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Summary. — Mosaic crystals of b-type, for example, pyrolytic graphite, is widely
used in experimental physics as neutron and X-ray monochromators and provide
a higher yield of monochromatic radiation than perfect ones. The technique is
proposed and implemented to calculate the reflectivity of such crystals by Monte
Carlo modeling, correctly considering the multiple reflections of photons inside the
crystal and the geometry of experiment for random distribution of the mosaic.

PACS 61.05.C- – X-ray diffraction and scattering.
PACS 05.45.Pq – Numerical simulations of chaotic systems.
PACS 61.50.-f – Structure of bulk crystals.

1. – Introduction

The diffraction of electromagnetic radiation with continuous or linear spectrum in
crystals is used to obtain the beams of monochromatic radiation in many areas of science
and technology. It is well known (see, for example, [1]) that the integral reflectivity of
the mosaic crystals is significantly higher than that of perfect ones. By the degree of per-
fection crystals can be classified according to two criteria: the dimensions of the regular
blocks or regions in the crystal, and the degree of their mutual misalignment [1]. Ac-
cording to the first criterion all crystals can be divided into two types, a and b. In a-type
crystals separate regions are large enough for the considerable influence of the primary
extinction to be manifested, i.e. their linear dimension is comparable with the length of
the primary extinction lex. In b-type crystals the dimensions of the regular block are
small; therefore, the effect of primary extinction is practically not observed. According
to the second criterion, crystals can also be divided into two groups, α and β. In α-group
crystals the blocks are almost parallel to each other, their mutual disorientation is small;

(∗) E-mail: vnukov@bsu.edu.ru
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therefore, the contribution of the secondary extinction is high. In β-group crystals the
blocks are distributed irregularly; therefore, the contribution of this effect is small.

The ability of the crystals to reflect X-ray radiation is related to the perfection
of their structure. The crystals of aα-group provide the narrowest rocking curve
(FWHM ∼ 20–30′′), and their integral reflectivity is low. The mosaic crystals of bβ-
group have the maximum integral reflectivity. The most famous mosaic crystal of b-type,
used in the applied physics, is pyrolytic graphite. Such crystals are used to obtain quasi-
monochromatic X-ray beam [2] and neutrons [3].

As noted in a number of experimental works, see, for example, [2] and references
therein, the theory of X-ray diffraction in mosaic crystals [4,5] does not always accurately
describe measurement results even with the crystals of pyrolytic graphite. The simulation
allows to take into account more accurately all the experimental factors: the dimension
and geometry of the crystals, the actual distribution of sample mosaic, the presence of
multiple reflections inside the crystal and the corresponding change of the absorption
and a number of others.

2. – Simulation

Our approach is also based on the theory of diffraction of X-ray radiation in mosaic
crystals [1, 4, 6] and has already been partially used in [7]. The calculation procedure of
the reflectivity of b-type mosaic crystals [4,6] is obtained for one-dimensional distribution
of mosaic and monodirectional beam of the external radiation with a fixed energy. In
the general case a divergent photon beam with a continuous spectrum is incident on the
crystal or is born in it. For the reflection of monodirectional and monoenergetic photon
beam from the element of mosaic crystal with volume ΔV it can be written [1]

(1)
∫

P (θ)dθ = QΔV,

where P (θ) is the reflectivity of the crystal element at the angle Θ, that is proportional
to the distribution of mosaic blocks in the crystal [6]. QΔV is the integral reflection from
the element ΔV , where Q is the integral reflectivity depending on the parameters of the
crystal and the radiation energy as follows:

(2) Q =
(

e2

mc2

)2
N2λ3

sin(2Θ)
|Fp| |F (�g )|2 .

Here, N is the concentration of dispersing centers, λ is the radiation wavelength, Θ is the
rotation angle of the crystal plane relative to the direction of photon beam. |F (�g )|2 =
|S(�g )|2 ·|f(�g )|2 ·exp[−2W ], where S|(�g )|2 is the structural factor, exp[−2W ] is the Debye-
Waller factor, f(�g ) is the Fourier component of the spatial distribution of electrons in
the crystal atom (f(0) = z, where z is the number of electrons in the atom). |Fp| is the
polarization factor, which depends on the polarization of the radiation incident on the
crystal.

For the analysis of the reflection process, an approach with the introduction of several
systems of coordinates related to the direction of the primary photon beam (laboratory
system) and the direction of crystal plane (crystal system) is used, which was proposed
in [8]. Suppose that in a mosaic crystal with the distribution of inverse lattice vectors
P (�g ) a photon beam with the spectral-angular distribution of Nγ(ω,�n ) spreads, where
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ω and �n are the energy and the unit vector along the photon pulse, respectively. Here
�g = |�g |�α, where �α is the unit vector describing the deviation of bulks from the middle
direction �g0 = 〈�g 〉. The vector �g0 is perpendicular to the plane of the crystal and rotated
by an angle π/2 − ΘB relating to the z-axis. Plane diffraction is determined by the
vectors �n0 and �g. On the basis of Bragg’s law for the photon energy of ω and direction
of �n one can write the condition for the direction of the vector �g of the bulk, on which
this photon may diffract:

(3) ω =
�g �n√

ε0(1 − �n′ �n)
=

|�g | sin Θ√
ε0(1 − cos 2Θ)

,

where �n ′ is the vector describing the moving direction of the diffracted photon and
ε0 is the dielectric permittivity of the medium. Here and further, the system of units
h̄ = me = c = 1 is used. Hence, the angle between the vectors �n and �g must meet the
condition

(4) sin Θ =
|�g |

2ω
√

ε0
.

In a mosaic crystal, this condition is conformed with a set of mosaic blocks satisfying the
equation

(5) sin Θ =
(�g �n )
|�g | =

[nxgx + nygy + nzgz]
|�g | .

By this equation one can determine the mosaic blocks, on which this photon can diffract,
and determine the moving direction of the reflected photon �n′. Then the reflection
probability density of the photon with fixed ω and �n in a mosaic crystal with thickness
Δt can be written as

(6) f(ω,�n ) = q(ω,�n )Q(ω)Δt,

where q(ω,�n ) is the coefficient considering the crystal mosaic

(7) q(ω,�n ) =
∫

Pm(αx(ω,�n, αy), αy)dαy.

Here, Pm (αx, αy) is the crystal mosaic distribution, expressed in ω,�n, αy according to
expressions (2)–(5). In accordance with the approach [7], the diffracted photons yield in
the aperture of the collimator for each order of reflection is determined by i folding of
the spectral-angular distribution of radiation intensity with reflection probability density
for all variables, including energy and angles of the start of photons and the crystal
thickness. Secondary diffraction of the reflected photons in the direction of the primary
beam on the path from the diffraction region to the outlet from the crystal is taken into
account similarly. The absorption of photons is determined by the length of the way
passed by them in the crystal, and their energy.

This technique allows taking into account the spectral and angular distribution of
radiation and actual distribution of the sample mosaic. The main disadvantage is that it
is difficult to consider the real geometry of measurements (the rotation of the crystal, the
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possible differences of the mosaic distribution of the sample from a Gaussian one, etc.)
and uncontrolled change of the photon path length in the crystal and the absorption in
it due to multiple reflections. Considering (6), (7), the changes in the number of photons
due to the diffraction in the crystal after passing through a layer of thickness Δt can be
written as

(8) ΔNγ(ω,�n ) = −Nγ · q(ω,�n )Q(ω)Δt = −Nγ · μdif(ω,�n,�g )Δt,

where μdif(ω,�n,�g ) is the linear radiation absorption coefficient with the energy ω and
the moving direction �n due to the diffraction in a mosaic crystal. In view of (8) the
dependence of the photon number of the thickness of the traversed layer of the crystal T
can be written in the traditional form

(9) Nγ(ω,�n, t) = N0(ω,�n ) exp[−μtott],

where N0(ω,�n ) is the spectral and angular distribution of radiation incident on the crys-
tal, and μtot = μdif(ω,�n,�g )+μph(ω)+μinc(ω)+μcoh(ω)+μpair(ω) is the complete linear
factor of the absorption of primary radiation resulting from the process of diffraction,
(μdif(ω,�n,�g )) photo absorption (μph), incoherent (Compton) dispersion (μinc), coherent
dispersion (μcoh) and electron-positron pairs initiation (μpair). Such form of writing al-
lows using a well-known method of statistical modeling (Monte Carlo method) to describe
the passing of photons through the mosaic crystal, see, for example, [9].

We present the main steps and the approximations used in the simulation by the
example of determining the energy resolution and efficiency of crystal diffraction spec-
trometers based on mosaic crystals of pyrolytic graphite used in the experiment [10].
A beam of bremsstrahlung from a disoriented tungsten target is incident on the crystal
mounted in a goniometer and rotated at the angle ΘB = ΘD/2. Here ΘD is the angle
at which the detector for the diffracted radiation is located. Calculation method for the
spectral-angular distribution of bremsstrahlung, the characteristics of the used crystals
and the scheme of the experiments location are similar to those given in [7].

For the photon with energy ω and a wave vector �k = ω�n
√

ε0 the point of hitting the
crystal was defined. Taking into account the measured distribution of crystal mosaic the
bulk disorientation angle was simulated with respect to the y-axis in the crystal systems of
coordinates αy. Based on the values of ω, �k, ΘB in accordance with expressions (4), (5)
the angle of bulks disorientation was determined, on which the photon with ω and �k
can diffract, relating to the axis x, αx. Further, based on the measured distribution of
mosaic relating to the x-axis we determined the probability of the existence of such block
in the crystal, w(αx) and the linear coefficient of the primary photons absorption due
to diffraction, μdif = wQ. For Gaussian distribution of bulks the desired probability is
equal to

(10) w =
1√
2πσ

exp[−α2
x/2σ2],

where σ is the characteristic angle of the mosaic of the crystal used in a horizontal plane.
Then, in accordance with the traditional approach of simulation the passing of photons
through the matter [9] we simulated the photon passing to the point of interaction l =
ln ξ/μtot, where ξ is the random number between zero and one, indicated a point of
interaction and simulated what process occurred: diffraction, photoabsorption, Compton
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(incoherent) dispersion or coherent dispersion on a separate atom. For simulation the
values of the cross sections of interaction of low energy photons given in [11] were used.
If the point of interaction did not belong to the crystal the photon hitting the detector
was verified and the drawing started again.

Further simulation depended on the type of interaction occurred. If there was a
process of photoabsorption, the simulation began anew, and if photon was dispersed,
then using the known methods of modeling of interaction of photons with matter [9] the
energy of the dispersed photon ω′ and its moving direction �n′ were determined. Further,
again the disorientation angle of bulks αy was simulated, angle αx was determined, the
free path length and the type of interaction were simulated. If the diffraction occured,
in accordance with the law of pulse conservation it can be written

(11) �k = �k′ + �g.

Here �k′ is the wave vector of the diffracted photon, �g is the vector of the inverse lattice
of crystal bulks, on which the diffraction occurred. All three vectors are defined in the
laboratory system of coordinates. Therefore, from the crystal system of coordinates,
where the vector �g is described by the angles of bulks disorientation αx and αy, we
should move to axis laboratory frame by the method given in [8]. Then starting from ω
and vectors �g, �n the direction of the diffracted photon was determined

(12) �n′ = �n − �g

ω
√

ε0
.

For the photon with energy ω and moving direction �n′ the bulks disorientation angle
αy was simulated again, the angle αx was determined and the whole process of drawing
the free path length, determination of the point of interaction coordinates, testing the
condition of starting from the crystal and interaction process repeated. The main dif-
ference of the second and all subsequent even-numbered reflections is that the photon is
reflected from the opposite side of the plane. Therefore, for such reflection the crystal
system of coordinates was centered around the axis y to 180◦. The history of each photon
was traced until its absorption in the crystal, or starting from it with a check on hitting
the detector.

The proposed method has no restriction to the thickness and geometry of the used
crystal, which may consist of several samples, the angular distribution of mosaic blocks
and so forth. The main conditions for the applicability of the technique: the used crystal
must be a crystal of b-type, and the reliable information on the two-dimensional angular
distribution of mosaic blocks in it must be available.

The diffraction of low energy neutrons in crystals is described by analogy with the
X-ray diffraction in mosaic and perfect crystals [12]. In accordance with the cited work
the integral reflection of neutrons from a small volume element ΔV is equal to QnΔV ,
where the value of Qn can be written as follows:

(13) Qn =
σBragg

4π

N2λ3
n

sin(2Θ)
|S(�g )|2 · exp[−2W ],

where λn is the de Broglie wavelength, σBragg is the cross-section of neutron dispersion
on the atoms of the crystal. The other symbols are the same as mentioned above. Such
analogy allows to use the proposed method for calculating the reflectivity of mosaic
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Fig. 1. – Calculated efficiency of the spectrometer for ΘB = 1.58◦.

crystals of b-type for neutron beams. This will allow to consider more accurately the
absorption of neutrons in a crystal, to increase the energy range in which one can calculate
the reflectivity, and to get rid of the correction factor ∼ 0.8, used in most studies on
neutron diffraction to account for the absorption contribution and “residual” elastic
dispersion, see, for example, [3].

3. – Simulation results

As noted above, the development of the proposed method of calculation of the b-type
mosaic crystals reflectivity of X-rays was initiated by the need for processing of data on
research of PXR characteristics at small angles to the direction of fast electrons in the
tungsten crystal, obtained in the experiment [10]. Because of the narrow spectral range
of the effect manifestation the most important parameters are the energy resolution and
the efficiency crystal diffraction spectrometers used in the experiment. The calculation
results of the absolute values of radiation yield using the proposed method of calculating
the characteristics of crystal diffraction spectrometer for the experimental conditions [10]
coincide with the measurement results with an error less than 5% [13].

To isolate the radiation with a fixed energy in the cited work one used a two-crystal
diffraction spectrometer based on mosaic crystals of pyrolytic graphite with dimensions
2.5×6.5×22.5 mm3 and 3.5×5.5×20 mm3. Distribution of graphite crystals mosaic was
determined during measuring of the diffraction curve and a peak of diffraction for each of
the detector angles in the experiment [7]. In a thinner crystal it can be represented as a
sum of two Gaussian distributions with parameters σ1

m = 4.2± 0.1 mrad, S1 ∼ 0.67± .05
and σ2

m = 9.0 ± 0.5 mrad S2 ∼ 0.33 ± 0.05, where σ and S are the standard deviation
and the weighting factor, respectively.

Figure 1 shows the calculation results of the efficiency of the spectrometer for the
energy of photons of the first-order reflection ω ≈ 67 keV and for the following con-
ditions: the angle of collimation of the reflected radiation in the diffraction plane is
ΔΘx = 0.42 mrad, the angular capture in the diffraction plane is Δθx = ±0.092 mrad,
the acceptance is ΔθxΔθy = 1.84 · 10−7 sr. A crystal with dimensions 2.5× 6.5× 22 mm3

was used. Primary spectrum was generated by the electrons with energy of 500 MeV in
the amorphous target of 0.5 mm thick.

Dependences 1,2 were calculated by the method [7] for a point electron beam. Curve 1
is obtained using only the angular dimensions of the primary radiation beam and the
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Fig. 2. – Orientation dependence of the radiation yield for ΘD = 7.49◦.

angular capture of the detector of the diffracted radiation, that is, without taking into
account the coordinates of the photon hitting the analyzing crystal. For the photon
moving not along the axis of the experimental setup, the detector is located at an angle
different from ΘD = 2 ·ΘB , that leads to changes of spectral dependence of the reflection
efficiency (see curve 2). The simulation results, taking into account all known experi-
mental factors (curves 3 and 4), differ slightly from those obtained by the method of [7].
Consideration of the crystal rotation, the point of diffracted photons starting from the
crystal and multiple reflections leads to some deterioration of the resolution and decrease
of the efficiency of reflection. However, the width (FWHM) remains virtually unchanged.
The dependence 3, as well as the 1, 2, is calculated for a point beam. Consideration of
the spatial distribution of the electron beam hitting the inner target of synchrotron [14],
(curve 4) showed that this factor has little effect on the spectrometer characteristics.

As can be seen from the figure, the difference between the dependences obtained
using different approaches is not very large. In accordance with (2) the decrease of the
photon energy leads to the increase of reflectivity, which increases the probability of
multiple reflections. For example, if for the photons energy ω = 67 keV the fraction of
photons that have undergone single, double and triple reflections in the crystal is equal
to 0.075, 0.004 and 6 · 10−5, then for ω = 28.3 keV, these values increased to 0.29, 0.08
and 0.007. The maximum number of reflections changed from 5 to 6. For ω = 28.3 keV
the distribution width (FWHM), obtained by simulation, is approximately 20% higher
than that obtained by [7].

This effect influences the results of measuring the characteristics of mosaic crystals
and, in some cases, can lead to uncontrollable errors. Figure 2 shows the calculated
orientation dependences of the diffracted radiation yield received during the rotation of
the graphite crystal for a fixed angle of the detector ΘD = 7.49◦ (ω = 28.3 keV). The
conditions coincide with the experimental conditions [10] for this photons energy, except
for a crystal mosaic. The calculation was performed for Gaussian distribution of mosaic
with σm = 3 mrad, instead of the sum of two distributions with different σm.

Curve 1 with σ = 3.38 mrad and ΔΘ = 9.37 mrad is the result of simulation for the
conditions [10] and the selected value σm. Here σ is the standard deviation, and ΔΘ is
the width at half height. The dependence 2 with σ = 3.15 mrad and ΔΘ = 8.65 mrad was
obtained at “programmed” break of the second and subsequent reflections. The difference
between σ and σm is caused, apparently, by the finiteness of the angular dimensions of
radiation beam incident on the crystal and the collimation angle of the radiation. From
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the figure it is seen that multiple reflections greatly distort the observed dependence in
comparison with the model one and with that calculated without taking into account
the subsequent reflections. It is not like a Gaussian, and its width is approximately 10%
larger. Consequently, in the case of crystals with high reflectivity the same error can also
occur during measurements of the mosaic distribution. This effect is important for using
of mosaic crystals for neutron diffraction, where the formula for the reflectivity contains
the mosaic distribution width at half height, see, for example, [3].

4. – Conclusion

The research results can be formulated as follows:

1) A method for calculating the reflectivity of the mosaic crystal of b-type by Monte
Carlo modeling was proposed and implemented, that allows to correctly account
for the multiple reflections of photons inside the crystal and the geometry of the
experiment for any distribution of the mosaic.

2) With slight modifications it can also be used to calculate the neutron reflection
by such crystals that can increase the energy range in which one can calculate the
reflectivity, and get rid of correction factors.

3) In studying of the characteristics of the crystals with high reflectivity for a se-
lected range of photon energies the multiple reflections can significantly distort the
measured dependence and lead to errors in measurement parameters.
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