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Summary. — For possible application of a silicon bent crystal as a beam colli-
mator in the Large Hadron Collider, the thermal stability of a strip-like crystal has
been studied. The thermal power generated by the beam inside the crystal has been
evaluated through a simulation and used as a source in the heat equation. The
equation has been solved numerically with the semi-analytical method of lines to
show the thermal stability of crystal-assisted collimation with the parameters cur-
rently being considered for its exploitation. The method we presented appears to be
useful for calculation of the thermal load concerning any situation involving crystal
channeling.

PACS 44.05.+e – Analytical and numerical techniques.
PACS 61.85.+p – Channeling phenomena (blocking, energy loss, etc.).

1. – Introduction

The possibility to perform halo collimation in hadron colliders through channeling
of particles in a bent crystal has been investigated since the nineties [1]. Since then,
significant progress has been made since the first appearance of the idea [2-6]. Crystal
collimation could be a valid scheme for halo collimation [7], allowing the deflection of
halo particles with high efficiency thanks to multi-turn extraction mechanism [8], or can
be used as a precision diagnostics to aid the traditional collimation systems [9].

In particular, the application of a silicon bent crystal at the Large Hadron Collider
could serve to kick most external particles in the particle beam, directing them onto a
secondary collimator [10]. Among the many challenges concerned with implementation
of a crystal-based collimation scheme, such as alignment with beam, compensation of
aberrations in crystal bending, radiation hardness of the crystal, the problem of crystal
heating has never been addressed. Yet, although the crystal is intended to intercept halo
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Fig. 1. – Sketch of the channeling crystal, with the details of the curvatures.

particles, i.e., to be lodged at the periphery of the beam, the beam circulating in the
LHC will store the largest amount of energy at the highest energy (up to 7 TeV) than
any other accelerator ever. Thus the problem of thermal stability of the crystal exposed
to the beam is an important issue to be addressed to ensure proper working conditions.

In this work, the behaviour of a strip-like crystal, shown in fig. 1, has been studied
from a thermal point of view, during its operation as channeling device for the LHC
proton beam. Beam parameters are those reported in ref. [11], the most relevant of
which to our purpose are summarized in table I.

The crystal, during its operation, is hit by high-energy protons, up to 7 TeV. Beam
particles lose part of their energy during the motion under channeling, acting as a heat
source for the crystal, while heat dissipation occurs through radiation and conduction
only because convection is prevented due to ultra-high-vacuum condition.

2. – Evaluation of the heat source

The energy lost by a single proton inside a silicon crystal has been evaluated using a
GEANT4 framework, with a custom-made geometry description, inserting a silicon layer
with a thickness of 1 cm. Since GEANT4 is not equipped with a routine to simulate the
dynamics of particle motion, the interaction of particles with the crystal was treated as
it were an amorphous material with the same density as for a Si crystal. The dynamics
of particles channelled in a crystal is subject to the planar potential, i.e., the particles
oscillate between neighbouring crystalline planes while following the global curvature of
the crystal. It means that interaction with nuclei is minimal and the density of the
electron cloud experienced by channelled particles is always lower than for interaction
with an equivalent amorphous medium. Thus, the heat rate evaluated through GEANT4
is to be regarded as an overestimate of the current heating.

Table I. – LHC beam parameters.

No. of bunches Protons/bunch Total intensity Bunch length Bunch spacing

2808 1.15 × 1011 3.23 × 1014 7.55 cm 25 ns
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For the simulation, 105 protons were hit onto the crystal at 7 TeV energy, then we
determined the energy deposited per unit length with the following strategy: during the
reconstruction of the particle’s track, we summed up the deposited energy along the path
of an individual particle, and we divided it by the length of interaction with the material.
In particular, GEANT4 renders a lot of useful information about the energy deposited
and the length of the interaction path of the particle with the material.

The thermal power transferred to the material can be calculated by taking into ac-
count beam parameters, in particular the number of protons per bunch and the length of
the bunch, both reported in table I. Beam intensity, i.e. the number of protons per unit
area and time, decreases with the radial coordinate r (the distance from the central axis),
and could be written as F (r) = ρ(r)v, where ρ(r) is the volumetric density of protons
and v is the velocity of the particles (v ∼= c). Since the radial profile of the concentration
of protons can be modelled with a Gaussian function with r.m.s. σ = 0.1 mm, beam
intensity can be written as

F (r) = ρ0c e−r2/2σ2
,

where ρ0 is the density on the centre of the beam. By imposing that the integral of ρ
over the whole bunch must be equal to N , it readily holds

ρ0 =
N

2πσ2L
.

If a single proton looses an energy per unit length equal to dE/dx, the power transferred
to the material per unit volume as a function of r is S(r) = dE/dxF (r), therefore

(1) S(r) = S0 e−r2/2σ2
, S0 =

dE

dx

Nc

2πσ2L
.

Numerically, with a beam energy of 7 TeV, it results S0 = 1.33 × 1017 W/m3.

3. – Heat equation: steady state

In order to solve the thermal problem, the two-dimensional heat equation with the
Gaussian-like heat source of eq. (1) has been applied to the strip-like crystal. In this
section we will approach the problem with the thermal power source of eq. (1) as it was
due to interaction with a coasting beam with the same density as that in the bunch for
the real case; then, interaction with a bunched beam will be worked out in sect. 4.

3.1. Geometry of the problem. – The geometry of the problem is sketched in fig. 2,
which is a cross-section orthogonal to the nominal axis of the beam. The length of the
longer side is L = 70 mm, whereas the shorter one is l = 2 mm. We choose a Cartesian
coordinate system, with the origin in the left edge on the lower side of the crystal.
For symmetry reasons, we can reduce the problem to a half crystal, within the domain
[0, L/2] × [0, l].

Once the coordinate system and its origin have been fixed, heat equation reduces to
the Poisson equation:

(2) λ∇2u + S0 e−r2/2σ2
= 0,
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Fig. 2. – Sketch of the geometry of the problem. The origin of the coordinate system coincides
with the left edge on the lower side of the crystal. Therefore, the centre of the beam is a point
of coordinates x = L/2, y = −6σ.

where u = u(x, y) is the local temperature of the crystal and λ = 148 W/mK is the
conduction coefficient for Si. This equation has been numerically solved with the semi-
analytical method of lines [12].

3.2. Solution with the semi-analytical method of lines. – This numerical technique
is very powerful to solve elliptic partial differential equations in 2 variables, because
it requires a much smaller number of divisions of the domain than finite differences
methods. It consists in the discretization of only one variable, leading to a system of
coupled ordinary differential equations in the other variable; thus, the solution is given
as a set of functions. Equation (2) in Cartesian coordinates is written as

∂2u

∂x2
+

∂2u

∂y2
= −f(x, y),(3)

f(x, y) =
S0

λ
exp

[
− (x − L/2)2 + (y + 6σ)2

2σ2

]
.

As a first step, we consider the thermal dissipation through radiation to be negligible,
therefore the crystal transfers thermal power only to the metallic support, which provides
to hold and bend it. Since heat capacity of the holder is much larger than that of the
crystal, the holder can be regarded as a heat reservoir, i.e., it is kept at constant room
temperature T0. With this statement, the conditions for the differential equation (3) at
the boarder of the domain are the following:

– x = 0: a Dirichlet condition which fixes the value of the temperature of the left
side;

– y = 0 and y = l Neumann conditions which fix the heat transfer along y;

– x = L/2: a Neumann condition which equals to zero the partial derivative of u
with respect to x, for symmetry reasons.

Therefore, the boundary conditions for eq. (3) are

(4) u(0, y) = T0 uy(x, l) = 0
uy(x, 0) = 0 ux(L/2, y) = 0,

where the subscript x and y indicate the partial derivatives with respect to x and y,
respectively.
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Fig. 3. – Discretization of the horizontal variable x.

The discretization of the horizontal direction must be applied so that the convergence
of the solution is achieved with a relatively small number of divisions. Being the charac-
teristic length, σ, of the heat source much smaller than the total length to discretize L/2,
a convenient choice is to discretize only a zone near the centre of the crystal, where the
source f(x, y) of eq. (3) attains its maximum (then vanishes rapidly due to their Gaus-
sian character). Thereby, we chose to discretize only a zone of length Γ starting from the
centre of the crystal (see fig. 3). The advantage of this choice is that the intensity of heat
source in the left zone can be considered zero, so that the solution is linear, as indicated
by the Green’s function of eq. (3). As a consequence, the first of the boundary conditions
of eqs. (4) must be changed in a condition set at x = L/2 − Γ: a Robin condition that
states that the x-derivative must be equal to the slope of the solution in the first zone,

u′(L/2 − Γ, y) =
u(L/2 − Γ, y) − T0

L/2 − Γ
.

Now we introduce n+1 points x0, . . . , xn+1 (where x0 = L/2−Γ and xn+1 = L/2), which
generate n + 1 intervals of width h = Γ/(n + 1), as shown in fig. 3 (the additional point
xn+2 is a “virtual point” useful for a better statement of the condition on the partial
derivative of u with respect to x in the point xn+1).

Approximating the partial derivative of u with respect to x with the finite differences,
eq. (3), with the proper boundary conditions discussed above, becomes a system of n+1
ordinary differential equations in the variable y which can be written in the matrix
notation:

d2U

dy2
=

1
h2

PU − F,

with

U =

⎛
⎜⎝

u1

...
un+1

⎞
⎟⎠ P =

⎛
⎜⎜⎜⎜⎜⎝

L/2−Γ+2h
L/2−Γ+h −1 0

−1 2 −1

0
. . . . . .

0

0 −1 2 −1
0 −2 2

⎞
⎟⎟⎟⎟⎟⎠(5)

F =

⎛
⎜⎜⎜⎝

T0
h(L/2−Γ+h) + f1

f2

...
fn+1

⎞
⎟⎟⎟⎠ ,
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Fig. 4. – (a) Plot of all 13 solutions as a function of y (u1 is for x = L/2−Γ, u13 is for x = L/2);
(b) 3D interpolation of all the ui(y).

where ui(y) = u(xi, y) and fi(y) = f(xi, y). The solutions of eqs. (5) can be easily
obtained with a change of base that diagonalizes matrix P . Indeed, after diagonalization,
we have n + 1 independent ordinary differential equations, which can be easily solved
numerically. Then, the vector U can be obtained returning to the old base.

3.3. Results of the calculation. – Convergence to the second decimal in the solution
has been achieved with a number of divisions n = 12, and with a discretization length
Γ = 1.3 mm. The results of the calculation are shown in fig. 4. In fig. 4a all ui(y)
functions are shown, while fig. 4b illustrates a 3D interpolation of the ui(y), which clearly
highlights a Gaussian-like shape. It is apparent that the increase in temperature of the
crystal during operation is negligible inasmuch as the hottest point exhibits an increase
of only 0.5 K with respect to room temperature.

The correction due to the thermal power dissipated through radiation is therefore
negligible, because the achieved temperatures are too low. This has been confirmed by
iterating the solution as follows: each iteration is obtained imposing, in the boundary
conditions for the derivatives in y = 0 and y = l, the Stefan-Boltzmann radiation law
with the temperature values obtained in the previous iteration (the first iteration is the
solution without radiation). The process converges immediately, indeed every iteration
yields the same solution, identical to the one obtained in the absence of radiated power.

We considered the case with beam suffering trajectory perturbation or erroneous
insertion of the crystal too deep into the core of the beam. Therefore, the same calculation
has been carried out with various distances of the centre of the beam. The results for
the hottest point of the crystal, (x = L/2, y = 0), are reported in table II. The crystal
never reaches high temperatures, even in the case of insertion into the beam by σ/2.

Table II. – Maximum temperature of the crystal as a function of the distance from the beam
centre.

Distance (σ) 6.0 5.9 5.8 5.7 5.6 5.5

u13(0) (K) 300.5 301.0 301.8 303.2 305.8 310.2
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Fig. 5. – Time-dependent solution u13(t) if the time dependence of the heat source were a
Heaviside function. The time to reach a steady state is about 2.5 s.

4. – Heat equation: time dependence

In the previous section we worked out with the heat source (1) as it were continuous
in time. A more realistic condition is to account for the bunched structure of the beam
in the LHC. Each bunch is 250 ps long, with a time spacing between consecutive bunches
of 25 ns. In terms of channeling time, a proton spends 0.25 ns every 25 ns inside the
crystal, therefore the heat source for the time-dependent heat equation is multiplied by
a periodic step function which is 0 for a time 2 orders of magnitude longer than the time
in which is 1.

In order to solve also the time-dependent equation with the semi-analytical method of
lines, we considered the crystal as it were one-dimensional, a reasonable approximation
since the x-length is 35 times greater than the y-length. The equation is written as
follows:

(6) ρCV
∂u

∂t
= λ

∂2u

∂x2
+ f(x, t); f(x, t) = g(t)S0 exp

[
− (x − L/2)2 + (6σ)2

2σ2

]
,

where g(t) is the periodic step function discussed above. Applying the discretization on
the spatial variable, we obtain

ρCV
dui

dt
= λ

ui+1 − 2ui + ui−1

h2
+ fi(t) i = 1, . . . , n + 1,

where ρ = 2330 kg/m3 is the density of silicon, CV = 710 J/kg K the specific heat ca-
pacity, and fi(t) = f(xi, t). It is a system of first-order ordinary differential equations,
which is easily solvable after a diagonalization of the matrix of coefficients. The nu-
merical solution is the constant temperature T0 of the metallic support with which is in
contact. Indeed, the thermal inertia of the crystal is such that the time during which
the heat source is “on” is not high enough to increase the temperature of the crystal.
A confirmation of that can be found if one evaluates the time constant τ of the thermal
behaviour of the system. It can be easily obtained by setting g(t) in eq. (6) equal to the
Heaviside function and plot the solution of the equations system as a function of time;
the result for τ is of the order of 1 s, as shown in fig. 5.
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5. – Conclusions

A model to address the problem of a strip-like crystal heating under channeling condi-
tion has been addressed in full generality. The method relies on the numerical solution of
heat equation, obtained with the semi-analytical method of lines, which implies the dis-
cretization of one variable, in order to obtain a system of ordinary differential equations.
In particular, the case of thermal behaviour of a silicon bent crystal during channeling of
LHC protons was studied. Particular attention was paid to the spatial domain, since the
heat source is negligible within a large part of the crystal. It has been found that crys-
tal heating is never a problem for usage of the crystal as a collimator under channeling
condition.
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