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Summary. — We present a class of interacting nonlocal quantum field theories,
in which the CPT invariance is violated while the Lorentz invariance is not. This
result rules out a previous claim in the literature that the CPT violation implies
the violation of Lorentz invariance.

PACS 11.10.-z – Field theory.
PACS 11.30.Er – Charge conjugation, parity, time reversal, and other discrete
symmetries.

1. – Introduction

Lorentz symmetry and the CPT invariance are two of the most respectable sym-
metries in Nature. The individual symmetries C, P and T have been observed to be
violated. The combined product —CPT— remarkably remains as an exact symmetry.

2. – A brief history of CPT

As far as I know, J. Schwinger was the first one who mentioned the CPT theorem
in his paper in 1951. He considered CPT theorem as a rather self-evident statement.
The first Proof of CPT was done by Lüders [2], by Pauli [3] and by John Bell (but I
have never seen his paper) within the Hamiltonian formulation of quantum field theory
with local and Lorentz-invariant interaction. Later Jost [4] gave a General Proof of CPT
within the axiomatic formulation of quantum field theory. The great deal was that the
“local commutativity” condition was relaxed to “weak local commutativity”.

Lorentz symmetry has been an essential ingredient of the proof, both in the Hamilto-
nian QFT and in the axiomatic QFT. The main idea was that the reflection of all 4 axes
is equvalent to the rotation for Euclidean space with even dimensions. Lorentz boost

(∗) This talk is based on the paper the author has written in collaboration with Sasha Dolgov,
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in Minkowsky space-time is more or less equivalent to rotation in Euclidean time. The
problem was in accurate continuation of Minkowsky space to Euclidean one.

Violation of Lorentz symmetry and CPT was considered in the literature for decades.
A long list of references includes the great names of Coleman, Glashow, Okun, Colladay,
Kostelecky, Cohen, Lehner.

It is important to clarify the relation between CPT and Lorentz invariance. Does
the violation of any of the symmetries automatically imply the violation of the other
one? This issue has recently become a topical one due to the growing phenomenological
importance of CPT -violating scenarios in neutrino physics and in cosmology.

The first phenomenological consideration was made by Murayama and Yanagida [5].
They introduced a CPT -violating quantum field theory with a mass difference between
neutrino and antineutrino. Later Barenboim et al. [6] and then Greenberg [7] investigated
theoretical aspects of this assumption. Greenberg conclusion is: CPT violation implies
violation of Lorentz invariance.

The dispute on the validity of the theorem is the subject of this talk.

3. – CPT -violating free-field model

To formulate the CPT -violating free-field model we use commutation relations for
particle a(p), a+(p′) with mass m; Bose commutation relations for antiparticle b(p), b+(p′)
with mass m̃ and the considered Hamiltonian as a sum over free oscillators.

Greenberg arguments were that the propagator of free particles is not Lorentz co-
variant, unless the masses of particle and antiparticle coincide. The theory is nonlocal
and acausal: the Δ(x, y)-function, i.e. the commutator of two fields, does not vanish
for space-like separation, unless the two masses are the same, thus violating the Lorentz
invariance. These arguments support a general “theorem” that interacting fields that
violate CPT symmetry necessarily violate Lorentz invariance.

I would like to point out that such theory can not be considered as a quantum field
theory. There are no differential equations of motion. Canonical conjugate momenta do
not exist and, as a result, there are no canonical equal-time commutation relations “Free
fields” separated by a space-like distance do not commute. They do not anticommute as
well. One has no rule whether to apply commutation or anticommutation relations in
quantizing the fields! There does not exist any reasonable field theory formulation of a
model where particle and antiparticle have different masses.

4. – CPT -violating, Lorentz-invariant nonlocal model

We propose a model which preserves Lorentz invariance and breaks the CPT sym-
metry through a (nonlocal) interaction.

In this model the free-field theory is a local one. Nonlocal field theories appear, in
general, as effective field theories of a larger theory.

Consider a field theory with nonlocal interaction Hamiltonian of the type

(1) Hint(x) = g

∫
d4yφ∗(x)φ(x)φ∗(x)θ(x0 − y0)θ((x − y)2)φ(y) + h.c.,

where φ(x) is a Lorentz-scalar field and θ is the Heaviside step function, with values 0 or 1,
for its negative and positive argument, respectively. The combination θ(x0−y0)θ((x−y)2)
ensures the Lorentz invariance, i.e. invariance under the proper orthochronous Lorentz
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transformations, since the order of the times x0 and y0 remains unchanged for time-like
intervals, while for space-like distances the interaction vanishes.

Also, the same combination makes the nonlocal interaction causal at the tree level,
which dictates that there is no interaction when the fields are separated by space-like
distances and thus there is a maximum speed of c = 1 for the propagation of information.

On the other hand, it is clear that C and P invariance are trivially satisfied in (1),
while T invariance is broken due to the presence of θ(x0 − y0) in the integrand.

One can always insert into the Hamiltonian (1), without changing its symmetry prop-
erties, a weight function or form factor F ((x − y)2), for instance of a Gaussian type:

(2) F = exp
(
− (x − y)2

l2

)
,

with l being a nonlocality length in the considered theory. Such a weight function would
smear out the interaction and would guarantee the desired behaviour of the integrand
in (1); in the limit of fundamental length l → 0 in (2), the Hamiltonian (1) would
correspond to a local, CPT - and Lorentz-invariant theory.

A weight function such as (2) would make the acausality of the model (see the next
section) restricted only to very small distances, of the order of l. The latter could be
looked upon as being a characteristic parameter relating the effective field theory to its
parent one, for instance the radius of a compactified dimension when the parent theory
is a higher-dimensional one. Furthermore, with such a weight function, the interaction
vanishes at infinite (x − y)2 separations and thus one can envisage the existence of in-
and out-fields.

There exists a whole class of such CPT -violating, Lorentz-invariant field theories
involving different, scalar, spinor or higher-spin interacting fields. Typical simplest ex-
amples are

Hint(x) = g1

∫
d4yφ∗

1(x)φ1(x)θ(x0 − y0)θ((x − y)2)φ2(y) + h.c.,(3)

Hint(x) = g2

∫
d4y ψ̄(x)ψ(x)θ(x0 − y0)θ((x − y)2)φ(y) + h.c.,

Hint(x) = g3

∫
d4y φ(x)θ(x0 − y0)θ((x − y)2)φ2(y) + h.c.

5. – Quantum theory of nonlocal interaction

The S-matrix in the interaction picture is obtained as solution of the Lorentz-covariant
Tomonaga-Schwinger equation:

(4) i
δ

δσ(x)
Ψ[σ] = Hint(x)Ψ[σ],

with σ a space-like hypersurface, and the boundary condition

(5) Ψ[σ0] = Ψ,

where Hint is for instance the Hamiltonian (3) with the fields in the interaction picture.
Then eq. (4) with the boundary condition (5) represents a well-posed Cauchy problem.
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The existence of a unique solution for the Tomonaga-Schwinger equation is ensured
if the integrability condition

(6)
δ2Ψ[σ]

δσ(x)δσ(x′)
− δ2Ψ[σ]

δσ(x′)δσ(x)
= 0,

with x and x′ on the surface σ, is satisfied. The integrability condition (6), inserted
into (4), requires that the commutator of the interaction Hamiltonian densities vanishes
at space-like separation:

(7) [Hint(x),Hint(y)] = 0, for (x − y)2 < 0.

Since in the interaction picture the field operators satisfy free-field equations, they
automatically satisfy Lorentz-invariant commutation rules. The Lorentz-invariant com-
mutation relations are such that (7) is fulfilled only when x and y are space-like separated,
(x − y)2 < 0, i.e. when σ is a space-like surface. As a result, the integrability condi-
tion (7) is equivalent to the microcausality condition for local relativistic QFT. When the
surfaces σ are hyperplanes of constant time, the Tomonaga-Schwinger equations reduce
to the single-time Schrödinger equation. Inserting the expression (3) into (7), we have

[Hint(x),Hint(y)] =(8) ∫
d4ad4bθ((x − a)2)θ(x0 − a0)θ((y − b)2)θ(y0 − b0)

×[φ(x)φ2(a) + h.c., φ(y)φ2(b) + h.c.].

The commutator on the r.h.s. will open up into a sum of products of field at the points x,
y, a, b, multiplied by commutators of free fields like [φ(x), φ(y)], [φ(x), φ(b)], [φ(a), φ(y)],
[φ(a), φ(b)]. In order for the commutator (8) to vanish, all the coefficients of the products
of fields in the expansion have to vanish, since the fields at different space-time points
are independent. Clearly, the terms with the coefficient Δ(x − y) = [φ(x), φ(y)] vanish
for (x−y)2 < 0. However, the commutator (8) does not vanish for (x−y)2 < 0. In order
to show this, it is enough to show that one independent product of fields has nonzero
coefficient. Let us consider the products which contain the fields φ(x), φ(y), φ(a), φ(b)

A straightforward calculation shows that the terms containing these fields are:

∫
d4ad4b θ((x − a)2)θ(x0 − a0)θ((y − b)2)θ(y0 − b0)(9)

×2Δ(a − b){φ(a), φ(b)}φ(x)φ(y) + h.c.

A closer study of the expression (9) shows that it does not vanish at space-like distances
between x and y and thus the causality condition (7) is not satisfied.

This, in turn, implies that the field operators in the Heisenberg picture, ΦH(x) and
ΦH(y), do not satisfy the locality condition

(10) [ΦH(x),ΦH(y)] = 0, for (x − y)2 < 0,

when the quantum corrections are taken into account. This is in accord with the require-
ment of locality condition (10) for the validity of CPT theorem both in the Hamiltonian
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proof (Luders, Pauli) and in the axiomatic one (Jost, Bogoliubov), taking into account
that there is no example of a QFT, which satisfies the weak local commutativity condition
(WLC) but not the local commutativity (LC).

6. – Conclusions

Let me summarize the results. We have presented a very simple class of interacting
nonlocal quantum field theories, which violate CPT invariance and preserve Lorentz
invariance. This result invalidates a general claim made previously by Greenberg, that
“CPT violation implies violation of Lorentz invariance”. Violation of Lorentz invariance
does not necessarily lead to CPT violation.

We hope that we have made a step in the right direction.
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