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Summary. — The analytical expression for the Coulomb potential in the pres-
ence of a superstrong magnetic field is derived. The structure of hydrogen levels
originating from LLL is analyzed.

PACS 11.10.Kk – Field theories in dimensions other than four.
PACS 30.31.J- – Relativistic and quantum electrodynamics (QED) effects in atoms,
molecules, and ions.

1. – Introduction

The long awaited discovery of Higgs boson is planned during the next two years
at LHC. For the first time what is called now the Higgs phenomenon was used in the
Ginzburg-Landau phenomenological theory of superconductivity to expel the magnetic
field from a superconductor.

Quite unexpectedly in the superstrong magnetic field a photon also gets a (quasi)
mass. In this talk we have discussed this phenomenon and how it affects the atomic
energy levels. The talk is based on papers [1].

In what follows the strong magnetic field is B > m2
ee

3; the superstrong magnetic
field is B > m2

e/e3; the critical magnetic field is Bcr = m2
e/e and we use Gauss units:

e2 = α = 1/137.
The Landau radius of an electron orbit in the magnetic field B is aH = 1/

√
eB and it

is much smaller than the Bohr atomic radius for B � e3m2
e. For such strong B electrons

on Landau levels feel a weak Coulomb potential moving along the magnetic field. In [2]
a numerical solution of the Schrödinger equation for a hydrogen atom in strong B was
performed. According to this solution the ground level goes to −∞ when B goes to +∞.
However, the photon mass leads to the Coulomb potential screening and the ground
level remains finite at B → ∞ [3]. Since the electron at the ground Landau level moves
freely along the magnetic field, the problem resembles D = 2 QED and we will start our
discussion from this theory.
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Fig. 1. – Modification of the Coulomb potential due to the dressing of the photon propagator.

2. – D = 2 QED: screening of Φ

The following equation for an electric potential of the point-like charge holds; see
fig. 1:

(1) Φ(k̄) ≡ A0(k̄) =
4πg

k̄2
; Φ ≡ A0 = D00 + D00Π00D00 + . . . .

Summing the series we get

Φ(k) = − 4πg

k2 + Π(k2)
, Πμν ≡

(
gμν − kμkν

k2

)
Π(k2) ,(2)

Π(k2) = 4g2

[
1√

t(1 + t)
ln(

√
1 + t +

√
t) − 1

]
≡ −4g2P (t) ,(3)

where t ≡ −k2/4m2, [g] = mass.
Taking k = (0, k‖), k2 = −k2

‖ for the Coulomb potential in the coordinate represen-
tation, we get

(4) Φ(z) = 4πg

∫ ∞

−∞

eik‖zdk‖/2π

k2
‖ + 4g2P (k2

‖/4m2)
,

and the potential energy for the charges +g and −g is finally V (z) = −gΦ(z).
The asymptotics of P (t) are

(5) P (t) =

{
2
3 t, t � 1 ,

1, t � 1 .

Let us take as an interpolating formula for P (t) the following expression:

(6) P (t) =
2t

3 + 2t
.

The accuracy of this approximation is not worse than 10% for the whole interval of t
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variation, 0 < t < ∞. Substituting an interpolating formula in (4) we get

Φ = 4πg

∫ ∞

−∞

eik‖zdk‖/2π

k2
‖ + 4g2(k2

‖/2m2)/(3 + k2
‖/2m2)

(7)

=
4πg

1 + 2g2/3m2

∫ ∞

−∞

[
1
k2
‖

+
2g2/3m2

k2
‖ + 6m2 + 4g2

]
eik‖z dk‖

2π

=
4πg

1 + 2g2/3m2

[
−1

2
|z| + g2/3m2√

6m2 + 4g2
exp

(
−

√
6m2 + 4g2|z|

)]
.

In the case of heavy fermions (m � g) the potential is given by the tree level expres-
sion; the corrections are suppressed as g2/m2.

In the case of light fermions (m � g)

(8) Φ(z)|m�g =

{
πe−2g|z| , z � 1

g ln( g
m ) ,

−2πg
(

3m2

2g2

)
|z| , z � 1

g ln( g
m ) ,

m = 0 corresponds to the Schwinger model; the photon gets a mass.
Light fermions make the transition from m > g to m = 0 continuous.

3. – D = 4 QED

In order to find the potential of a point-like charge we need an expression for P in
strong B. One starts from the electron propagator G in strong B. The solutions of
the Dirac equation in the homogeneous constant in time B are known, so one can write
the spectral representation of the electron Green function. The denominators contain
k2 − m2 − 2neB, and for B � m2/e and k2

‖ � eB in sum over levels the lowest Landau
level (LLL, n = 0) dominates. In the coordinate representation a transverse part of LLL
wave function is Ψ ∼ exp((−x2 − y2)eB) which in the momentum representation gives
Ψ ∼ exp((−k2

x − k2
y)/eB) (we suppose that B is directed along the z-axis).

Substituting the electron Green functions we get the expression for the polarization
operator in superstrong B.

For B � Bcr, k2
‖ � eB the following expression is valid [4]:

Πμν ∼ e2eB

∫
dqxdqy

eB
exp

(
−

q2
x + q2

y

eB

)
(9)

∗ exp

(
−

(q + k)2x + (q + k)2y
eB

)
dq0dqzγμ

1
q̂0,z − m

(1 − iγ1γ2)γν

∗ 1

q̂0,z + k̂0,z − m
(1 − iγ1γ2) = e3B ∗ exp

(
− k2

⊥
2eB

)
∗ Π(2)

μν (k‖ ≡ kz) .
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Fig. 2. – (Colour on-line) A modified Coulomb potential at B = 1017G (blue, dark solid) and
its long distance (green, pale solid) and short distance (red, dashed) asymptotics.

With the help of it, the following result was obtained in [1]:

Φ(k) =
4πe

k2
‖ + k2

⊥ + 2e3B
π exp

(
− k2

⊥
2eB

)
P

(
k2
‖

4m2

) ,(10)

Φ(z) = 4πe

∫
eik‖zdk‖d2k⊥/(2π)3

k2
‖ + k2

⊥ + 2e3B
π exp(−k2

⊥/(2eB))(k2
‖/2m2

e)/(3 + k2
‖/2m2

e)
(11)

=
e

|z|
[
1 − e−

√
6m2

e|z| + e−
√

(2/π)e3B+6m2
e|z|

]
.

For the magnetic fields B � 3πm2/e3 the potential is Coulomb up to small power
suppressed terms:

(12) Φ(z)
∣∣
e3B�m2

e
=

e

|z|

[
1 + O

(
e3B

m2
e

)]
,

in full accordance with the D = 2 case, e3B → g2.
In the opposite case of the superstrong magnetic fields B � 3πm2

e/e3 we get

Φ(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e
|z|e

(−
√

(2/π)e3B|z|) , 1√
(2/π)e3B

ln
(√

e3B
3πm2

e

)
> |z| > 1√

eB
,

e
|z| (1 − e(−

√
6m2

e|z|)) , 1
m > |z| > 1√

(2/π)e3B
ln

(√
e3B

3πm2
e

)
,

e
|z| , |z| > 1

m ,

(13)

V̄ (z) = −eΦ(z) .(14)

In fig. 2 the plot of a Coulomb potentiala modified by the superstrong B as well as
its short- and long-distance asymptotics are presented.



COULOMB LAW AND ENERGY LEVELS IN A SUPERSTRONG MAGNETIC FIELD 375

4. – Electron in the magnetic field

The spectrum of the Dirac equation in the homogeneous magnetic field constant in
time is given by [5]

(15) ε2
n = m2

e + p2
z + (2n + 1 + σz)eB ,

n = 0, 1, 2, 3, . . . ; σz = ±1.
For B > Bcr ≡ m2

e/e the electrons are relativistic with only one exception: the
electrons from the lowest Landau level (LLL, n = 0, σz = −1) can be nonrelativistic.
In what follows we will find the spectrum of electrons from LLL in the screened Coulomb
field of the proton.

The spectrum of the Schrödinger equation in cylindrical coordinates (ρ, z) is [6]

(16) Epznρmσz
=

(
nρ +

|m| + m + 1 + σz

2

)
eB

me
+

p2
z

2me
,

LLL: nρ = 0, σz = −1,m = 0,−1,−2, . . .,

(17) R0m(ρ) =
[
π(2a2

H)1+|m|(|m|!)
]−1/2

ρ|m|e(imϕ−ρ2/(4a2
H)) .

Now we should take into account the electric potential of the atomic nuclei situated
at ρ = z = 0. For aH � aB the adiabatic approximation is applicable and the wave
function in the following form should be looked for:

(18) Ψn0m−1 = R0m(ρ)χn(z) ,

where χn(z) is the solution of the Schrödinger equation for electron motion along the
magnetic field

(19)
[
− 1

2m

d2

dz2
+ Ueff (z)

]
χn(z) = Enχn(z) .

Without screening the effective potential is given by the following formula:

(20) Ueff (z) = −e2

∫ |R0m(ρ)|2√
ρ2 + z2

d2ρ ,

For |z| � aH the effective potential equals the Coulomb one

(21) Ueff (z) |z�aH
= − e2

|z|
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Fig. 3. – (Colour on-line) Effective potential with screening for m = 0 (dark solid (blue) curve)
and m = −1 (long-dashed curve), (24); simplified potential (short-dashed (red) curve) (25). The
curves correspond to B = 3× 1017G. The Coulomb potential (pale solid (green)) is also shown.

and it is regular at z = 0

(22) Ueff (0) ∼ − e2

|aH | .

Since Ueff (z) = Ueff (−z), the wave functions are odd or even under the reflection
z → −z; the ground states (for m = 0,−1,−2, . . .) are described by the even wave
functions. The energies of the odd states are

(23) Eodd = −mee
4

2n2
+ O

(
m2

ee
3

B

)
, n = 1, 2, . . . .

So, for the superstrong magnetic fields B > m2
e/e3 they coincide with the Balmer series.

5. – Energies of even states: screening

When screening is taken into account the expression for the effective potential trans-
forms into [1]

(24) Ũeff (z) = −e2

∫ |R0m(	ρ )|2√
ρ2 + z2

d2ρ
[
1 − e−

√
6m2

e z + e−
√

(2/π)e3B+6m2
e z

]
.

For m = 0 the following simplified formula can be used:

(25) Usimpl(z) = −e2 1√
a2

H + z2

[
1 − e−

√
6m2

e z + e−
√

(2/π)e3B+6m2
e z

]
.

In fig. 3 the plots of the effective potentials for m = 0 and m = −1 are presented.
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Fig. 4. – Spectrum of the hydrogen levels in the limit of the infinite magnetic field. Energies are
given in Rydberg units, Ry ≡ 13.6 eV.
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6. – Karnakov-Popov equation

It provides a several percent accuracy for the energies of even states for H > 103

(H ≡ B/(m2
ee

3)), see [7].
The main idea is to integrate the Shrödinger equation with the effective potential from

x = 0 till x = z, where aH � z � aB and to equate the obtained expression for χ′(z)
to the logarithmic derivative of Whittaker function—the solution of Shrödinger equation
with Coulomb potential, which exponentially decreases at z � aB

2 ln
(

z

aH

)
+ ln 2 − ψ(1 + |m|) + O(aH/z) =(26)

2 ln
(

z

aB

)
+ λ + 2 ln λ + 2ψ

(
1 − 1

λ

)
+ 4γ + 2 ln 2 + O(z/aB) ,

where ψ(x) is the logarithmic derivative of the gamma-function and

(27) E = −(mee
4/2)λ2 .

The modified KP equation, which takes screening into account, looks like [1]

(28) ln

(
H

1 + e6

3π H

)
= λ + 2 lnλ + 2ψ

(
1 − 1

λ

)
+ ln 2 + 4γ + ψ(1 + |m|) .

The spectrum of the hydrogen atom in the limit H → ∞ is shown in fig. 4.

7. – Conclusions

– Atomic energies at superstrong B is the only known (for me) case when the radiative
“correction” determines the energy of states.

– The analytical expression for the charged particle electric potential in d = 1 is
given; for m < g screening takes place at all distances.

– The analytical expression for the charged particle electric potential at superstrong
B in d = 3 is found; screening takes place at the distances |z| < 1/me.

– An algebraic formula for the energy levels of a hydrogen atom originating from the
lowest Landau level in superstrong B has been obtained.

∗ ∗ ∗
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