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Summary. — The possibility of neutron planar channeling is theoretically inves-
tigated. It is shown that stable channeling appears only for relativistic neutrons
with relativistic factor greater than 5. The energy bands and its population are
calculated for the different neutron energies and entrance angles.

PACS 25.40.Dn – Elastic neutron scattering.
PACS 61.85.+p – Channeling phenomena (blocking, energy loss, etc.).
PACS 03.65.-w – Quantum mechanics.

1. – Introduction

During the passage of relativistic charged particles through an oriented crystal chan-
neled phenomena take place [1-3] and their interaction with a crystal can be described
by the continuous (averaged) potential of the crystal plane or axis. It is convenient to
divide the motion of a channeled particle into transverse motion (in the direction perpen-
dicular to the crystal plane or axis) and longitudinal motion (in the direction parallel to
the crystal plane or axis). When the transverse motion is bounded, then the channeled
particle has transverse discrete energy levels.

The neutron does not have an electric charge, but Schwinger [4] predicted that fast
neutrons, due to their spin (and anomalous magnetic moment) can be scattered by
electric field of the atomic nuclei (atom). The physics of this scattering is explained
in the following way: in the neutron rest frame the magnetic field appears and the
neutron (anomalous) magnetic moment interacts with it. The electromagnetic Schwinger
scattering of fast neutrons was experimentally discovered in 1956 [5].

The velocity of the neutron can be separated into two components: parallel to the
crystal plane (transverse) v|| and perpendicular to ones (longitudinal) v⊥. Ordinary the
longitudinal velocity v|| is greater than the transverse one v⊥. In a frame, which moves
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Fig. 1. – Scheme of channeling of neutrons.

with longitudinal neutron velocity v|| (comoving frame) the neutron has only transverse
velocity v⊥. According to the Lorentz transformation in a comoving frame the magnetic
field appears. Due to interaction with the magnetic field the energy of the neutron (in
a comoving frame) can be quantized and the neutron is captured into a bounded state
in the averaged field of crystal axis or plane. Figure 1 shows the scheme of the neutron
channeling. The arrows indicate the transverse velocity v|| in the laboratory frame and
the longitudinal, v⊥, neutron velocities; θ0 = Arctan(v||/v⊥) is the initial incidence angle
of the neutrons. The thick horizontal lines denote the crystal planes and the thin line is
the crystal potential for the neutron in a comoving frame.

Earlier a similar problem was considered in [6, 7], where it was shown that due to
the small energy of the neutron interaction with the magnetic field of a crystal in a
comoving frame the bound states of neutrons are absent. Later the result of papers [6,7]
were confirmed in the frame of the relativistic quantum theory (based on the Dirac
equation) [8]. In the present paper we used a more accurate approximation for the
continuous crystal planar potential. In order to have a more brilliant effect we choose
(110) Ta, which has the deepest potential well.

2. – Neutron motion equation

In order to obtain the equation which describes neutron channeling, we use the stan-
dard equation for particle channeling [3], but instead of the continuous potential of the
crystal plane we used the interaction energy of the anomalous magnetic moment of the
neutron with the magnetic field which appears in a comoving frame. This equation has
the same accuracy as the equation used in [8].

In a comoving frame the neutron motion is non-relativistic, and its motion between
crystals planes can be described by the Schrödinger equation (the direction of longitudinal
neutron velocity is coincident with the OZ-axis)

(1)
[

p̂2
⊥

2mn
+ γUμ(y)

]
φn(y, ky) = En(ky)φn(y, ky),

where mn is the neutron mass, Uμ(y) is the neutron continuous crystal potential [1-3],
φn(y, ky) is the wave function of the neutron transverse motion, En(ky) is the egenvalue
of neutron energy, ky is the wave vector of the neutron in the first Brilluion zone, p̂⊥
is the momentum operator and γ is the relativistic factor of the neutron longitudinal
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motion. For the construction of the interaction energy we use the approximation for the
single atomic potential [9] in the form

(2) eUAt(�r ) = −(2h̄2/
√

πme)
∑

j
ajc

−3/2
j exp(−r2/cj),

where aj and bj = 4π2cj are coefficients obtained by fitting the electron atomic form
factor by 6 points (as opposed to 4 points in the standard model), r2 = x2 + y2 + z2.
One can obtain the continuous potential U0(y) by integration of (2) over the coordinates
x and z. The obtained crystal plane potential must be a sum taking into account crystal
symmetry.

In a comoving frame due to Lorentz transformation the magnetic field should be
written in the form

(3) �B(y, γ) =
√

γ2 − 1 (−Ey(y), Ex(y), 0) ,

where �E(y) = −�∇U0(y) and

(4) Uμ(y, γ) = �μn
�B(y, γ),

where �μn is the anomalous magnetic moment of the neutron. Here we wish to stress
that in a comoving frame the interaction energy depends on the relativistic factor of
the neutron longitudinal motion γ: γUμ(y) ⇒ Uμ(y, γ). Since the function Uμ(y, γ) is
periodical, then one can expand it into Fourier series [10]:

(5) Uμ(y, γ) =
∑
m

U(gm, γ) exp [igmy] ,

where gm is the lattice reciprocal vector perpendicular to the crystal plane (XZ-plane).
The transverse wave function φn(y, ky) should be a Bloch function:

(6) φn(y, ky) =
∑
m

Cn(gm, ky) exp [i(ky + gm)y] .

Here n is a quantum number which describes the neutron energy in a comoving frame
and Cn(gm, ky) is the Fourier expansion of the wave function [10]. After substitution
of (5), (6) into eq. (1), the differential equation is reduced to the standard algebraic
eigensystem problem [11,12]:

(7)
∑
m

AmnCn(gm, ky) = Ei(ky)Ci(gn, ky).

Here, the following notations are introduced: Amn = Umn + δ(m,n)(h̄2|gm +
ky|2/2mn), Umn = U(gm − gn, γ) is the Fourier expansion of the interaction energy,
and δ(a, b) is the Kronecker delta.
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Fig. 2. – Positions of the energy sub-bands of the first energy band for (110) neutron channelling
in Ta.

3. – Results of calculations

Equation (7) was solved with the help of the Mathematica c© 7.0 package, as a result
we obtained the allowed transverse neutron energies, the corresponding wave functions
and the initial populations. The transverse neutron energies are the energy bands, as it
should be for any periodic potential. In order to have more detailed information about
the energy bands, during the calculation the wave vector ky in the first Brillouin zone
was divided into 10 equal parts. Therefore, a neutron energy band was divided into 11
sub-bands.

In the calculations (in analogy with the case of charged-particles channeling) for
neutrons we introduce the critical angle of channeling θL =

√
ΔUμ(y, γ)|max/En, where

ΔUμ(y, γ)|max is the maximal interaction energy, En is the total neutron energy.
In fig. 2, the positions of the energy sub-bands of the 1st energy band for (110)

channeling in Ta are shown for three values of the neutron relativistic factor γ.
One can see that only few sub-bands of this first energy band are the sub-barrier ones.

These bellow-barrier sub-bands are the channeled states of the neutron. With a small
increase of the relativistic factor, the number of sub-barrier sub-bands increases from 2
for γ = 1.05 up to 4 for γ = 1.2, with a total number of sub-bands 11 equal to.

The probability of neutron capture in this energy states determines the possibility of
the channeling of fast neutrons. The results of the calculation the initial populations for
(100) channeling in Ta is shown on fig. 3. The probability of neutron capture on any
of the first of the sub-bands does not exceed 0.04% and remains virtually unchanged up
to the critical angle of channeling θ0 = θL (therefore, the populations are normalized to
each initial angle independently).

The calculations show that up to a neutron relativistic factor γ ≈ 5 the probability
of neutron capture into the channeling regime remains the same.

This picture changes with further increase of the relativistic factor γ. In fig. 4, the
energy bands Ei(ky) of the relativistic neutrons transverse motion for the (110) chan-
neling in Ta are shown for two values of the neutron relativistic factors: γ = 10 and
γ = 50. At γ = 10, only the first energy band and three sub-bands of the second band
are the sub-barrier ones, while at γ = 50 there appear three sub-barrier bands. One may
that a well-pronounced isolated sub-barrier energy appears at γ = 50. In both cases,
remarkable gaps between bands are seen.
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Fig. 3. – Population of the sub-bands of the first energy band for the neutron channelling in
(110) Ta, for γ = 1.01 and for two values of angle of incidence: θ0 = 0 (left) and θ0 = θL (right).

Fig. 4. – Relativistic neutrons channeling in (110) Ta: potential and schematic of transverse
energy bands for γ = 10 (left) and γ = 50 (right).

Fig. 5. – Population of the sub-bands of the sub-barrier energy bands for the neutron channelling
in (110) Ta, for γ = 10 (1 sub-barrier band) and γ = 50 (3 sub-barrier bands).

Figure 5 shows the calculated results for initial populations of sub-bands for relativistic
neutrons for γ = 10 and γ = 50 (populations are normalized to all sub-barrier bands for
all initials angles θ0 ∈ (0, θL)). The total population (average) for each of the sub-barrier
bands equals:

– γ = 10 : 0.954078, the 1st band;

– γ = 50 : 0.443245, the 1st; 0.123699, the 2nd and 0.43221, the 3rd band.
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4. – Conclusion

The results of the numerical calculations presented in this paper can be summarized
as follows:

– The transverse energies of planar channeled neutrons are energy bands.

– In the crystal, the channeling of the neutrons can occur only for relativistic energies,
e.g. in a Ta crystal for relativistic factor γ ≥ 1. The probability of the neutrons
capture into the channeling state in this case is close to unity, if the angle of
incidence = 0.

– In the case of non-relativistic neutrons with γ ≈ 1 only a small part of the neutrons
transverse energy bands are sub-barrier ones. The probability of the neutrons
capture into the channeling states in this case is negligibly small.
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