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Summary. — We show briefly the features of a percolation transition related to the
networks obtained from a correlation matrix. The most interesting behaviour of this
transition, investigated by numerical simulations with different thresholding rules,
is that it shows a much faster transition from the disaggregated to the clustered
phase, that resembles what has been described as an “explosive” percolation. A
comparison with the “classic” random network percolation is shown, together with
some applications of these concepts to the networks obtained from real data, that
behave differently depending on the data intrinsic structure.

PACS 87.18.Vf – Systems biology.
PACS 87.18.Wd – Genomics.
PACS 64.60.aq – Networks.
PACS 64.60.ah – Percolation.

1. – Description

The percolation transition in Erdös-Rényi (E-R) random networks is a long-standing
example of phase transitions in networks [1]. Starting from a set of disjointed nodes,
links are added randomly, and in the proximity of an average connectivity of one link
per node, a transition is observed for which a unique connected component develops that
occupies a finite fraction of nodes in the thermodynamic limit.

Very recently it has been shown that a slight modification of the growth rule can lead
to a completely different behaviour at the transition point [2]. This transition has been
called explosive, since it seems to produce a finite connected component all of a sudden,
changing thus the transition properties. This discontinuity has been debated [3], but at
least it can be stated that anomalous critical exponents occur at such a transition.

Network approaches have spread over several fields, from sociology to economics [4]
and biology [5-7] to cite only some examples. In particular, in the study of times series
data, approaches based on the correlation matrices have been applied [4,8], that seem to
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provide robust results even when data are very noisy and the problem is ill-posed (when
there are many more observed variables than time points available). This is a typical
situation when dealing with recently available gene expression data, that can span the
whole genome (103–104 nodes) but for which very few time points are available (101 is a
typical order of magnitude [9, 8]).

We address the problem of percolation transition in the network obtained from correla-
tion matrices, by thresholding of the correlation coefficients. The thresholding procedure
may be useful for removing noise from the data, but a problem is that a predefined thresh-
old cannot be defined, if not based on single-node characteristics (statistical significance
of the correlation). Starting from randomly generated data, we observe an anomalous
transition with features similar to the explosive percolation, thus providing more infor-
mation about the “null model” to be compared with real data. Moreover, applying the
same method to real data, we get some relevant information about the data structure,
that seem to reflect features like modularity and non-random correlations.

2. – Percolation by thresholding

The “null model” is developed from a random Gaussian matrix X, (N M -dimensional
vectors) defined as

X =

⎛
⎝

�x1

. . .
�xN

⎞
⎠ ,(1)

with xi ∝ N(0, σ).
Hence we define the N × N correlation matrix C as usual:

cij =
E[(xi − μi) · (xj − μj)]

σi · σj
.(2)

The correlation matrix gives us the chance to build a network in three different ways,
according to the thresholding (CT > 0) we choose

– correlation: link if cij ≥ CT ,

– anticorrelation: link if cij ≤ −CT ,

– both: link if c2
ij ≥ CT .

Taking different threshold values we get networks with a different number of links, in
this way we follow the evolution of our networks just modifying the threshold value. We
start with N isolated nodes and we finally reach a fully connected network.

The network dynamics is reflected by the formation of a giant component. We com-
pared our models with the classical percolation problem and with a peculiar explosive
percolation model due to a modification of the growth rule, the so-called Product Rule
(PR [2]).

We have observed that, for the correlation-based percolation, the properties depend on
the number of dimensions of the vectors (M), since for high-dimensional vectors (M � 1)
the Gaussian limit for the distribution of cij is recovered, and the percolation becomes
indistinguishable from the classical one. We fixed M = 5 so to appreciate the differences
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Fig. 1. – Percolation for different models with N = 20000 and M = 5: Giant Component size
for Erdös-Rényi, Correlation, Anticorrelation, Product Rule models.

between the correlation coefficients distribution and a normal Gaussian distribution, and
also in accordance with the size of the real-data set vectors as shown below.

As shown if fig. 1, E-R percolation is the less steep, and PR is the steepest. Giant
cluster percolations for the correlation and the anticorrelation cases are less steep than
PR, but start later as compared to E-R, thus they have a shorter “latent phase” between
giant cluster onset and its occupation of the whole network.

3. – Example with real data

In previous papers we studied the dynamics of a gene expression time series net-
work [8]; we compared two data sets of gene expression obtained from a set of microarray
experiments using genetically engineered rat fibroblast cell lines, in which a master gene
c-myc was, respectively, silenced (producing the N data set) and overexpressed (the T
data set). We had 5 time points for both data sets (thus M = 5 according to the notation
introduced before) and 8799 probes for each array.

In the correlation-based model, the similarity measure for the expression dynamics of
two genes is given by the correlation between the two expression-level time series. For a
given data set, if we define xlj as the expression level of a gene with label l at time j,
then the similarity between two genes with labels l and r, respectively, is given by

clr =

∑
j(xlj − μl)(xrj − μr)

σlσr
,(3)

where μl and μr are the averages in time of the expression levels for the two genes, and
σl and are σr their standard deviations.

The correlation approach can be motivated by the hypothesis that genes belonging
to the same activation (or inhibition) pathway should present similar (or opposite) ex-
pression profiles in time.

Hence, once we have the correlation matrix the adjacency matrix is obtained by
considering thresholding on c2

ij , as we explained previously.
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Fig. 2. – Percolation for different data sets: N , T and T reshuffled, whole array with 8799 probes.
Plot of Giant Cluster (GC) relative size (with respect to the whole network) as a function of r2

correlation value.

We checked both the whole 8799 probe set, and a subset of 1191 probes obtained
by statistical analysis over N and T cases (2-way ANOVA, as explained in [8]). As
a comparison, we randomly reshuffled data in both data sets, and performed the same
analysis as for the unshuffled data (only the T reshuffled data set is shown, but both N
and T produce similar results, thus demonstrating that reshuffling destroys any informa-
tion contained in the time series data).

As shown in figs. 2 and 3, we observe very different percolation dynamics between the
three data sets: high values of correlation last longer for the real data, while reshuffled
data resemble percolation with randomly generated data (not shown). Moreover, whereas
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Fig. 3. – Percolation for different data sets: N , T and T reshuffled, selection of 1191 significant
probes. Plot of Giant Cluster (GC) relative size (with respect to the whole network) as a
function of r2 correlation value.
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the shuffled data giant component grows more continuously, in real data we observe some
discontinuous “jumps” in its size (see, in particular, fig. 3, T data set for r2 values close
to 0.99). This discontinuities may resemble the formation of superparamagnetic domains
during cooling [10], thus it should be interesting to further investigate the cluster size
and distribution closer to these values in order to search for modules inside the whole
network.

4. – Conclusions

We have observed percolation dynamics in the growth of a network based on the
correlation of randomly generated data, that seems to differ from classical percolation,
and results to be more similar to the so-called explosive (or better anomalous) percolation
models. We investigated the behaviour of real biological data (high-throughput gene
expression time series), obtained in an experiment in which a very important biological
mechanism is switched on and off. We observe striking differences in percolation dynamics
also in this case, both at the level of global gene expression level, and in a subset of genes
selected by their significant response to the switching. Some hints point out at a possible
role of percolation dynamics in finding modules and structures inside such networks, that
deserves further investigation.
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