (s,τ) and P (s) are defined in the system (3) as

C(s,τ) = e
(s)
0 e

(s)
1 = (−1)τC(s), Ñ (1) = 1, Ñ (2) = | cos 2θB |,(5)

P (s) = e
(s)
0 (μ/μ), P (1) = sin ϕ, P (2) = cos ϕ,

μ = k − ωV/V 2 is the virtual photon momentum vector component perpendicular to
the particle velocity vector V (μ = ωθ/V , where θ � 1 is the angle between k and V),
θB is the angle between electron velocity and a set of atomic planes in the crystal (Bragg
angle), ϕ is the azimuth angle, counted off from the plane formed by vectors V and g, the
value of the reciprocal lattice vector is shown by the expression g = 2ωB sin θB/V , ωB

is Bragg’s frequency. The angle between vector ωV
V 2 + g and diffracted wave vector kg is

defined as θ′. The equation system (3) under s = 1 describes the fields of σ-polarization,
and under s = 2 the fields of π-polarization. When 2θB < π

2 , then τ = 2, otherwise
τ = 1.

Let us solve the dispersion equation for X-waves in crystal following from system (3):

(6) (ω2(1 + χ0) − k2)(ω2(1 + χ0) − k2
g) − ω4χ−gχgC(s)2 = 0,

using standard methods of dynamic theory [21]

k = ω
√

1 + χ0 + λ0, kg = ω
√

1 + χ0 + λg,(7)

λ
(1,2)
0 = ω

γ0

4γg

(
−β ±

√
β2 + 4χgχ−gC(s)2

γg

γ0

)
,(8)

λ(1,2)
g =

ω

4

(
β ±

√
β2 + 4χgχ−gC(s)2

γg

γ0

)
.

where β = α − χ0(1 − γg

γ0
), α = 1

ω2 (k2
g − k2), γ0 = cos ψ0, γg = cos ψg, ψ0 is the angle
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between the incident wave vector k and the vector normal to the plate surface n, ψg is
the angle between wave vector kg and the vector n (see fig. 1).

As |λ0| � ω and |λg| � ω, we can show that θ ≈ θ′ (see in fig. 1), and hereinafter
will use θ in all the occasions.

The solution of the combined equations (3) gives us the relativistic particle field in
the vacuum in front of the crystal as

(9) E
(s)vac I
0 =

8π2ieV θP (s)

ω

1
γ0
|γg|

(
−χ0 − 2

ω
γ0
γg

λg + β γ0
γg

)δ(λ∗
g − λg),

where λ∗
g = ωβ

2 + γg

γ0
λ∗

0, λ∗
0 = ω

(
γ−2+θ2−χ0

2

)
, δ(λ∗

0 − λ0) = |γg|
γ0

δ
(
λ∗
g − λg

)
.

The incident and diffracted field inside the crystal as

E
(s)cr
0 =

8π2ieV θP (s)

ω

(−ω2β − 2ω
γg

γ0
λ0)δ(λ0 − λ∗

0)

4γg

γ0
(λ0 − λ

(1)
0 )(λ0 − λ

(2)
0 )

(10a)

+E(s)(1)δ
(
λ0 − λ

(1)
0

)
+ E(s)(2)δ

(
λ0 − λ

(2)
0

)

E(s)cr
g =

8π2ieV θP (s)

ω

ω2χgC(s,τ)

4γ2
0

γ2
g
(λg − λ

(1)
g )(λg − λ

(2)
g )

δ(λ∗
g − λg)(10b)

+E(s)(1)δ
(
λg − λ(1)

g

)
+ E(s)(2)δ

(
λg − λ(2)

g

)
,

where E(s)(1) and E(s)(2) are the free fields, corresponding to the two solutions (8) of
dispersion equation (6), and the fields in the vacuum behind the crystal as

E
(s)vac II
0 =

8π2ieV θP (s)

ω

1
−χ0 − 2λ0

ω

δ(λ0 − λ∗
0) + E

(s)Rad
0 δ

(
λ0 +

ωχ0

2

)
,(10c)

E(s)vac
g = E(s)Rad

g δ
(
λg +

ωχ0

2

)
,(10d)

where E
(s)Rad
0 , E

(s)Rad
g is the coherent radiation amplitude in the electron velocity and

Bragg directions appropriately.

3. – Spectral-angular density of the radiation in Bragg direction

For definition of amplitudes E
(s)Rad
0 and E

(s)Rad
g the ordinary boundary conditions

on the inlet and outlet surfaces of the crystal plate are used and by substituting derived
formulae for E

(s)Rad
g to the well-known [22] expression for spectral-angular density of

X-radiation

(11) ω
d2N

dωdΩ
= ω2(2π)−6

2∑
s=1

∣∣∣E(s)cr
g

∣∣∣2 ,
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the expression for PXR spectral-angular distribution is obtained:

ω
d2N

(s)
PXR

dωdΩ
=

e2

π2

P (s)2θ2

(θ2 + γ−2 − χ′
0)2

R
(s)
PXR,(12)

R
(s)
PXR = R

(1)(s)

PXR + R
(2)(s)

PXR + R
(INT)(s)

PXR

R
(1)(s)

PXR =

(
ξ(s) −

√
ξ(s)2 − ε

)2

Δ(ω, ε)
sin2

(
b(s)

(
Δ−(ω, ε) − σ(s)

)
/2

)
(
Δ−(ω, ε) − σ(s)

)2 ,(13)

R
(2)(s)

PXR =

(
ξ(s) +

√
ξ(s)2 − ε

)2

Δ(ω, ε)
sin2

(
b(s)

(
Δ+(ω, ε) − σ(s)

)
/2

)
(
Δ+(ω, ε) − σ(s)

)2 ,(14)

R
(INT)(s)

PXR =(15)

ε cos
(
(b(s)

√
ξ(s)2−ε)/ε

)(
cos

(
b(s)

(
ξ(s)/ε−σ(s)

))
−cos

(
(b(s)

√
ξ(s)2−ε)/ε

))
Δ(ω, ε)

((
ξ(s)/ε − σ(s)

)2 + (ε − ξ(s)2)/ε2
) ,

where

ξ(s) = ξ(s)(ω) = η(s)(ω) +
(1 + ε)
2ν(s)

,(16)

η(s)(ω) =
2 sin2 θB

V 2|χ′
gC(s)|

(
ωB(1 + θ cos ϕ cot θB)

ω
− 1

)
,

ε =
|γg|
γ0

, σ(s) =
1

|χ′
gC(s)|

(
θ2 + γ−2 − χ′

0

)
, b(s) =

ω|χ′
g|C(s)

2
· L

γ0
,

Δ+(ω, ε) =
ξ(s) +

√
ξ(s)2 − ε

ε
,

Δ−(ω, ε) =
ξ(s) −

√
ξ(s)2 − ε

ε
, Δ(ω, ε) = ξ(s)2 − ε + ε sin2

(
b(s)

√
ξ(s)2 − ε

ε

)
.

Here the PXR spectrum is represented in the form of the sum of two spectra, R
(1)(s)

PXR

and R
(2)(s)

PXR , corresponding to the two branches of dispersion equation and the summand

R
(INT)(s)

PXR is the result of their interference.

The function R
(s)
PXR describes the PXR spectrum. Parameter b(s) numerically equals

half of the ratio of the relativistic electron path length L/(2γ0) and the length of
X-radiation extinction 1/ω|χ′

gC(s)| in the crystal. The asymmetry parameter ε can be
represented as ε = sin(θB − δ)/ sin(θB + δ), where θB is the angle between the electron
velocity and the diffracting atomic plane. Hence we can see that parameter ε increases
when the angle of electron incidence (θB + δ) decreases and vice versa (see fig. 2).
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Fig. 2. – Circuitry of asymmetric (ε > 1, ε < 1) reflection of the radiation from single crystal
plate. The case of ε = 1 corresponds to the symmetric reflection (δ = 0).

4. – Spectral-angular density of the radiation in the direction of incident
electron velocity

Substituting derived formulae for E
(s)Rad
0 to (11) we will obtain the expressions de-

scribing the FPXR spectral-angular density:

ω
d2N

(s)
FPXR

dωdΩ
=

e2

π2

P (s)2θ2

(θ2 + γ−2 − χ′
0)2

R
(s)
FPXR,(17)

R
(s)
FPXR = R

(1)(s)

FPXR + R
(2)(s)

FPXR + R
(INT)(s)

FPXR ,

R
(1)(s)

FPXR =
1

Δ(ω, ε)
sin2

(
b(s)

(
Δ−(ω, ε) − σ(s)

)
/2

)
(
Δ−(ω, ε) − σ(s)

)2 ,(18)

R
(2)(s)

FPXR =
1

Δ(ω, ε)
sin2

(
b(s)

(
Δ+(ω, ε) − σ(s)

)
/2

)
(
Δ+(ω, ε) − σ(s)

)2 ,(19)

R
(INT)(s)

FPXR =(20)

cos
(
(b(s)

√
ξ(s)2−ε)/ε

)(
cos

(
b(s)

(
ξ(s)/ε−σ(s)

))
−cos

(
(b(s)

√
ξ(s)2−ε)/ε

))
Δ(ω, ε)

((
ξ(s)/ε − σ(s)

)2 + (ε − ξ(s)2)/ε2
) .

5. – Ratio of the PXR and FPXR yields

The contributions of the first (13), (18) and the second (14), (19) branches of PXR
and FPXR spectra will be considerable under the conditions

Δ−(ω, ε) − σ(s) = 0,(21)

Δ+(ω, ε) − σ(s) = 0.(22)

The solution of eq. (21) or (22) defines the frequency in whose vicinity the PXR spectrum
is concentrated at a certain observation angle. It follows from eqs. (21), (22) that the
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maxima of the and FPXR spectra is situated out of the frequency region of the radiation
total reflection (extinctions):

(23) ξ(s)(ω) =
√

ε +

(
σ(s)

√
ε − 1

)2

2σ(s)
>

√
ε,

therefore formulas (13)-(15) and (17)-(20) correctly describe the PXR and FPXR spectra
for a thin crystal.

Equation (21) is soluble only under the condition

(24) ε <
1

σ(s)2
or ε <

ν(s)2

(P (θ, γ) + 1)2
.

where P (θ, γ) = θ2/|χ′
0| + γ−2/|χ′

0|.
One can prove that eq. (22) has a solution under the condition

(25) ε >
1

σ(s)2
or ε >

ν(s)2

(P (θ, γ) + 1)2
.

When the strong reflection of X-ray waves from the atomic planes takes place, the

parameter ν(s) = |χ′
gC(s)|
|χ′

0|
is close to 1, in the case of weak reflection the parameter

ν(s) ≈ 0. Since ν(s) < 1, than inequality (25) is satisfiable in the case when ε ≥ ν(s)2

and it means that only eq. (22) is soluble and the contribution to PXR and FPXR gives
only the second branch of dispersion equation solution. In the case when ε < ν(s)2 both
inequalities (24) and (25) can be satisfiable as a function of the observation angle θ and
the relativistic electron energy γ. It means that for this case both branches of the excited
X-ray wave can give the contribution to PXR and FPXR yields.

Let us consider the case when the inequality (25) is complete. In this case the second
branches of PXR and FPXR give the main contribution to radiation yield and the spectra
ratio has the form which follows from (14) and (19):

(26) R
(2)(s)

PXR /R
(2)(s)

FPXR =
(
ξ(s) +

√
ξ(s)2 − ε

)2

.

It follows from expression (26) with taking into account (23) that in case when ε > 1

or ε ≈ 1, the PXR yield exceeds considerably the FPXR yield R
(2)(s)

PXR � R
(2)(s)

FPXR. To
demonstrate this fact the curves plotted by formulas (14) and (19) are presented in fig. 3
for the parameters pointed in the picture. As was expected, the PXR yield materially
exceeds the FPXR yield.

At the increase of the parameter ε, i.e. increase of the angle of particle incidence to the
target surface δ + θB (see in fig. 2), the intensity of FPXR (at a small angle to particle
velocity) can considerably exceed the intensity of PXR in Bragg scattering direction

R
(2)(s)

PXR � R
(2)(s)

FPXR, which is demonstrated by the curves in fig. 4. In the considered case
the PXR photon will move from the plate at a small angle to its surface (see in fig. 2).

When we use eq. (22), whose solution is the frequency in the vicinity of which the
PXR photon spectrum is concentrated and the amplitude maximum is situated, we will



250 S. BLAZHEVICH and A. NOSKOV

Fig. 3.

write expression (26) as

(27) R
(2)(s)

PXR /R
(2)(s)

FPXR = (ε2/ν(s)2)
(
θ2/|χ′

0| + γ−2/|χ′
0| + 1

)2
.

This ratio allows us to estimate the relative contributions of the radiations as a func-
tion of the observation angle θ, the radiating particle energy defined by the Lorentz factor
γ, and the parameter ν(s).

It results from (37) that at observation angle decrease the FPXR yield more and more
exceeds the PXR yield for low values of the asymmetry parameter ε.

We can obtain this ratio for the PXR angle density maximum (θ =
√

γ−2 + |χ′
0|) in

the following form:

(28) R
(2)(s)

PXR /R
(2)(s)

FPXR = (2ε2/ν(s)2)
(
γ−2/|χ′

0| + 1
)2

.

As the value of parameter ν(s) is always less than 1, it follows from expression (38) that
for γ2|χ′

0| � 1 the PXR yield will practically always exceed the FPXR yield. Otherwise,
for γ2|χ′

0| ≥ 1 this ratio can become close or less than 1 for a small value of the asymmetry
parameter ε. In this case the feature of PXR and FPXR contribution to the total

Fig. 4.



ON THE RATIO OF THE RELATIVISTIC ELECTRON PXR IN BRAGG AND ETC. 251

radiation yields considerably depends on the asymmetry of relativistic particle Coulomb
field reflection (parameter ε).

Let us consider the case when inequality (24) is completed. In this case both branches
give the contribution to the radiation and their interference can be considerable. For this
case the ratio of the first branch of the PXR and FPXR waves following from (13) and (18)
has the following view:

(29) R
(1)(s)

PXR /R
(1)(s)

FPXR =
(
ξ(s) −

√
ξ(s)2 − ε

)2

.

As it follows from comparison of (26) and (29) in the last case the FPXR yield much
more exceeds the PXR yield for small values of ε. So under decrease of ε it is the first
branch of excited X-ray waves which makes the main contribution to the radiation and
it leads to the increase of FPXR yield.

6. – Conclusion

Based on two-wave approximation of the dynamic scattering theory analytical ex-
pressions for the spectral-angular distribution of FPXR and PXR in Bragg scattering
direction are derived in the general case of asymmetric reflection for Bragg scattering
geometry.

The analyses of the obtained expressions have shown that at a fixed angle between
relativistic electron velocity and the system of diffracted atomic planes θB and length of
electron path in the crystal plate 2b(s) the ratio of the PXR and FPXR yields depends
significantly on the angle between reflecting atomic planes and the inlet surface of the
plate, i.e. on reflection asymmetry. The decrease of the asymmetry parameter ε =
sin(δ − θB)/ sin(δ + θB) (increase of the angle δ + θB of the electron incidence on the
crystal plate) results in the decrease of PXR spectral-angular density and the increase of
FPXR density which can exceed the density of PXR when the parameter ε value becomes
small enough.
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